

ISO 9972: AN OVERVIEW OF DIFFICULTIES WITH THE CURRENT STANDARD

AIVC Workshop, Tokyo (JP) – 19.05.2023

Benedikt Kölsch, Valérie Leprince & Adeline Mélois

IMPORTANCE OF AIRTIGHTNESS

Difficulties with ISO 9972

AIRTIGHTNESS REGULATIONS IN EUROPE

- Increasing number of tests performed in Europe
- Testing → important part in national energy regulations
- Test is used for :
 - Measuring air leakage in buildings to fulfill energy performance standards
 - Comparing relative airtightness of buildings
 - Determining reduction or air permeability after implementation of improvements

Poza-Casado et al. (2020)

ISO 9972: FAN PRESURIZATION METHOD

EUROPEAN STANDARD NORME EUROPÉENNE EUROPÄISCHE NORM	EN ISO 9972
	September 2015
CS: 91.120.10	Supersedes EN 13829:2000
English Version	
Thermal performance of buildings — Determination of air permeability of buildings — Fan presurization method (ISO 9972:2015)	
Performance thermique des bâtiments — Détermination de la perméabilité à l'air des bâtiments — Be Méthode de pressurisation par ventilateur (ISO 9972:2015)	Wärmetechnisches Verhalten von Gebäuden — estimmung der Luftdurchlässigkeit von Gebäuden — Differenzdruckverfahren (ISO 9972:2015)

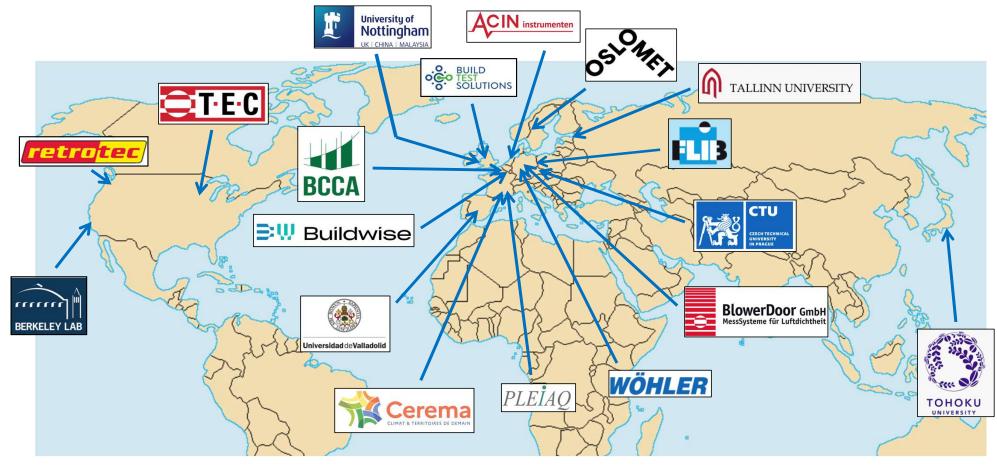
ISO 9972: FAN PRESURIZATION METHOD

- Describes measurement procedure and calculation methods for determining airtightness
- To obtain comparable and credible results, it needs to be
 - Reliable and valid for different kinds of buildings
 - Reproducible under challenging environmental conditions
 - Consistant with other standards
- Recent scientific works + more experience in field testing → need to improve ISO 9972!

WORKING GROUP ON ISO 9972

Collection of data and knowledge from experts in the field

Provision of a proposal for revision of ISO 9972, that


- allows performing tests even under challenging conditions
- is a more **reliable** calculation procedure + improved uncertainty estimation
- Is consistent with other standards

Collecting a comprehensive **list of relevant issues** with survey among experts

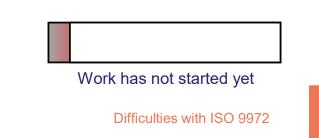
<u>No</u> formal revision → provision of best knowledge for official revision process in ISO/TC 163/SC 1 technical committee

WORKING GROUP AFFILIATIONS

Limitations on measurement **reliability**

- Building preparation
- Wind speed and temperature measurements
- Placement of external pressure taps
- Duration of pressure/airflow measurements
- Induced pressure differences
- Type of regression

RÉPUBLIQUE REANÇAISE

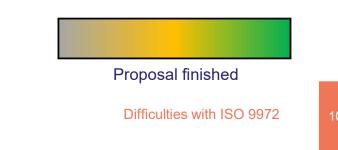

Limitations on measurement reliability

- **Building preparation** ۲
- Wind speed and temperature measurements
- Placement of external pressure taps
- Duration of pressure/airflow measurements ۲
- Induced pressure differences
- Type of regression

* Rolfsmeier et al. (2011), Leprince & Carrié (2014)

- How intentional openings should be sealed, closed, or left open during tests
- Influences final results *
- Avoid ambiguities in the standard

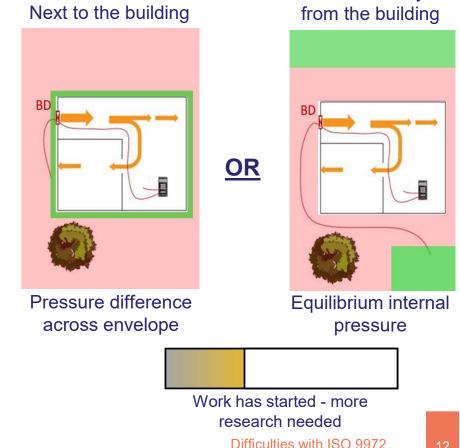
Limitations on measurement reliability


- Building preparation
- Wind speed and temperature measurements
- Placement of external pressure taps
- Duration of pressure/airflow measurements
- Induced pressure differences
- Type of regression

* Novák (2019)

Unclear information on where and how (or if) to measure wind speed and ambient temperatures

Recommendations are given for temperature and wind measurements *


Limitations on measurement reliability

- Building preparation
- Wind speed and temperature measurements
- Placement of external pressure taps
- Duration of pressure/airflow measurements
- Induced pressure differences
- Type of regression

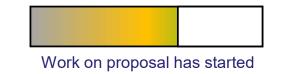
Limitations on measurement reliability

- **Placement of external pressure taps** •
- 150 9972
- Location of pressure taps used as reference for every pressure measurement \rightarrow location not clearly stated
- Especially for zero-flow pressure measurements, clarification if taps should be placed *

* Delmotte (2021), Hurel & Leprince (2021)

Further away

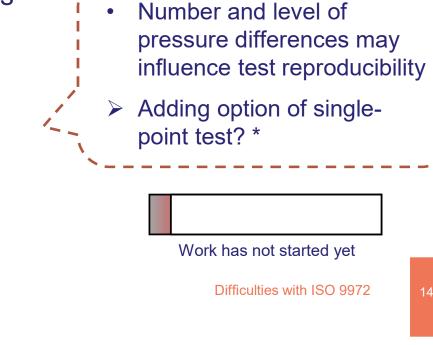
Limitations on measurement reliability


- Building preparation
- Wind speed and temperature measurements
- Placement of external pressure taps
- Duration of pressure/airflow measurements
- Induced pressure differences
- Type of regression

* Prignon et al. (2021), Hurel & Leprince (2021)

 Averaging test results makes readings more reliable in presence of wind

Recommend extending the duration to 60 s, recording 1 data point per second *



Limitations on measurement reliability

- Building preparation
- Wind speed and temperature measurements
- Placement of external pressure taps
- Duration of pressure/airflow measurements
- Induced pressure differences
- Type of regression

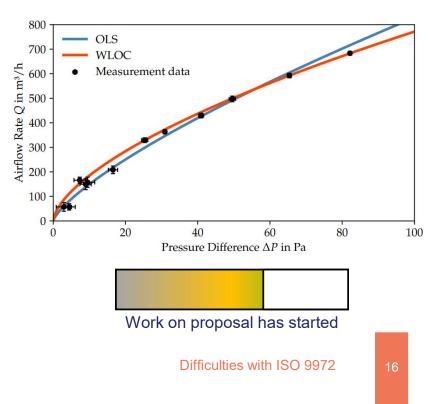
* Hurel & Leprince (2021)

Limitations on measurement reliability

- Building preparation
- Wind speed and temperature measurements
- Placement of external pressure taps
- Duration of pressure/airflow measurements
- Induced pressure differences
- Type of regression

Limitations on measurement reliability

Type of regression



RÉPUBLIQU

Least square regression shall be used to determine airflow coefficient *C* and pressure exponent *n*

- Weighted line of organic correlation (WLOC) uses standard uncertainty at each pressure/flow data point as a weight + optimizes in x and y-direction
- Improves predictability of airflows and reduces variability in C and n*

* Delmotte (2017), Prignon et al. (2018), Kölsch & Walker (2020)

Limitations on measurement validity

- Airflow corrections
- Calculation of building volume and area
- Limits on zero-flow pressure measurements
- Knowledge of uncertainty
 - Errors due to measurement instruments, measurement protocol and analysis
 - Errors arising from physical model assumptions

= determination of the value intended to be measured

Limitations on measurement validity

- Airflow corrections
- Calculation of building volume and area
- Limits on zero-flow pressure measurements
- Knowledge of uncertainty
 - Errors due to measurement instruments, measurement protocol and analysis
 - Errors arising from physical model assumptions

Limitations on measurement validity

Airflow corrections

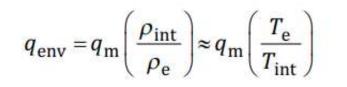
Airflows must be corrected to standard conditions of temperatures/pressures \rightarrow tests can be compared

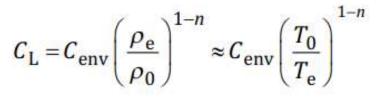
- Simplifications assume: •
 - barometric pressure negligible, •
 - blower door calibrated close to reference conditions •
 - n close to 0.5 * •

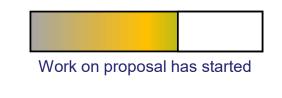
* Walker et al. (1998)

150 997'2

 $q_{\rm env} = q_{\rm m} \left(\frac{\rho_{\rm int}}{\rho_{\rm e}}\right) \approx q_{\rm m} \left(\frac{T_{\rm e}}{T_{\rm int}}\right)$


$$C_{\rm L} = C_{\rm env} \left(\frac{\rho_{\rm e}}{\rho_0}\right)^{1-n} \approx C_{\rm env} \left(\frac{T_0}{T_{\rm e}}\right)^{1-n}$$


Limitations on measurement validity


Airflow corrections

Airflows must be corrected to standard conditions of temperatures/pressures \rightarrow tests can be compared

➢ Giving modern computing equipment → simplification not necessary anymore *

Difficulties with ISO 9972

* Carrié (2014)

150 9972

Limitations on measurement validity

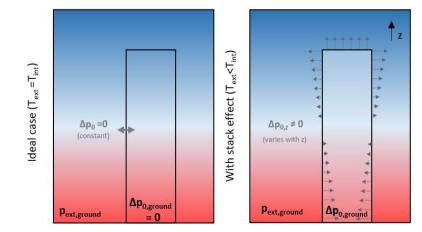
- Airflow corrections
- Calculation of building volume and area
- Limits on zero-flow pressure measurements
- Knowledge of uncertainty
 - Errors due to measurement instruments, measurement protocol and analysis
 - Errors arising from physical model assumptions

- Every country has different measures for building volume/area → difficult to compare
- Common standardized method to compare results could be convenient

Work has started - more research needed Difficulties with ISO 9972

Limitations on measurement validity

- Airflow corrections
- Calculation of building volume and area
- Limits on zero-flow pressure measurements
- Knowledge of uncertainty
 - Errors due to measurement instruments, measurement protocol and analysis
 - Errors arising from physical model assumptions

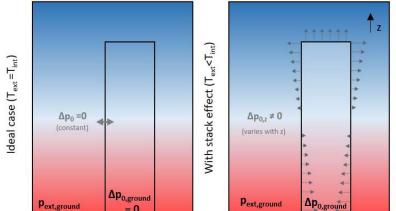

Limitations on measurement validity

Limits on zero-flow pressure measurements

 $^{2}\Delta P_{0}$ = Pressure difference between inside and outside when building is not artificially pressurised

If $\Delta P_0 > 5$ Pa \rightarrow test not valid!

 This constraint shall limit influence of wind and temperatures on uncertainty – leak distribution has influence as well *



* Carrié et al. (2022), Mèlois (2020)

Limitations on measurement validity

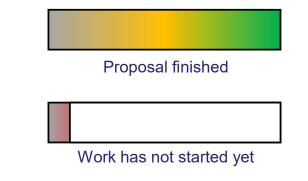
- Limits on zero-flow pressure measurements
- $^{991^2}$ If $\Delta P_0 > 5$ Pa \rightarrow test not valid!
 - This constraint excludes testing of high-rise buildings from being tested according to the standard *
 - Possible solution: only recommend that $\Delta P_0 < 5 Pa + include \Delta P_0$ (+ maybe variability) in uncertainty calculation

* Peper & Schnieders (2019), Rolfsmeier et al. (2022)

Difficulties with ISO 9972

Work on proposal has started

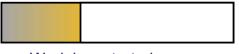
Limitations on measurement validity


- Airflow corrections
- Calculation of building volume and area
- Limits on zero-flow pressure measurements
- Knowledge of uncertainty
 - Errors due to measurement instruments, measurement protocol and analysis
 - Errors arising from physical model assumptions

Limitations on measurement validity

Knowledge of uncertainty

- Errors due to measurement instruments, measurement protocol and analysis
- Errors of measurement devices given as maximum permissible measurement error (MPME) → used as influence parameter in uncertainty calculation
- Inclusion of uncertainties from building preparation, reference values or sampling

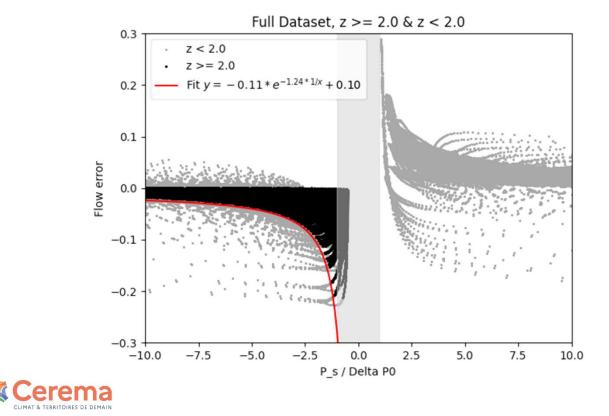


Limitations on measurement validity

Knowledge of uncertainty

- Errors arising from physical model assumptions
- √50⁹⁹¹ Assumes that airflow rate through all leaks can be approximated as flow through a single opening *
 → Power law
 - Model error increases for high wind speed and stack effect
 - More work necessary to understand and quantify errors

 $q_{\rm pr} = C_{\rm L} (\Delta p_{\rm r})^n$


Work has started - more research needed

* Delmotte (2021), Carrié (2022)

Limitations on measurement validity

RÉPUBLIQUE FRANÇAISE

 $q_{\rm pr} = C_{\rm L} (\Delta p_{\rm r})^n$

research needed

OUTLOOK

Revision on ISO level

End 2023:

Proposition of new versions with conducted research

Mid-2023:

Proposition of new versions for issues ready to revise

Thank you!

Benedikt Kölsch

Cerema Benedikt.koelsch@cerema.fr

REFERENCES

Carrié, F. R. (2014). Temperature and pressure corrections for power-law coefficients of airflow through ventilation system components and leaks. *Proceedings of the 35th AIVC Conference*.

Carrié, F. R., Olson, C., & Nelson, G. (2022). Characterizing model errors due to flow-pressure formulation and zero-flow pressure correction in building pressurization tests in steady windy anisothermal conditions. *Energy and Buildings*, *270*, 112283. <u>https://doi.org/10.1016/j.enbuild.2022.112283</u>

Delmotte, C. (2017). Airtightness of Buildings – Considerations regarding the Zero-Flow Pressure and the Weighted Line of Organic Correlation. *Proceedings of the 38th AIVC Conference*.

Delmotte, C. (2021). Airtightness of buildings – Assessment of leakage-infiltration ratio and systematic measurement error due to steady wind and stack effect. *Energy and Buildings*, 241, 110969. <u>https://doi.org/10.1016/j.enbuild.2021.110969</u>

Hurel, N., & Leprince, V. (2021). Impact of wind on the airtightness test results. AIVC Ventilation Information Paper No 41.

Kölsch, B., & Walker, I. S. (2020). Improving air leakage prediction of buildings using the fan pressurization method with the Weighted Line of Organic Correlation. *Building and Environment*, *181*, 107157. <u>https://doi.org/10.1016/j.buildenv.2020.107157</u>

Leprince, V., & Carrié, F. R. (2014). Comparison of building preparation rules for airtightness testing in 11 European countries. *Proceedings of the 35th AIVC Conference*.

Mélois, A. (2020). Impact of the wind during a building airleakage measurement [Doctoral Thesis]. ENTPE.

REFERENCES

Novák, J. (2019). Implementation of the EN ISO 9972 standard into the Czech Republic. *Proceedings of the 11th International BUILDAIR-Symposium*.

Peper, S., & Schnieders, J. (2019). Airtightness Measurement of High-Rise Buildings. Passive House Institute.

Poza-Casado, I., Cardoso, V. E. M., Almeida, R. M. S. F., Meiss, A., Ramos, N. M. M., & Padilla-Marcos, M. Á. (2020). Residential buildings airtightness frameworks: A review on the main databases and setups in Europe and North America. *Building and Environment*, *183*, 107221. <u>https://doi.org/10.1016/j.buildenv.2020.107221</u>

Prignon, M., Dawans, A., & Van Moeseke, G. (2018). Uncertainties in airtightness measurements: Regression methods and pressure sequences. *Proceedings of the 39th AIVC Conference*.

Prignon, M., Dawans, A., & Van Moeseke, G. (2021). Quantification of uncertainty in zero-flow pressure approximation. *International Journal of Ventilation*, 20(3–4), 248–257. <u>https://doi.org/10.1080/14733315.2020.1777020</u>

Rolfsmeier, S., Vogel, K., & Bolender, T. (2011). Ringversuche zu Luftdurchlässigkeitsmessungen vom Fachverband Luftdichtheit im Bauwesen e.V. *Proceedings of the 6th International BUILDAIR-Symposium*.

Rolfsmeier, S., Mairinger, E., Neubig, J., & Gayer, T. (2022). Measuring airtightness of 100-meter high-rise buildings (lessons learned). *Proceedings of the 42nd AIVC Conference*.

Walker, I. S., Wilson, D. J., & Sherman, M. H. (1998). A comparison of the power law to quadratic formulations for air infiltration calculations. *Energy and Buildings*, 27(3), 293–299. <u>https://doi.org/10.1016/S0378-7788(97)00047-9</u>

