

Pawel Wargocki

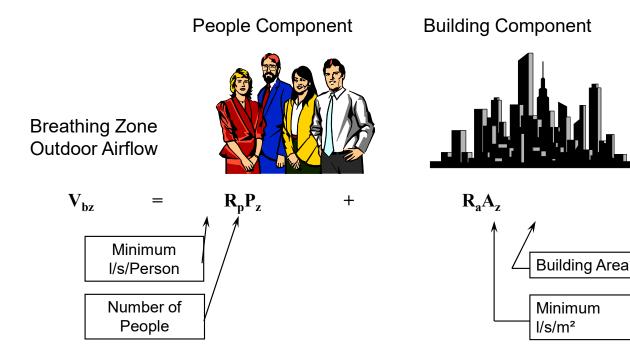
International Centre for Indoor Environment and Energy DTU SUSTAIN, Technical University of Denmark (DTU) pawar@dtu.dk

A general overview of IEA-EBC Annex 78: Supplementing ventilation with gas-phase air cleaning, implementation and energy implications

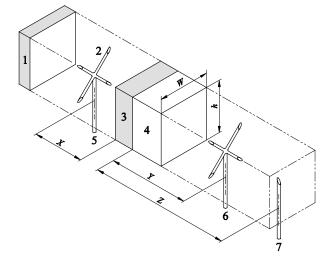
Outline

- Introduction IEA-EBC Annex 78
- Concept of supplementing ventilation by gas phase air cleaning.
- Testing of gas phase air cleaners
- Energy impacts of using gas phase air cleaning
- Conclusions

Summary


- Operating Agents
 - -Bjarne W. Olesen, Technical University of Denmark. Pawel Wargocki, Technical University of Denmark
- Time schedule
 - 01-07-2018 to 30-06-2019 –Preparation phase -Working phase 01-07-2019 to 30-06-2023
 - -Reporting phase

01-07-2023 to 30-06-2024


Structure

- Subtask A: Energy benefits using gas phase air cleaning
 - Subtask leader: Alireza Afshari, Denmark
 - Co-leader: Sasan Sadrizadeh , Sweden
- · Subtask B: How to partly substitute ventilation by air cleaning
 - Subtask leader: Pawel Wargocki, Denmark
 - Co-leader: Shin-Ichi Tanabe , Japan
- Subtask C: Selection and testing standards for air cleaners
 - Subtask leader: Paolo Tronville, Italy
 - Co-leader: Jinhan Mo, China
- Subtask D: Performance modelling and long-term field validation of gas phase air cleaning technologies
 - Subtask leader: Karel Kabele, Czech
 - Co-leader: Jensen Chang, USA

Concept, ref. ASHRAE 62.1 and EN16798

Concept, supplementing ventilation

Key

- 1 diffusor and Δp device
- 2 sampling points should be of "fork" type or similar with multiple inlet points to make a compounded sample over the whole cross section
- 3 GPACD under test
- 4 GPACD section of test duct
- 5 upstream sampling point for $T_{\rm U}$, $RH_{\rm U}$, $p_{\rm U}$ and $C_{\rm U}$ at X mm before the GPACD
- 6 Downstream sampling point for T_D , RH_D , p_D and C_D at Y mm after the GPACD
- 7 *Q*, air flow rate sampling point at *Z* mm after the GPACD
- $W_{\rm }$ internal width of the test duct along the GPACD section, 3+4
- h internal height of the test duct along the GPACD section, 3+4

 $\label{eq:Figure 1} \begin{tabular}{ll} Figure 1 - Normative section of test stand showing ducting, measurement parameters and sampling points \end{tabular}$

ISO 10121-1:2014 "Test method for assessing the performance of gas-phase air cleaning media and devices for general ventilation - Part 1: Gas-phase air cleaning media"

- Clean Air Delivery Rate (CADR)
 - CADR = $\varepsilon_{PAQ} \cdot Q_{AP} \cdot (3,6/V)$
 - where:
 - ϵ_{clean} or ϵ_{PAO} is the air cleaning efficiency
 - Q_{AP} is the air flow through the air cleaner, l/s;
 - V is the volume of the room, m³.

Air Cleaning Efficiency

 $- \epsilon_{clean} = 100(C_U - C_D)/C_D$

where:

- ϵ_{clean} is the air cleaning efficiency
- $-\ C_U$ is the gas concentration before air cleaner
- C_D is the gas concentration after air cleaner.

Methods and standards for testing gas-phase air cleaners

Standard/Protocol	Methods	Challenge Gaseous	Measured Gaseous	Performance index
Air cleaner, Standardization Administration of <u>China (</u> GB/T-18801)	Pulldown	Single species gas e.g.,	Formaldehyde toluene	CADR
Air cleaner, Standardization Administration of <u>China (</u> GB/T-18801)	Singlepass	Single species gas e.g.,	Formaldehyde toluene	Single-pass efficiency
Reduced Energy Use Through Reduced Indoor Contamination in Residential Buildings, NCEMBT (NCEMBT 061101), <u>US report</u>	Pulldown	Eight VOCs mixture	TVOC _{toluene} formaldehyde	CADR
Air cleaner, <u>Japanese</u> Standard Association (JIS C 9615-2007)	Singlepass	NO2, SO2	NO2, SO2	Single-pass efficiency
Air cleaners of household and similar use, <u>Japan</u> Electrical Manufacturers Association (JEM 1467- 1995)	Pulldown	Tobacco smoke	Ammonia, acetaldehyde, and acetic acid	Removal rate
Independent air purification devices for tertiary sector and residential applications - Test methods - Intrinsic performances, Association <u>Française</u> De Normalisation (XP B44-200)	Singlepass	Four VOCs mixture	Acetone, acetaldehyde, heptane, and toluen	Single-pass efficiency, CADR
Test method for assessing the performance of gas-phase air cleaning media and devices for general ventilation (<u>ISO</u> 29464:2017)	Singlepass	VOCs, acids, bases, and others	VOCs, acids, and bases, and others	Single-pass efficiency

Challenges

- Only a few pollutants examined
- No methods for identifying byproducts

BYPRODUCT GENERATION INCOMPLETE OXIDATION

- Aldehydes → **formaldehyde**, formic acid, CO
- Alcohols → aldehydes → acids → shorter carbon chain alcohols and acids → <u>formaldehyde</u>, methanol → CO_2 and H_2O
- Benzene → phenol
- 1-Butanol → butanal (butyraldehyde), butanoic acid, ethanol, acetaldehyde, (propanal (propionaldehyde) and propanol, propanoic acid) → (ethanol, <u>formaldehyde</u>) → methanol, <u>formaldehyde</u> and formic acid
- Ethanol → methanol, acetaldehyde, <u>formaldehyde</u>, acetic acid, formic acid
- Methanol → methyl formate (measured in liquid form only), formaldehyde, methylal (formaldehyde dimethyl acetal
- Toluene → benzaldehyde, benzoic acid, cresol, benzyl alcohol, phenol, benzene, formic acid

Assessments of perceived air quality

INTERNATIONAL
STANDARD

ISO 16000-28

> First edition 2012-03-15

Test Panel

- Trained
- Untrained

Odour

- Acceptance
- Intensity
- Hedonic tone

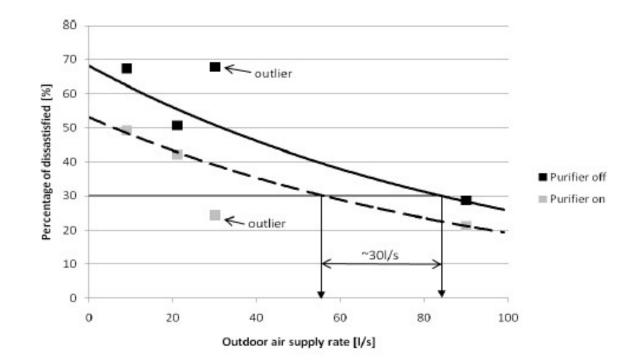
Examples of diffuser and mask used for odour evaluatio

Indoor air —

Part 28: Determination of odour emissions from building products using test chambers

Air intérieur —

Partie 28: Détermination des émissions d'odeurs des produits de construction au moyen de chambres d'essai


Figure C.1 — Diffuser

$\varepsilon_{PAQ} = Q_o / Q_{AP} \cdot (PAQ / PAQ_{AP} - 1) \cdot 100$

where:

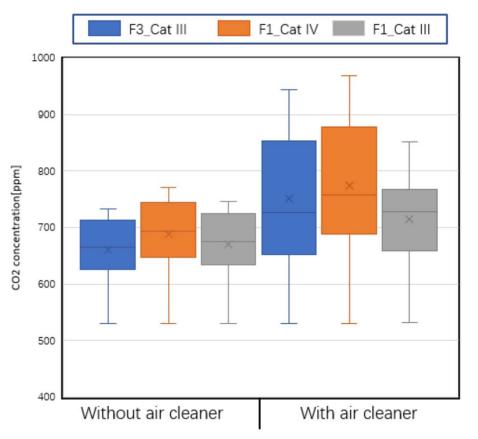
- $-\epsilon_{PAQ}$ is the air cleaning efficiency for perceived air quality;
- Q_o is the ventilation rate without air cleaner, l/s;
- $-\ Q_{AP}$ is the ventilation rate with air cleaner, l/s;
- PAQ is the perceived air quality without the air cleaner, decipol;
- PAQ_{AP} is the perceived air quality without the air cleaner, decipol

Use of perceived air quality, example

Energy simulations, example

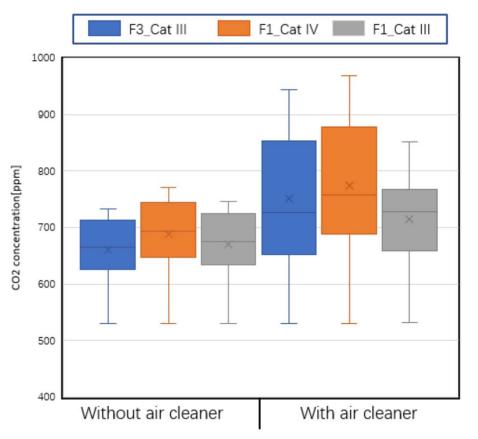
Source: Bogatsu et al. (2021)

Methods – air cleaner

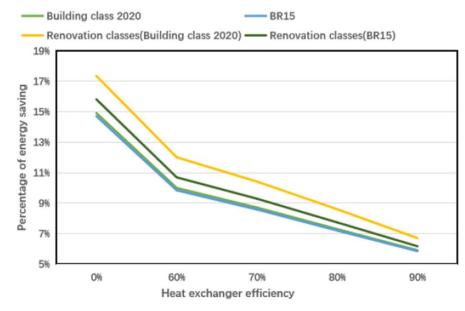

- Stand-alone air cleaner
- Air cleaner supplies clean air without any by-products
- Scenario
 - F3 building materials and people
 - F1 building materials only
- Improve IAQ from Category IV or III to Category II; PD determined empirically

Category	Level of expectation	PD [%]
IEQI	High	10
IEQII	Medium	20
IEQ _{III}	Moderate	30
IEQ _{IV}	Low	40

Source: EN 16798-1:2019


Results – IAQ

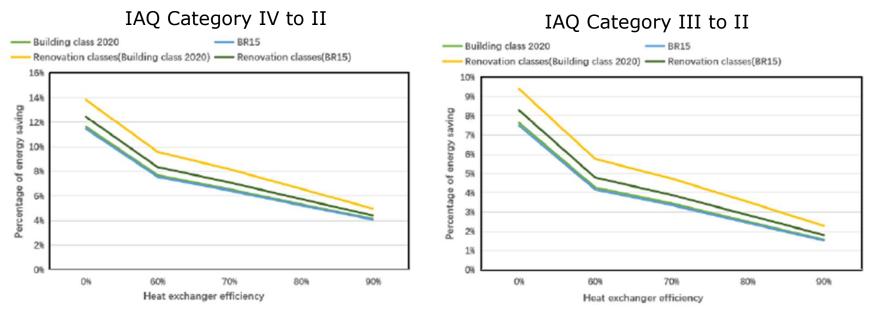
- CO₂ concentration below 1200 ppm
- Absolute CO₂ concentration (outdoor 400 ppm)


Results – IAQ

- CO₂ concentration below 1200 ppm
- Absolute CO₂ concentration (outdoor 400 ppm)

Results – Energy

- Including energy use of air cleaner
- Dependent on energy mix


Primary energy factors in Denmark

	Electricity	District heating
BR15	2.5	0.8
Renovation classes of BR15	2.5	1
Building Class 2020	1.8	0.6
Renovation classes of Building Class 2020	1.5	1

Energy saving potential, F3 Building materials and people

Results – Energy

- Including energy use of air cleaner
- Dependent on energy mix and airflow rate

Energy saving potential, F1 Building materials

Summary, energy impact


- Simulations for different climates with air cleaner providing CADR resulting in up to 50% reduction in outdoor air supply rate (Cat. II, EN16798)
- Depending on the climate, simulated energy savings reached between 1.9% and 18.2%; the savings were achieved by reducing the energy use for heating, cooling, and transporting the ventilation air

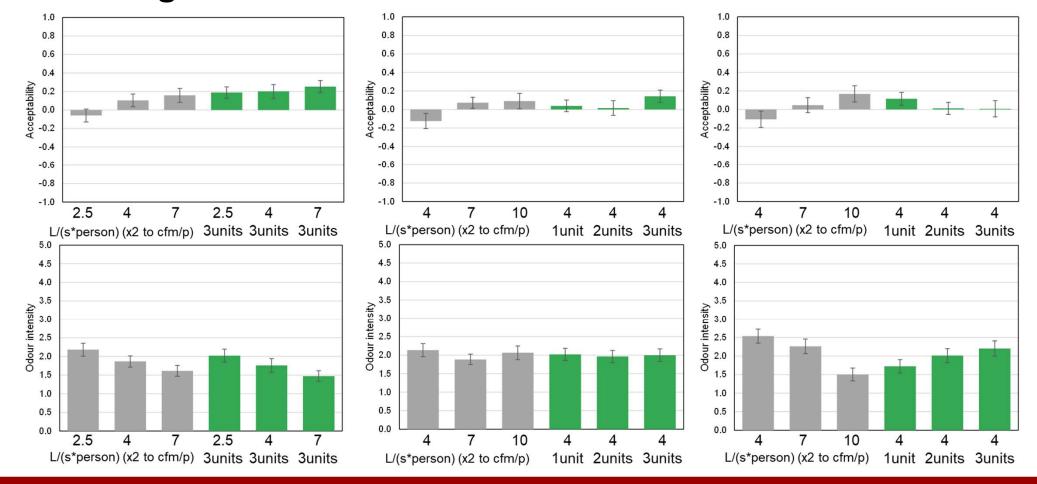
Development of a new standard for testing gas-phase air quality performance

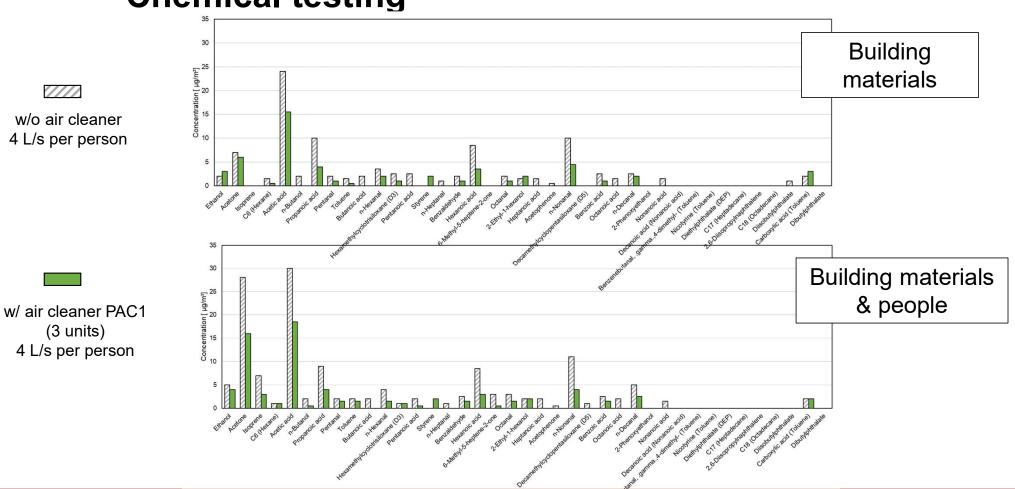
Proposal

- Two-stage-testing
- Stage 1: Pass/no pass with respect to the effect on indoor air quality
- Stage 2: Determine clean air delivery rate (CADR) and compare with equivalent ventilation requirements
- Use sensory assessment of air quality by human panel (ultimately chemical measurements)
- No testing of long-term performance

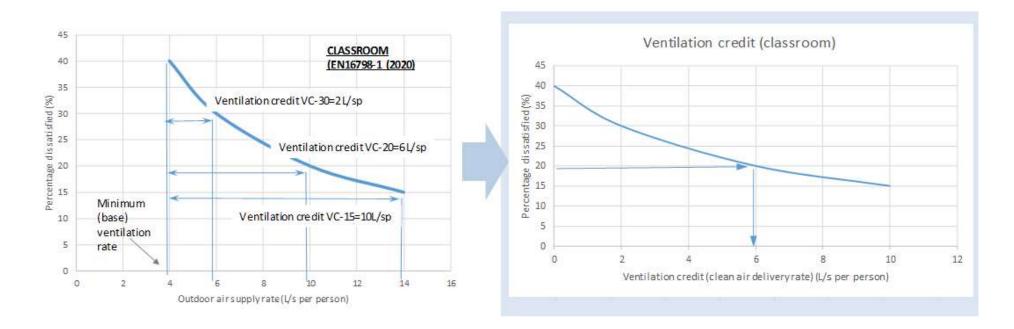
Experimental validation, setup

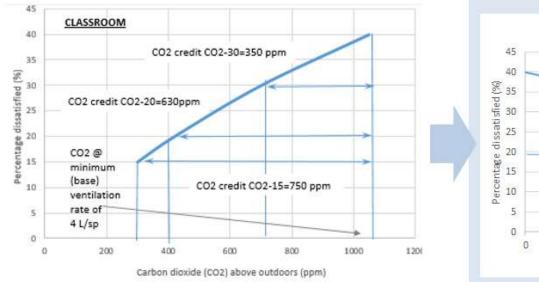
Sensory assessments

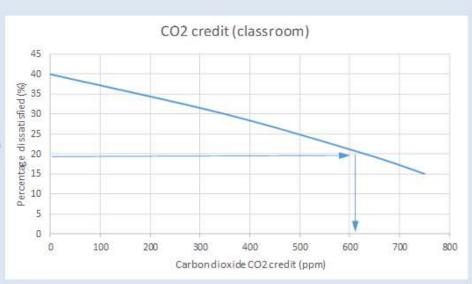

Overall protocol


- Portable air cleaners were tested; all operated at close to the maximum capacity
- Air cleaners were challenged with different types of pollutants representing people and building materials
- Conditions under test: ca. 23oC (73oF) and 50%RH
- Up to four levels of ventilation with outdoor air were tested
- Different number of air cleaners were placed in the rooms during testing
- Measurements of air quality were performed with air cleaners idled and in operation

Stage 1 results, passed/not passed


Stage 2 results




Chemical testing

Ventilation credit or CADR?, new concept

CO₂ credit

Conclusions

- A concept for substituting part of the required ventilation with gas phase air cleaning technology has been presented
- There is a need for new testing standards that considers perceived air quality and human emissions as a source.
- It must be verified that the reduced ventilation rate is still high enough to dilute individual contaminants.
- Adjusted CO₂ criteria must be used to express the indoor air quality and to use for demand-controlled ventilation.

pawar@dtu.dk Thank You

