

Revision of European standard EN 16798-1: Ventilation and air cleaning in reducing airborne transmission

REHVA

AIVC Webinar February 12, 2024

Jarek Kurnitski

Tallinn University of Technology, Aalto University, REHVA Technology & Research Committee, Nordic Ventilation Group

HEALTH-BASED TARGET VENTILATION RATES AND DESIGN METHOD FOR REDUCING EXPOSURE TO AIRBORNE RESPIRATORY INFECTIOUS DISEASES

Follows proposal by Nordic Ventilation Group and REHVA

Target outdoor air ventilation rates Q (L/s) are calculated using the number of persons in room N (-) and the room volume V (m³)

Space category	Ventilation rate, L/s
Classroom	Q = 10(N-1) - 0.24V
Office	Q = 23(N-1) - 0.24V
Assembly hall	Q = 30(N-1) - 0.24V
Meeting room	Q = 40(N-1) - 0.24V
Restaurant	Q = 40(N-1) - 0.24V
Gym	Q = 70(N-1) - 0.24V

Design ventilation rate supplied by the ventilation system:

$$Q_s = \frac{Q}{\varepsilon_b}$$

 ε_b point source ventilation effectiveness for the breathing zone (-)

5

https://www.rehva.eu/activities/post-covid-ventilation

Proposed implementation in EN 16798-1 revision

• Infection-risk based target ventilation rates for fully mixing air distribution - generic equation (originally based on quanta, but may be also on relative risk reduction):

$$Q = q_q(N-1) - q_r V$$

where

Q target ventilation rate (L/s) (sum of outdoor and clean recirculated airflow rate)

 q_a quanta emission specific ventilation rate for occupancy per person (L/(s person))

 q_r removal rate of virus decay and deposition (L/(s m³))

- N the number of persons in the room
- V room volume (m³)
- q_a (viral load and risk level) and q_r (removal mechanisms) are virus specific parameters

This equation may also be used to calculate allowed N at given ventilation rate

Kurnitski et al. 2023 https://doi.org/10.1016/j.enbuild.2023.113386

REHVA

5

Proposed implementation in EN 16798-1 revision

• Tabulated values for virus specific ventilation parameters q_q and q_r

Space category	q _a , L/(s person)	<i>q_r,</i> L/(s m³)
Classroom	10	0.24 + <i>k_f</i> /3.6
Office	23	0.24 + k _f /3.6
Assembly hall	30	$0.24 + k_{f}/3.6$
Meeting room	40	$0.24 + k_{f}/3.6$
Restaurant	40	$0.24 + k_f/3.6$
Gym	70	$0.24 + k_f/3.6$

• In the case of no air cleaner, filtration removal rate (1/h) $k_f = 0$

Kurnitski et al. 2023 https://doi.org/10.1016/j.enbuild.2023.113386

- There are no IEQ categories in this case
- Tabulated values are informative (Annex B) and may be provided in the national annex

REHVA	
	Federation of
	European Heating
	Ventilation and
	Air Conditioning
	Associations

7

Proposed implementation in EN 16798-1 revision

• Design ventilation rate supplied by the ventilation system Q_{s} is calculated with point source ventilation effectiveness ε_{b} for the breathing zone:

$$Q_s = \frac{Q}{\varepsilon_b}$$

 ε_b is to be calculated as an average of two or more tracer gas measurements with different source locations (or CFD simulations):

$$\varepsilon_b^j = \frac{C_{je} - C_{jo}}{C_{jb} - C_{jo}}$$

$$\varepsilon_b = \frac{\sum_j \varepsilon_b^J}{m}$$

• or with more dedicated method

where	
ε_b^j	point source ventilation effectiveness of measurement j
ε _b	point source ventilation effectiveness for the breathing zone
C _{je}	measurement <i>j</i> concentration in the extract air duct
C _{jb}	measurement <i>j</i> concentration at the breathing level
Ċ	concontration in the supply air

 $k_f = \frac{Q_f \eta_f}{V}$

- *C_{j0}* concentration in the supply air *m* total number of measurements w
 - total number of measurements with different point source locations

REHVA

Ventilation effectiveness

- To be determined with the point source (=infector)
- Existing values do not apply because measured with distributed source (=normal occupancy)

$$Q_s = \frac{Q}{\varepsilon_b}$$
$$\varepsilon_{P,i} = \frac{C_e - C_o}{C_i - C_o}$$

• ε_b can be calculated from local air quality index values: $\varepsilon_b^j = \frac{1}{\sum_{i=1}^k \left(\frac{1}{\varepsilon_{P,i}}\right)}$

the average value of two measurements ε_b =0.76

9

				Infection-risk-based ventilation					Comfort ventilation	
	Floor	r Room	No of	Ventilation	Ventilation	Ventilation	Air change	CO2	Cat. II	Cat. I
	area	height	persons	effectiveness	rate	rate	rate	conc.	ventilation	ventilatio
	m²	m	N, -	ε _{b,} -	L/(s pers)	L/(s m²)	1/h	ppm	L/(s m²)	L/(s m²)
Small classroom	31.6	3.5	13	1.00	7.2	3.0	3.0	1097	3.6	5.1
Classroom	42.5	2.9	25	0.91	9.2	5.4	6.7	941	4.8	6.9
Classroom	56.5	2.9	25	0.90	8.9	3.9	4.9	962	3.8	5.4
reduced occ.	56.5	2.9	20	0.90	8.4	3.0	3.7	999	3.2	4.5
Large teaching space	129.5	2.9	50	0.60	13.3	5.1	6.4	776	3.4	4.9
reduced occ.	129.5	2.9	40	0.60	12.5	3.8	4.8	801	2.9	4.1
2-person office	21.0	2.6	2	1.00	4.9	0.5	0.6	1535	1.4	2.0
Open-plan office	56.7	2.6	6	0.80	16.5	1.7	2.4	736	1.4	2.1
Open-plan office	173.0	2.6	17	0.60	25.4	2.5	3.5	619	1.4	2.0
Meeting room	29.2	2.6	10	1.00	34.2	11.7	16.2	563	3.1	4.4
reduced occ.	29.2	2.6	6	1.00	30.3	6.2	8.6	584	2.1	3.1

