An IAQ and thermal comfort coach prototype to improve comfort and energy consumption thanks to adequate management of natural ventilation:

Genesis, development and first feedback results

Arnaud JAY, Pierre BERNAUD, Franck ALESSI
CEA, liten – Campus INES
FRANCE

CONTEXT

- Natural ventilation through open Windows allows to exchange easily 5 - 10 ACH for free
- But might bring some additional energy consumption or discomfort if open at inappropriate time
Wind’ose genesis:
Monitoring of our Naturally ventilated Office Building in Summer period

Monitoring of Windows/Doors opening

Interface to collect User feedback

OPENINGS STATUS AND FAN MONITORING

Contact sensors on all openings on 2nd floor of west wing.

Power meters for fans.
+ Z-wave repetitor
Initial behavior campaigns: First results (1/2)

Window louvers to Outdoor and corridor

Windows to outdoor

Desk Fan

% of opening time

ON

OFF

Initial behavior campaigns: First results (2/2)

Number of answers for each user

<table>
<thead>
<tr>
<th>Year</th>
<th>2017</th>
<th>2018</th>
<th>2019</th>
<th>2020</th>
<th>2021</th>
<th>2022</th>
<th>2023</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nb users</td>
<td>22</td>
<td>29</td>
<td>13</td>
<td>16</td>
<td>10</td>
<td>4</td>
<td>8</td>
<td>51</td>
</tr>
<tr>
<td>Total</td>
<td>2222</td>
<td>17479</td>
<td>2490</td>
<td>3192</td>
<td>585</td>
<td>236</td>
<td>701</td>
<td>26915</td>
</tr>
<tr>
<td>User23</td>
<td>181</td>
<td>139</td>
<td>176</td>
<td>508</td>
<td>135</td>
<td></td>
<td></td>
<td>2393</td>
</tr>
<tr>
<td>User26</td>
<td>51</td>
<td>1058</td>
<td>530</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1639</td>
</tr>
<tr>
<td>User3</td>
<td>209</td>
<td>390</td>
<td>348</td>
<td>247</td>
<td></td>
<td>124</td>
<td></td>
<td>1318</td>
</tr>
<tr>
<td>User51</td>
<td>161</td>
<td>906</td>
<td>81</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1152</td>
</tr>
<tr>
<td>User48</td>
<td>133</td>
<td>494</td>
<td>207</td>
<td>207</td>
<td></td>
<td></td>
<td></td>
<td>1043</td>
</tr>
<tr>
<td>User10</td>
<td>167</td>
<td>404</td>
<td>130</td>
<td>205</td>
<td>106</td>
<td>63</td>
<td></td>
<td>1028</td>
</tr>
<tr>
<td>User40</td>
<td>208</td>
<td>313</td>
<td>113</td>
<td>60</td>
<td>81</td>
<td>57</td>
<td>106</td>
<td>964</td>
</tr>
<tr>
<td>User44</td>
<td>187</td>
<td>457</td>
<td>253</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>949</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>User17</td>
<td>5</td>
<td>33</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>38</td>
</tr>
<tr>
<td>User47</td>
<td>38</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>30</td>
</tr>
<tr>
<td>User31</td>
<td>26</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>26</td>
</tr>
<tr>
<td>User20</td>
<td>18</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>18</td>
</tr>
<tr>
<td>User19</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>8</td>
</tr>
</tbody>
</table>

Number of air temperature measured

<table>
<thead>
<tr>
<th>Year</th>
<th>2017</th>
<th>2018</th>
<th>2019</th>
<th>2020</th>
<th>2021</th>
<th>2022</th>
<th>2023</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nb pers</td>
<td>25</td>
<td>29</td>
<td>13</td>
<td>16</td>
<td>9</td>
<td>4</td>
<td>8</td>
<td>50</td>
</tr>
<tr>
<td>Total</td>
<td>12191</td>
<td>174058</td>
<td>61521</td>
<td>38804</td>
<td>6088</td>
<td>2958</td>
<td>7808</td>
<td>303429</td>
</tr>
<tr>
<td>User27</td>
<td>342</td>
<td>2635</td>
<td>10696</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>57346</td>
</tr>
<tr>
<td>User41</td>
<td>1349</td>
<td>20993</td>
<td>5216</td>
<td>585</td>
<td>624</td>
<td>669</td>
<td>1722</td>
<td>31158</td>
</tr>
<tr>
<td>User24</td>
<td>1161</td>
<td>16902</td>
<td>2300</td>
<td>4935</td>
<td>1327</td>
<td></td>
<td></td>
<td>26625</td>
</tr>
<tr>
<td>User36</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>115</td>
</tr>
<tr>
<td>User20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>112</td>
</tr>
<tr>
<td>User47</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>100</td>
</tr>
<tr>
<td>User24</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>23</td>
</tr>
</tbody>
</table>

Interface to collect user feedback

Clothing

Thermal Comfort: sensation, preference, satisfaction, acceptation

Potential annoyance

Office Status: Windows, fans, ...

Air movement acceptability and preference

Global Comfort

Automatic air temperature acquisition

7 summers campaign

51 different users

51 different users
WIND'OSE OBJECTIVE

- Coaching tool developed to help occupants to know whether it is a good option to open or close their windows.

- Coach objective is to consider the three components:
 - thermal comfort,
 - indoor air quality (IAQ)
 - energy consumption

\[\text{Based on Patent EP3971490 on “Method and system for advising on the opportunity of activating a door in order to improve the thermal comfort and/or the quality of the air”}\]
WIND’ose an e-fAIR prototype

SPECIFICATIONS AND PROTOTYPE V1

- 2 Indoor Sensors:
 - Indoor air temperature
 - CO₂ concentration
- 1 Outdoor sensor
 - Outdoor air temperature

Autonomous (Energy & embedded algorithm)
and easy to set up

Intuitive message communicate to users

WIND’OSE ALGORITHM

1. Separate evaluation of each criteria
2. Check consistency between the 2 separate evaluations
3. If necessary – Arbitrate between criterias
4. Advice push to user

Thermal criteria

Potential depending on Tint-Text

Opportunity based on adaptive comfort

IAQ criteria

Indoor CO₂ concentration compared to a lower threshold

Advice push to user

Free mode

Open

Close

CO₂

|ΔT|
EXPERIMENTAL CAMPAIGN
SET UP ON A REAL BUILDING.

FIRST RESULTS

Measured Data

CO₂ > CO₂_lowthreshold
& T_int > T_conf_sup

Thermal criteria

Intermediate indicators

Final Advice

Exploring window opening behaviour for optimal cooling and thermal comfort
INIVE Webinar – 26 March 2024
CONCLUSION AND PERSPECTIVE

• Wind’ose prototype answer our 1st requirements and specifications

• What’s next:
 • Increase period and number of user feedback
 • Improve algorithm, and integrate specificity for
 • Mid-season
 • Winter
 • Enhance battery autonomy or integrate PV cells to get it fully autonomous.
 • Integrate other pollutants sensors.
 • Integrate shutter advice for solar control
 • ...

Thank You for your attention

Next presentation:

Coupling methodology of windows and ceiling fan occupant behaviour models with building energy models: a tropical case study

Maxime Boulinguez & Maäréva Payet
PIMENT Lab University of La Réunion
Laboratoire d’Ecologie Urbaine Réunion, France