

Ventilation concepts in classrooms: Results of a long-term study in three elementary schools

Susanna Bordin M.Sc. AIVC 2025 – 02.04.2025

ohm Motivation

too cold?
too warm?

feeling sick?

Compare the influence of different ventilation concepts on good air in classrooms

- Good indoor air quality (low CO₂ levels)
- Increased well-being and thermal comfort
- **Reduction** of airborne diseases
- **Energy efficient**

Susanna Bordin - AIVC Workshop 2025

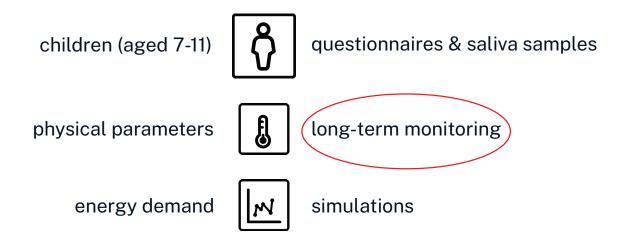
ohm

Study design – 3 ventilation concepts

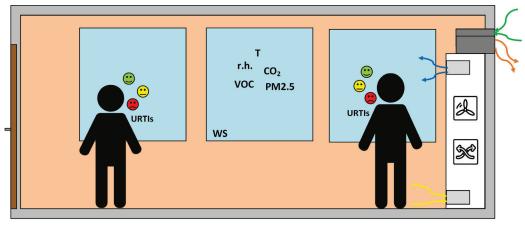
natural ventilation (NV)

4 classrooms

decentralized ventilation (DV)


central ventilation (CV)

Observational field study from October 23 - April 24

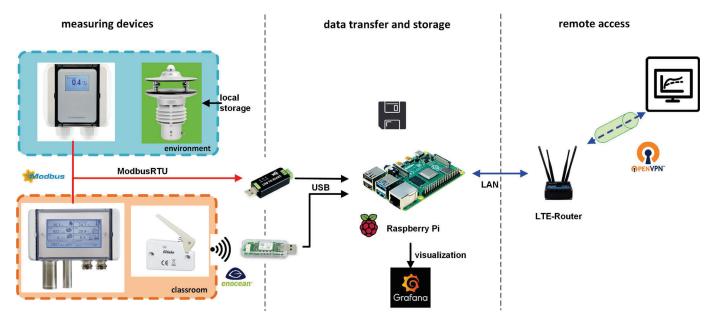

Influence on:

Susanna Bordin - AIVC Workshop 2025 5

ohm

Measured parameters in the classrooms

T: Temperature
r.h.: Relative humidty
CO₂: CO₂ concentration
VOC: Volatile organic compounds
PM2.5: Particulate matter
WS: Window status
③: Well-being and comfort


URTIs: Upper Respiratory Tract Infections

Decentralized Ventilation System
Green: Outdoor Air
Blue: Supply Air
Yellow: Return air
Orange: Exhaust Air

Susanna Bordin - AIVC Workshop 2025

6

Monitoring concept

Susanna Bordin - AIVC Workshop 2025

7

ohm

Collected data

Timestep: 1 minute

Entire study period: 7 month → 213 days → 120 school days

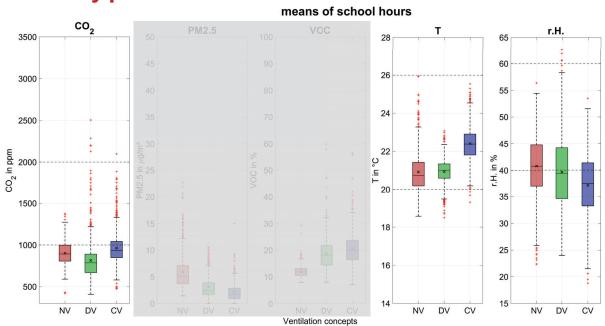
• weekends + vacations + public holidays: 93 days

Occupancy time: 8 a.m. -1 p.m. → 6 school hours/day + school breaks

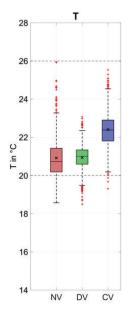
→ 720 school hours (a 45 min)

Results indoor parameters

- CO₂
- Indoor air temperature
- Relative humidity
- · Window opening times


Susanna Bordin - AIVC Workshop 2025

9

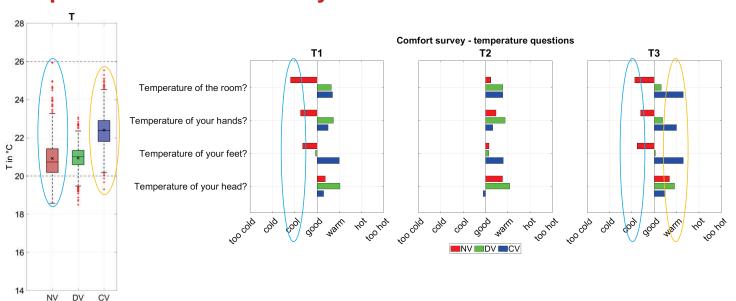

10

ohm

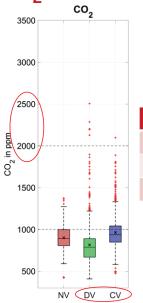
Entire study period

Indoor air temperature

Concept	T < 20 °C
NV	18.9%
DV	10.7%
CV	0.4%


Lowest temperatures & largest temperature spread Smallest temperature spread Warmer temperatures

Susanna Bordin - AIVC Workshop 2025


11

Ωhm

Temperature – Comfort survey

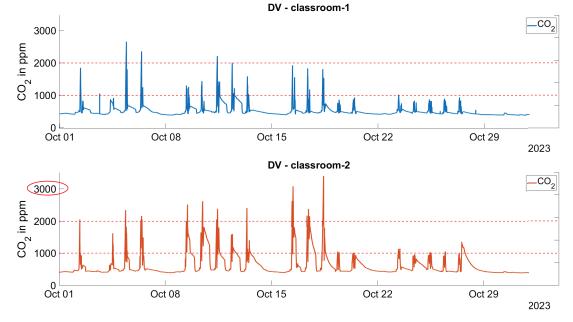
CO₂ concentration

Concept	CO ₂ > 1000 ppm
NV	24.7%
DV	10.6%
CV	34.3%

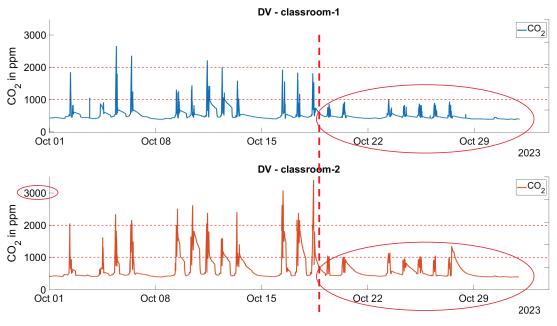
Good to acceptable values

Overall best CO₂ levels, however high outliers!

High CO₂ levels and high outliers!

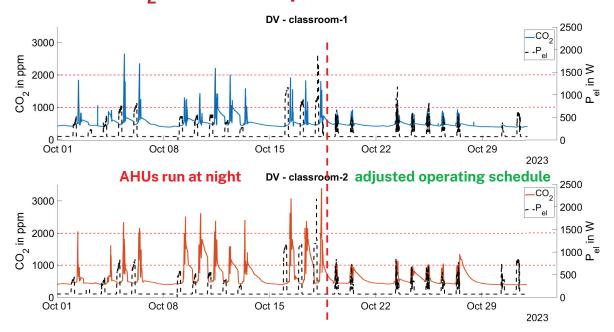

Susanna Bordin - AIVC Workshop 2025

13


14

ωhm

DV - 2023-10 - CO₂


DV - 2023-10 - CO₂

Susanna Bordin - AIVC Workshop 2025 15

Ω hm

DV - 2023-10 - CO₂ & electrical power

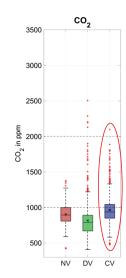
DV - periods with incorrect time settings

6 periods in which the AHUs do not run completely / at all during lessons from 8 a.m. to 1 p.m.

Reasons:

- schedule was set incorrectly
- switching to winter time was 2 weeks too late
- AHUs were switched on too late after vacations or off too early before vacations

Susanna Bordin - AIVC Workshop 2025 17


$oldsymbol{o}$

CV - CO₂ concentration

Why such high CO₂ levels & peaks?

The supply air is controlled by:

• CO₂ and presence

CV – CO₂ concentration

Why such high CO₂ levels & peaks?

The supply air is controlled by:

- CO₂ and presence
- Window state!

energy-efficient control strategy:

open/tilted window -> supply air is deactivated for this classroom

Susanna Bordin - AIVC Workshop 2025 19

$oldsymbol{o}$

Window opening times

Concept	Average ventilation time per school hour	
NV	28 min	
DV	14 min	
CV	11 min	

In the NV-group, the windows are opened twice as long as in the mechanically ventilated concepts.

$oldsymbol{o}h$ m

Window opening times

Concept	Average ventilation time per school hour	Most frequent type of window states
NV	28 min	1 open window (62%)
DV	14 min	1 open window (70%)
CV	11 min	1 tilted window (45%)

In the NV-group, the windows are opened twice as long as in the mechanically ventilated concepts. In the CV-group, mainly 1 window is tilted during the average ventilation time.

Susanna Bordin - AIVC Workshop 2025 2

Ω hm

Summary

- NV-group: good to acceptable CO₂ levels
 (big window openings + CO₂ traffic lights),
 however lowest temperatures & widest temperature spread
- DV-group: best CO₂ levels (correct setting of the AHUs!)
- **CV-group:** CO₂ levels are rather high, because of energy-efficient control strategy the users did not know about
- **Relative humidity** is rather low for all concepts, especially for the mechanically ventilated classrooms.

Conclusion

- Correct setting of ventilation systems is not a matter of course!
- Decentralized and central ventilation systems
 - must be controlled and operated correctly
 - and the users need to know about "special" control settings.

Susanna Bordin - AIVC Workshop 2025

ohm

Outlook

- > Further statistical analysis of the data
- > Finally, combined evaluation of monitoring results and medical results

Thank you!

ACKNOWLEDGEMENTS:

This presentation presents results of the project "MoSimEx-Luft" (10.08.18.7-22.33).

The project was funded by the Federal Institute for Research on Building, Urban Affairs and Spatial Development on behalf of the Federal Ministry for Housing, Urban Development and Building with funds from the Future Building Research Funding.

Technische Hochschule Nürnberg Georg Simon Ohm Susanna Bordin M. Sc. Institut für Energie und Gebäude (ieg) E-Mail: susanna.bordin@th-nuernberg.de

im Bundesamt für Bauwesen und Raumordnung

Gefördert durch:

aufgrund eines Beschlusses des Deutschen Bundestages

Susanna Bordin - AIVC Workshop 2025

phone: + 49 911/5880-3124

25