Actual effectiveness of energy/heat recovery ventilators in buildings: how is it influenced by key design factors and testing results(airflow, airflow ratio, unit exhaust air transfer ratio)?

Tetsutoshi Kan, Satoru Mineno,

Takao Sawachi,

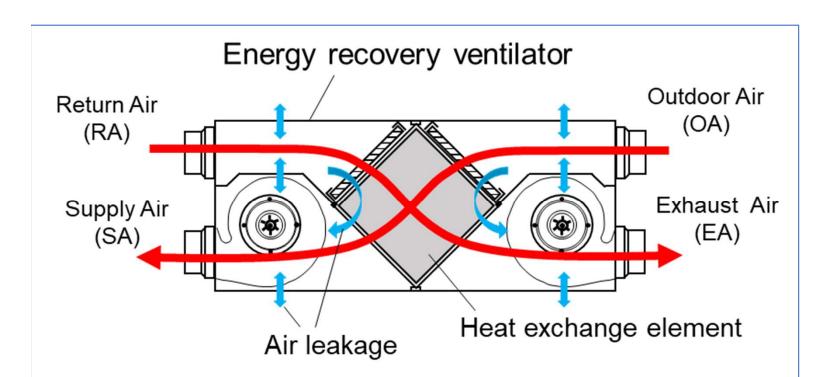
Center for Better Living

AE-Solutions Inc.

Building Research Institute

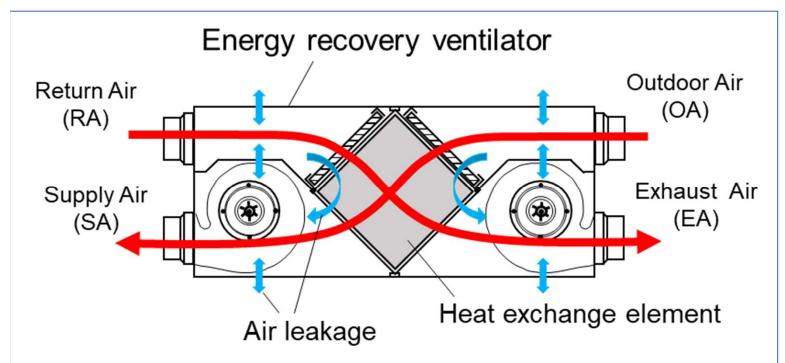
Agenda

- 1. Introduction
- 2. Test results and discussion
- 3. Correction formula for total effectiveness of energy recovery ventilator and accuracy verification
- 4. Confirmation of energy saving performance of energy recovery ventilator in HVAC system
- 5. Conclusions


Energy recovery ventilator (ERV):

- > Supply outdoor air to indoor
- > Exhaust indoor air to outdoor
- > Supply air and Exhaust air exchange heat and moisture via heat exchange element

Reducing air-conditioning load (Energy-saving)



Performance values of

Energy recovery ventilator (ERV):

- 1. Airflow static pressure characteristics
- 2. Gross effectiveness (Total effectiveness etc.)
- 3. Unit exhaust air transfer ratio (UEATR) or Net supply airflow ratio (NSAR)

 NSAR = 100-UEATR

Air leakage:

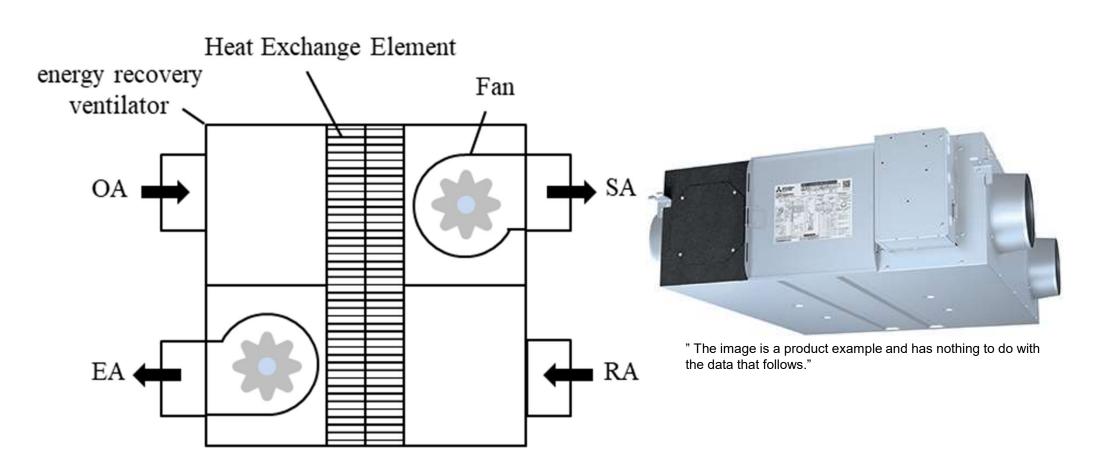
Depend on airtightness

- >Throw the housing gap
- > Throw the inside gap

The performance value (The total effectiveness etc.) is not a constant value, but influenced by airflow rate, airflow ratio, unit exhaust air transfer ratio (UEATR).

Airflow, airflow ratio, UEATR are affected by ventilation equipment system in building and condition of operating.

In the design of heat recovery ventilation system in buildings, It is important to design <u>airflow rate</u>, <u>airflow ratio</u>, and <u>UEATR</u> to be appropriate in order to maximize the energy saving effect of the energy recovery ventilation systems.


We conducted an experimental study to confirm how the total effectiveness of energy recovery ventilator is influenced by airflow rate, airflow ratio, and UEATR.

Purpose of experiment

Test method: JIS B 8628:2017 (ISO16494:2014)

Specimens: Plate type energy recovery ventilators

Specimens: Sample A (for non-residential buildings)
Sample B (for residential buildings)

Table Description of the energy recovery ventilators

	Sample A	Sample B	
Heat exchange element type	Plate type		
Constitution	Energy recovery ventilator		
Shape of inlet and outlet	Designed for duct connection		
	Medium size	Small size	
Classification by airvolume	<u>(500m³/h)</u>	<u>(250m³/h)</u>	
Instalation	Ceiling hanging type		
Appliction	Non-residential buildings	residential buildings	
Motor and fan	Built-in (two motors and fans)		

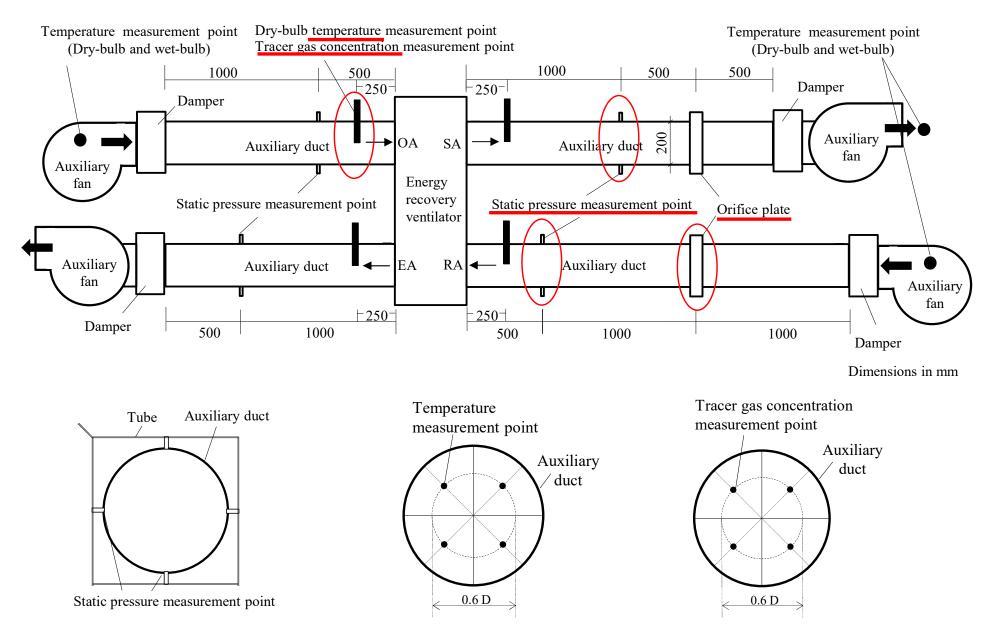
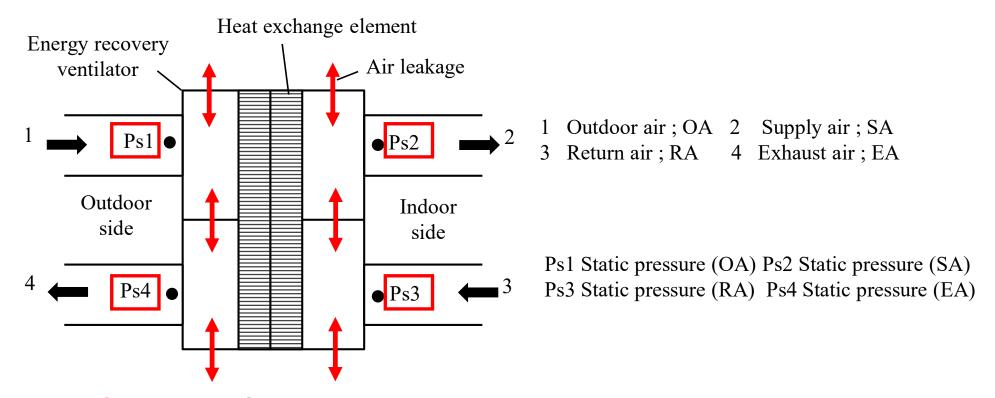


Fig Schematic diagram of measurement apparatus


Table Measurement instruments and their performance

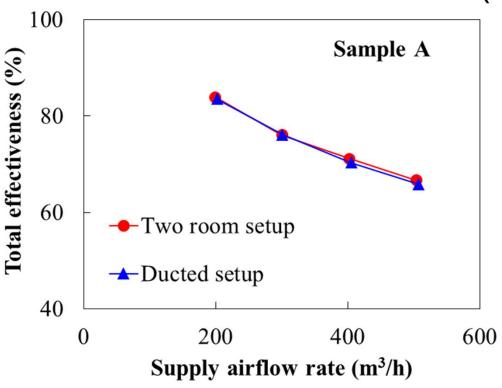
Measurement quantity	Measurement instrument	Uncertainty (JSCC calibration results)	Note
Temperature	Quartz thermometer PTR-111 (TOKYO DENPA CO.,LTD)	0.01°C (at 0 °C)	
Dry-bulb temperature Wet-bulb temperature	Platinum resistance thermometer (Yashimasokki.co,.ltd AAClass)	-	$0.12^{\circ}\text{C (at }0^{\circ}\text{C)}^{(1)}$
Static pressure	MKS Baratron 220DD	3Pa (at 100kPa)	
Atmospheric pressure	Digital barometer R-30 (SANOH CO.,LTD)	0.5hPa (at 1000hPa)	
Tracer gas concentration	Infrared gas analyzer IR400 (Yokogawa Electric Corporation)	-	$\pm 0.025\% \text{ (at 5\%)}^{(2)}$
Airflow rate	Orifice plate (OHNISHI NETSUGAKU CO.,LTD)	-	

Note

^{(1):}Uncertainty due to comparative calibration with PTR-111

^{(2):}Repeatability shown in the specifications

Symbols for the static pressure at inlets and outlets.

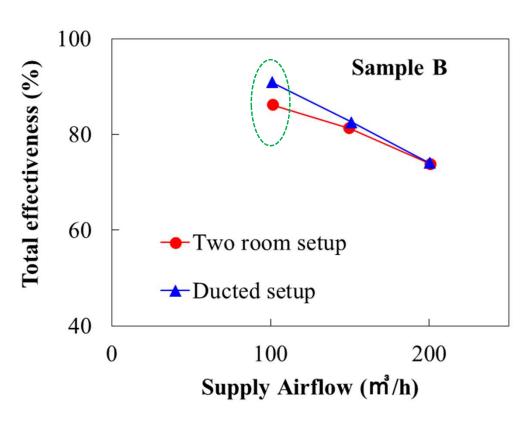

Table Static pressure measurement requirements and Airflow rate measurement points

Test setup	Test item	Static pressure measurement requirements	Airflow rate measurement points
Two room setup	Thermal performance test	Ps1 < 0Pa, Ps3 < 0Pa (Ps1 - Ps3) <= Max (10Pa, Max(Ps1 , Ps3)×5%) (Ps2 - Ps4) <= Max (10Pa, Max(Ps2 , Ps4)×5%)	200, 300, 400, 500m ³ /h
Ducted setup	Thermal performance test	For the maximum and minum airflow rate (Ps1 - Ps3) <= Max (10Pa, Max(Ps1 , Ps3)×5%) (Ps2 - Ps4) <= Max (10Pa, Max(Ps2 , Ps4)×5%) For each intermediate test point Max(Ps1 , Ps2 , Ps3 , Ps4) - Min(Ps1 , Ps2 , Ps3 , Ps4) <= Max(10Pa, Max(Ps1 , Ps2 , Ps3 , Ps4)×5%)	200, 300, 400, 500m ³ /h

Table Temperature condition of thermal performance tests

Param	neter	Heating	Cooling
Temperature of	Dry-bulb	5.0	35.0
outdoor air (°C)	Wet-bulb	3.0	31.0
Temperature of	Dry-bulb	20.0	27.0
return air (°C)	Wet-bulb	15.0	20.0

2. Test results and discussion (Sample A) Influence of airflow rate (supply ≒ return)

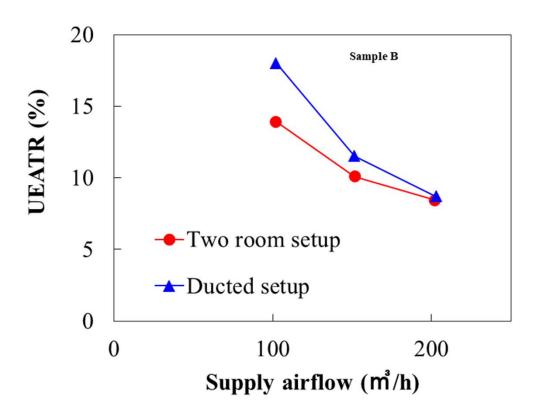


Sample A had relatively good air leakage performance, and there was no significant difference between the Two room setup and Ducted setup. The airflow ratio is approximately 1.0.

This result shows, if the airflow rate is small, the total effectiveness will be higher. At the supply airflow rate of 200m³/h, the total effectiveness is about 84%. At the supply airflow rate of 500m³/h, the total effectiveness is about 65%.

	Supply	Return	۸۰۰۲۱۰	Total
	airflow	airflow	Airflow	effecteve
	rate	rate	ratio	ness
	m ³ /h	m ³ /h	-	%
Two	199.5	212.4	0.94	83.9
	300.6	321.6	0.93	76.0
room	403.0	412.3	0.98	71.1
setup	504.2	504.3	1.00	66.7
	202.1	203.9	0.99	83.5
Ducted	301.0	317.8	0.95	76.1
setup	405.2	407.3	1.00	70.3
	507.2	498.1	1.02	65.8

2. Test results and discussion (Sample B) Influence of airflow rate


This is	tes	t r	esult	of Sam _l	ole B.
_					

Same with A, if the airflow rate is small, the total effectiveness will be higher.

But at the airflow rate about 100m³/h, the total effectiveness is different between Two room setup and Ducted setup. This is due to the difference in the airflow ratio. Airflow ratio of two room setup is 0.94, compare to this the airflow ratio of ducted setup is 0.78. In the ducted setup, the return airflow rate lager than the supply airflow rate. We suppose another reason to cause such results is the difference in air leakage.

	Supply	Return	Airflow	Total
	airflow	airflow	ratio	effecteve
	rate	rate	Tatio	ness
	m ³ /h	m ³ /h	-	%
Two	101.3	108.3	0.94	86.2
room	149.8	162.1	0.92	81.3
setup	200.6	207.2	0.97	73.8
Dueted	101.1	130.0	0.78	90.9
Ducted setup	151.1	170.1	0.89	82.6
σσταρ	200.2	207.5	0.96	74.1

2. Test results and discussion Trace gas test result (Sample B)

	Supply	Return	Airflow	
	airflow rate	airtlow rate	ratio	UEATR
	m ³ /h	m ³ /h	-	%
Two	102.0	119.0	0.86	13.9
room	151.7	165.5	0.92	10.1
setup	202.2	211.0	0.96	8.4
Dustad	102.1	129.8	0.79	18.0
Ducted setup	151.6	172.5	0.88	11.5
остар	203.0	210.7	0.96	8.7

This is trace gas test result of Sample B. At the airflow rate about 100m³/h, the UEATR of Ducted setup is 18.0%, larger than UEATR of Two room setup (13.9%). The reason of causing this difference is when the airflow rate small (the static pressure is large), the air leakage rate of each part of the energy recovery ventilator is different. Similarly, it causes the difference of airflow ratio.

In order to properly evaluate the energy saving effect of energy recovery ventilator installed in a building for ventilation system design, the correction formula for total effectiveness of energy recovery ventilator was reviewed and proposed.

The <u>total effectiveness values</u> of energy recovery ventilator <u>In the catalog</u> were corrected by <u>airflow rate</u>, airflow ratio, and NSAR (NSAR = 100-UEATR).

$$\eta'_t = \eta_t \times C_{tol} \times C_{eff} \times C_{bal}$$

 η'_{t} : is the corrected total effectiveness [%]

 $\underline{\eta_t}$: is the total effectiveness listed in the catalog [%]

 C_{tol} : is the correction coefficent considering the total effectiveness tolerance listed in the catalog [-]. The default value is 0.95.

 C_{eff} : is the correction coefficent considering the net supply air flow ratio(NSAR) [NSAR = 100 - UEATR

 C_{bal} : is the corrected coefficent due to the airflow ratio [-].

$$C_{eff} = 1 - \frac{\left(\frac{1}{\varphi} - 1\right)(1 - \eta_t)}{\eta_t}$$

 C_{eff} : is the corrected coefficent considering the net supply air flow ratio (NSAR NSAR = 100 - UEATR

 η_t : is the total effectiveness listed in the catalog [%]

 φ : is the net supply airflow ratio (NSAR) [%].

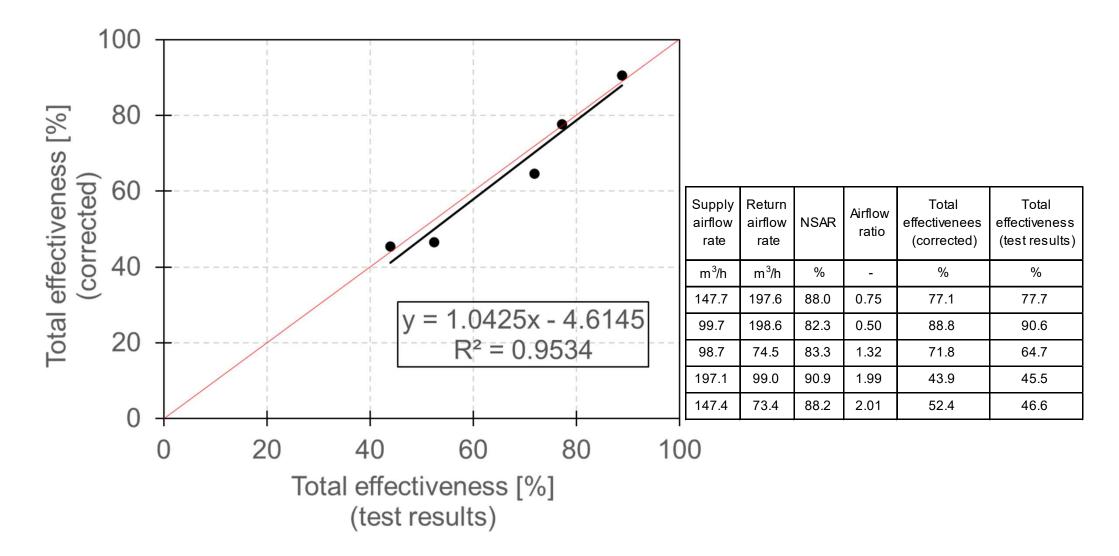
$$C_{bal} = \frac{\eta_{t,d}}{\eta_t}$$

 C_{bal} : is the corrected coefficient due to the airflor ratio [-].

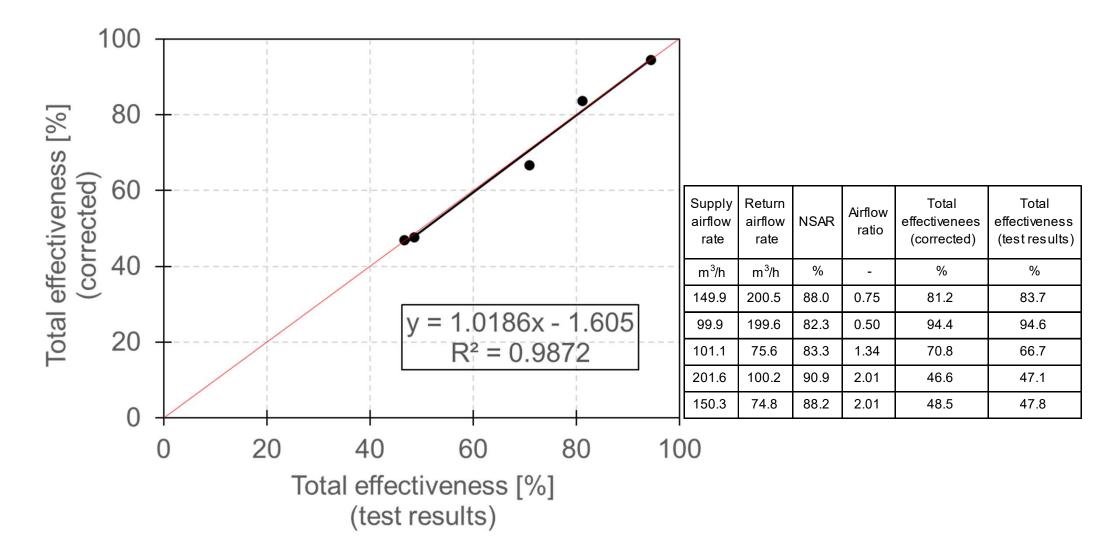
 $\eta_{t,d}$: is the corrected total effectiveness considering the airflow ratio in the building [%]

 η_t : is the total effectiveness listed in the catalogue [%]

$$\eta_{t,d} = 1 - e^{\left[\frac{e^{\left(-N_d^{0.78} \cdot R_{vnt,d}\right)} - 1}{N_d^{-0.22} \cdot R_{vnt,d}}\right]}$$


$$R_{vnt} = \begin{cases} \frac{V_{d,SA}}{V_{d,RA}} & (V_{d,RA} > V_{d,SA}) \\ \frac{V_{d,RA}}{V_{d,SA}} & (V_{d,RA} \leq V_{d,SA}) \end{cases}$$

 $\eta_{t_{,}d}$: is the corrected total effectiveness considering the airflow ratio in the building design [%]


 $V_{d,SA}$: is the supply airflow rate in the building design $[m^3/h]$

 $V_{d,RA}$: is the return airflow rate in the building design $[m^3/h]$

 N_d : is the heat transfer unit number in the energy recovery ventilator [-]

Comparison of test results and corrected total effectiveness (Cooling condition)

Comparison of test results corrected total effectiveness (Heating condition)

In Japan, there are calculation programs to estimate energy consumption performance at the design stage. The program runs on the website and is available through the website of Building Research Institute.

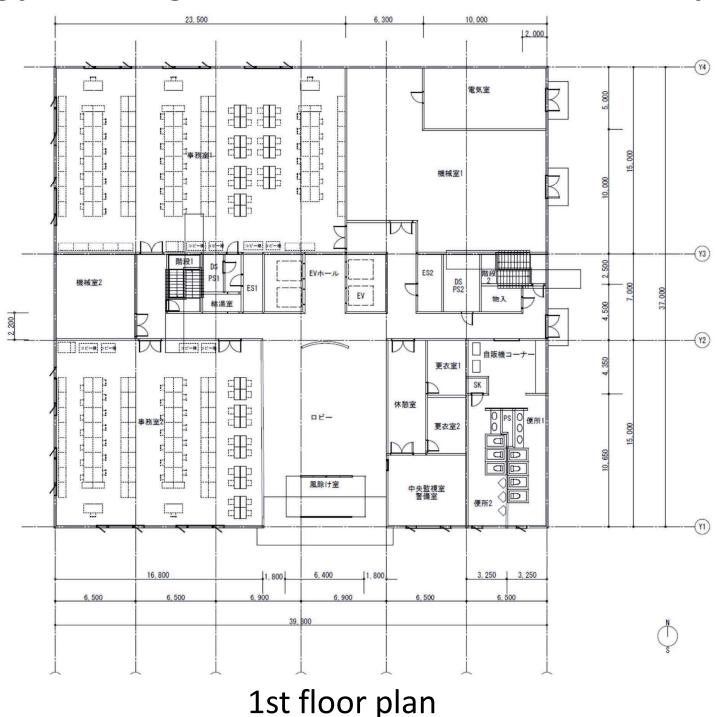
Energy Consumption Performance Calculation Program https://building.lowenergy.jp/

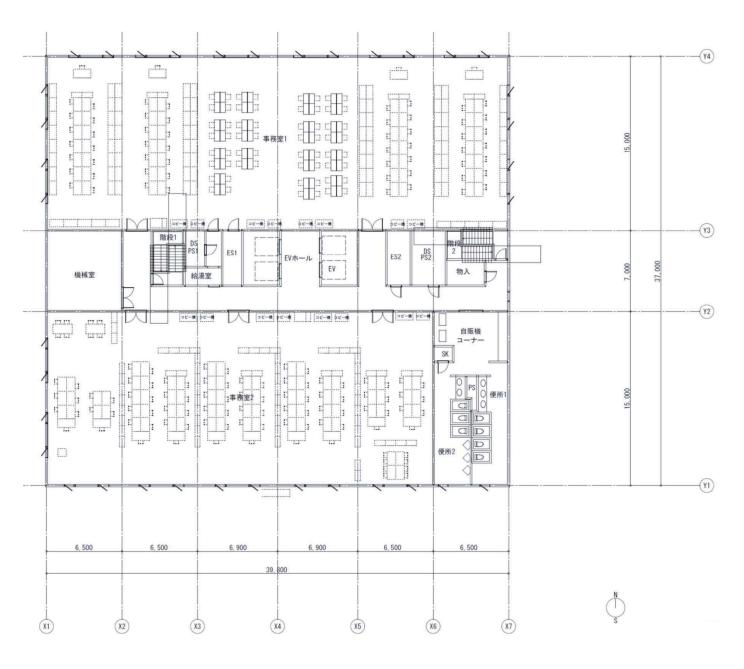
Until 2023, the total effectiveness of energy recovery ventilator for non-residential buildings was calculated <u>using fixed values</u> for "Airflow rate" and "NSAR";

from 2024, the calculation method was changed to use the correction formula for total effectiveness of energy recovery ventilator.

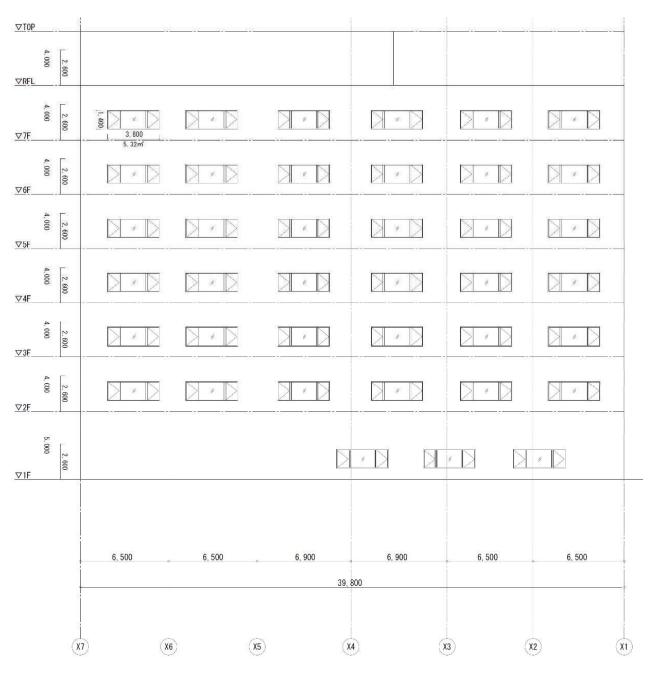
As described in this presentation, we examined the energy saving performance of energy recovery ventilator when the total effectiveness is calculated by correction coefficient proposed.

Comparison of old and new calculation methods

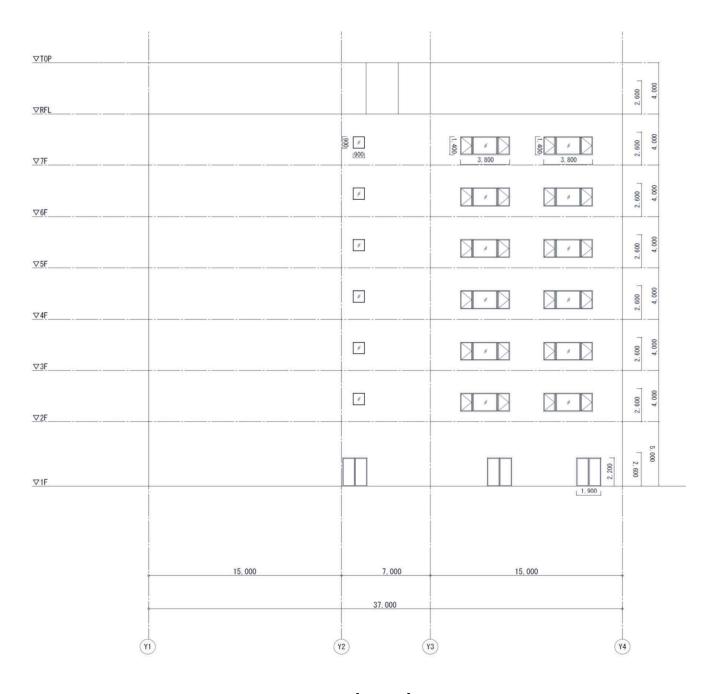

	Airflow ratio	NSAR
Present calculation method	0.50	0.85
New calculation method (using correction formular)	Variable	Variable

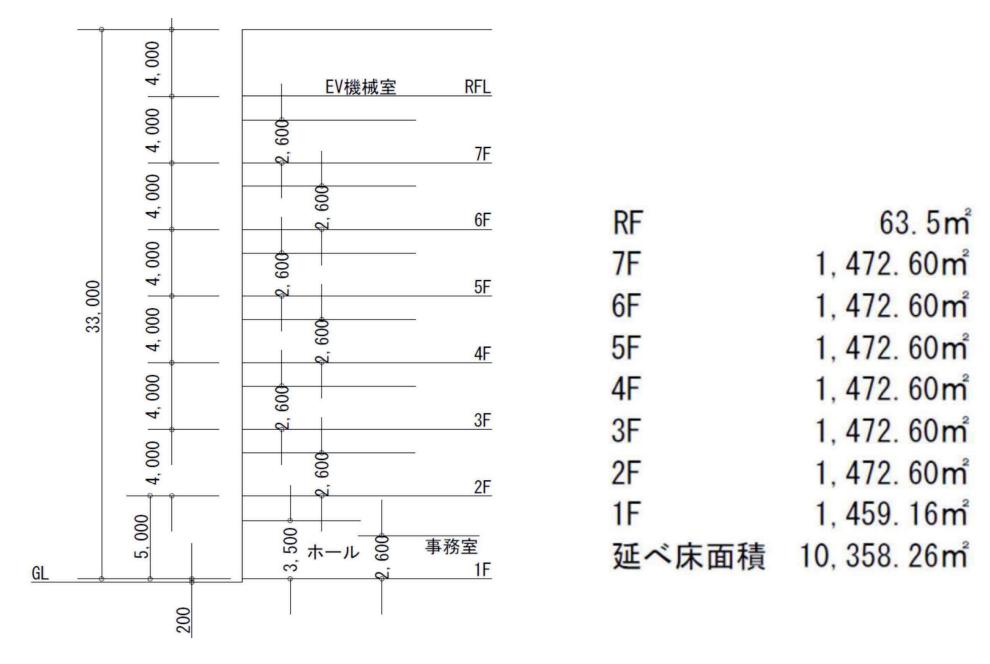

Case study

	Package air conditioner + Energy recovery ventilator
Present calculation method	Case A
New calculation method (using correction fomular)	Case A'


Building outline

Building location	Tokyo
Number of floors	7
Building use	office
Building strcture	steel reinforced concrete construction
Total floor area	10,358.3 m ²




2nd to 7th floor plan

North side elevation

East side elevation

Cross section and floor space

Building skin insulation performance

	Thermal convection rate	
	W/m ² K	
Outer wall	0.59	
Rooftop	0.32	
Ground floor	0.80	
Window	1.60	

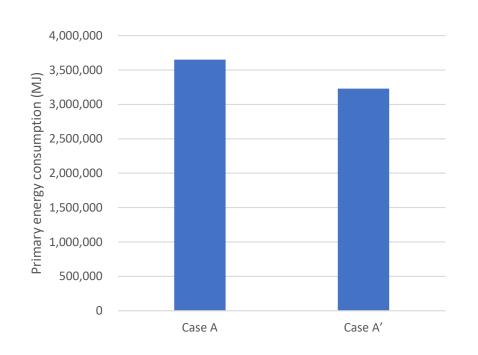
Dry and wet bulb temperature conditions

	Summer		Winter	
	Dry-bulb (°C)	Relative humidity (%)	Dry-bulb (°C)	Relative humidity (%)
Outside air condition	34.7	53.5	1.8	40.1
Office room air condition	26.0	50.0	22.0	40.0

Internal heat gains

	Lighting	Office equipment	Large office	People	Heat gain / Person (W/Person)	
	(W/m ²)	(W/m ²)	equipment (W)		SHG	LHG
Office room 1	34.7	18.8	53.5	120	1.7	40.1
Office room 2	26.0	10.5	50.0	100	6.6	40.0

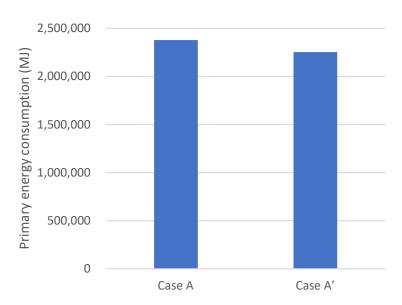
Air conditioning performance (Case A, Case A')


	Heating capacity	Cooling capacity	COP	COP
	(kW/m ²)	(kW/m ²)	(Heating condition)	(Cooling condition)
Package air conditioner	0.118	0.133	3.39	2.96

Performance values of Energy recovery ventilators (Case A, Case A')

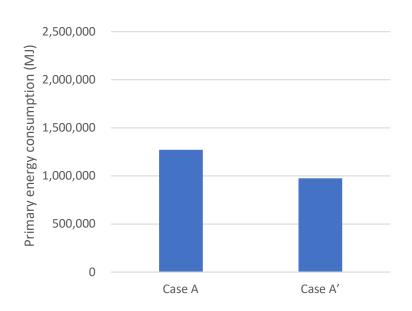
	Total effectiveness (%)	NSAR (%)	Ratio of supply airflow rate to return airflow rate	Specific fan power
Eenergy recovery ventilator	70	92	1.25	0.51

Case	Primary energy
	consumption of the entire
	air conditioning system
	(MJ)
Case A	3,650,298
Case A'	3,228,859


Reduction (MJ)	421,439
Reduction rate	11.5%

Comparison of Case A and Case A'

	Primary energy
Case	consumption of the entire
	air conditioning system
	(MJ)
Case A	2,378,448
Case A'	2,254,092


Reduction (MJ)	124,356
Reduction rate	5.2%

Comparison of Case A and Case A' (Cooling condition)

	Primary energy	
Case	consumption of the entire	
	air conditioning system	
	(MJ)	
Case A	1,271,850	
Case A'	974,768	

Reduction (MJ)	297,082
Reduction rate	23.4%

Comparison of Case A and Case A' (Heating condition)

5. Conclusions

- 1. Total effectiveness depends on the airflow, the airflow ratio, and the UEATR. And UEATR depends on the static pressure differential across the ventilators.
- 2.The total effectiveness of energy recovery ventilator operating in the building often differs from the total effectiveness in the energy recovery ventilator catalogs.
- 3. In order to properly evaluate the energy saving effect of energy recovery ventilator installed in a building for ventilation system design, it is necessary to correct the total effectiveness of energy recovery ventilator in the catalogs.
- 4.We proposed a correction formula that corrects the total effectiveness of energy recovery ventilator in the catalogs according to the airflow rate, airflow ratio, and NSAR. And using the correction formula was examined the energy saving performance of energy recovery ventilator in an office building.
- 5. The total effectiveness of energy recovery ventilator in the catalogs are also useful for product comparisons.