
ASSESSING CONVECTION MODELLING IN BUILDING ENERGY SIMULATION 
MODELS FOR NIGHT COOLING 

 
Sarah Leenknegt1 and Dirk Saelens1 

1Building Physics Section, Department of Civil Engineering, KU Leuven, Leuven, Belgium 
 

 
 
 
 

ABSTRACT  
A sensitivity study is conducted with TRNSYS 17 to 
quantify the influence of different convection 
correlations during night ventilation on the thermal 
comfort. Furthermore, three other parameters were 
varied as well: the air change rate at night, the 
internal gains, and the accessibility of the thermal 
mass in the ceiling. The influence of using the 
Richardson number as correlation selection criteria is 
investigated. The results show that there is a high risk 
in overestimating the efficiency of night ventilation, 
when current assumptions regarding the prevalence 
of mixed and forced convection regimes are used.  

INTRODUCTION 
Nowadays, the application of active cooling in office 
buildings is hardly questioned in the building 
practice. Also in temperate climates, it is often 
assumed to be a necessary condition for a good 
thermal comfort. However, passive techniques such 
as night ventilation have great promise.  
Night cooling can maintain thermal comfort during 
the day, by pre-cooling the building at night using 
cool exterior air at high air change rates of typically 4 
to 10 h-1. In the daytime, the thermal mass buffers the 
heat released in the building, thereby reducing and 
delaying air temperature peaks. Although case 
studies show an effective improvement in thermal 
comfort (Geros 1999; Pfafferott et al. 2003), there is 
considerable uncertainty regarding the predicted 
performance (Breesch 2006). 
To assess the annual energy performance of night 
cooling in a building, Building Energy Simulation 
(BES) models are used. However, the results are 
strongly influenced by the convective heat exchange 
between thermal mass and room air (Artmann et al. 
2008; Breesch 2006). Moreover, surface convection 
is modelled in a simplified way in BES models, 
especially compared to the current state of modelling 
of radiation and conduction (Goldstein & Novoselac 
2010; Peeters et al. 2011). Three simplifications are 
usually seen: (1) isothermal surfaces, (2) perfectly 
mixed zone air and (3) a simplified selection of the 
convective heat transfer coefficient (CHTC). When 
simulating a building with night ventilation, these 
simplifications become increasingly problematic as 

the convective cooling of the thermal mass is crucial 
for the predicted performance.  
The objective of this paper is to quantify the 
influence of the CHTC on the predicted thermal 
comfort. Therefore, an office room is simulated in 
TRNSYS 17, while varying the CHTC at the ceiling 
during the period of night ventilation. Existing 
correlations from literature are used and the 
sensitivity on the thermal comfort of the room is 
determined and compared with other parameters such 
as internal gains, air change rate (ACH) and 
accessibility of thermal mass. Furthermore, the 
applicability of existing correlations is questioned, 
and the influence of correlation selection criteria is 
investigated. 

LITERATURE STUDY 
The problem statement of this research is founded on 
the combination of two factors: (1) the lack of 
convection modelling in BES models adapted to 
night ventilation and (2) the sensitivity of night 
ventilation to this phenomenon. Therefore, the 
literature study discusses these two aspects in more 
detail.  

Convection in BES models 
According to the ASHRAE Technical Committee 4.7 
(ASHRAE 2004), the modelling of internal surface 
convection in BES-tools is ranked as one of the 
highest priority research topics. Fohanno & Polidori 
(Fohanno & Polidori 2006)  and Goldstein & 
Novoselac (Goldstein & Novoselac 2010) both 
mention that the modelling of surface convection is 
overly simplified, certainly when compared to the 
current state of modelling of radiation and 
conduction. Also Strachan et al (Strachan et al. 
2008), who made a validation of the ESP-r software, 
attributed a large part of the uncertainty to the 
modelling of the internal surface convection. 
Dominguez-Munoz et al (Dominguez-Muñoz et al. 
2010) performed a sensitivity study with regard to the 
influence of input data for the determination of the 
peak cooling load. Even though the range used for 
the internal convective heat transfer coefficient 
(CHTC) is limited (6.25-7-9 W/(m².K)), the CHTC is 
still one of the top two parameters, together with the 
accessible internal mass per unit area.  
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A first problem of the simplified modelling is that 
BES models assume isothermal surfaces and 
therefore surface-averaged CHTC’s. Additionally, 
only one or very few temperature nodes are used to 
describe the room air, assuming mixed air and 
limiting the choice of an appropriate reference 
temperature. Furthermore, a third problem is the 
selection of an appropriate (surface-averaged) 
CHTC-value. Crawley et al (Crawley et al. 2008) 
made an overview of existing BES models and their 
capabilities, including the state of internal convection 
modelling. According to this overview, most BES 
models calculate the internal CHTC’s depending on 
temperature differences, hereby putting the emphasis 
on the use of natural convection correlations. 
Generally, it is possible to manually input constants 
or correlations in the BES model. However, most 
users do not have sufficient background to do this 
accurately or they ignore the flow characteristics: the 
flow pattern will determine the locally occurring 
convection regime.  As an improvement, some tools 
offer a coupling between BES and CFD, such as 
TAS, ESP-r and EnergyPlus. Bartak et al (Bartak 
2002) made an illustration of the conflation algorithm 
in ESP-r and its internal CFD module. Zhai & Chen 
(Zhai & Chen 2004) described the coupling of BES 
and CFD focusing on the requirements of the 
boundary region. The correct modelling of the 
convective surface heat flux (CSHF) in CFD requires 
a fine boundary layer mesh, as well as a turbulence 
model capable of modelling low turbulence flows 
(Loomans 1998). Therefore, a compromise must be 
found between calculation time and accuracy, though 
these are often not compatible. As a coupled 
simulation still requires a high computational effort 
as well as high user skills (Peeters et al. 2011), a 
more pragmatic way is needed.  
Some tools allow an automatic determination of the 
CHTC based on the type of air flow. IES<VE> for 
example provides a simplified method, based on the 
mean room air velocity. However, currently, the most 
pragmatic procedure to determine CHTC based on 
the type of air flow is the correlation selection 
algorithm developed by Beausoleil-Morrison 
(Beausoleil-Morrison 2000), which is implemented in 
ESP-r and EnergyPlus. This selection algorithm 
distinguishes between five main flow regimes, 
depending on the driving force of the flow and the 
cause of temperature differences. At the start of the 
simulation, the possible convection regimes for each 
zone are determined, and a set of CHTC-correlations 
is selected from a total of 28 equations from 
literature. Each surface is assigned a number of 
possibly occurring correlations, based on its 
characteristics. Determination of the local regimes in 
each zone is done through a series of user prompts in 
ESP-r, inquiring about the presence and location of 
heating elements, fans, windows etc. Depending on 
the situation at each time step, a correlation is 
implemented at each surface. For example, when a 

ceiling diffuser is active, the Fisher (Fisher 1995) or 
Fisher-Pedersen (Fisher & Pedersen 1997) 
correlation for a ceiling-jet causing forced convection 
at ceilings is used at the ceiling. When the diffuser is 
inactive, either the stratified or buoyant natural 
convection correlation from Alamdari & Hammond 
(Alamdari & Hammond 1983) is used, depending on 
the temperature difference between ceiling surface 
and room air.  
In EnergyPlus, the dimensionless Richardson number 
(Ri) is used as well to assess the flow regime. This 
number gives the ratio of the buoyant forces over the 
momentum forces and is calculated with Equation 
(1), in which the Grashof number Gr is calculated 
using the zone height as characteristic length L, 
whereas the Reynolds number Re is based on ξܸయ . 
The software assumes forced convection in the zone 
for Ri < 0.1, natural convection for Ri > 10 and 
mixed convection when Ri is between these values.   

ܴ݅ ൌ ݎܩ
ܴ݁ଶ ൌ

݃ ή ߚ ή οܶ
ଶݑ ή ௥ீܮ

ଷ

ோ௘ଶܮ
 (1) 

This pragmatic approach allows a permanent 
evaluation of the dominant convection regimes 
throughout the simulation, without significantly 
increasing the calculation time. It can also easily be 
refined further through the addition of newly 
developed correlations. In EnergyPlus, new 
correlations by Fohanno & Polidori (Fohanno & 
Polidori 2006) and Goldstein & Novoselac 
(Goldstein & Novoselac 2010) were added to the 
original structure. The accuracy and success of the 
correlation selection algorithm is determined by the 
number of implemented correlations and an 
appropriate selection of a correlation for each surface 
at each time step. An extensive discussion of existing 
correlations, their derivation and applicability can be 
found in (Goethals et al. 2011; Peeters et al. 2011; 
Beausoleil-Morrison 2000).  

Sensitivity of night ventilation regarding surface 
convection 
Breesch (Breesch 2006) performed a sensitivity and 
uncertainty analysis on natural night ventilation. 
Apart from the internal gains, the air tightness and 
the g-value of the solar blinds, the internal CHTC 
caused the largest sensitivity on the thermal comfort 
(case with cross ventilation, south orientation).  The 
sensitivity for the CHTC-value was for example three 
times higher than the sensitivity due to the air flow 
rate, even though only natural convection 
correlations were used in the analysis. A follow-up 
study (Breesch & Janssens 2010)  investigated 
natural night ventilation and distinguished between 
buoyant and stratified horizontal surfaces with 
different correlations for natural convection. The 
research indicated that the sensitivity with regard to 
the CHTC is twice as important as the control 
strategy, given that other parameters are not changed.  
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Also Artmann et al (Artmann et al. 2008) performed 
a sensitivity study with regard to night ventilation 
and found a high sensitivity for the CHTC for values 
lower than 4 W/(m².K) in case of buildings with 
average mass, which is defined as a building with 
exposed concrete ceilings and gypsum walls. These 
conditions are expected also in realistic cases where 
night ventilation is applied.  
Goethals et al (Goethals et al. 2011)  made a detailed 
overview of correlations existing in literature and 
their application in BES. Using this information, a 
sensitivity study was conducted on one room with 
mechanical ventilation (10 ACH) using TRNSYS. A 
high sensitivity was found during the periods of night 
ventilation, also with regard to the fan operation time. 
Finally, Leenknegt at al (Leenknegt et al. 2011) 
showed that the flow pattern during night ventilation 
can change drastically during the period of increased 
ventilation. This has large repercussions on mainly 
the surface convection at the ceiling. An accurate 
prediction of the flow evolution is therefore crucial to 
assign appropriate CHTC’s at the ceiling.  

CASE DESCRIPTION 
A sensitivity study was conducted in TRNSYS 17, in 
order to investigate the sensitivity of the thermal 
comfort to different correlations. Convection and 
radiation are modeled with the old star temperature 
approach. This paragraph will focus solely on the 
convection at floor and ceiling, and will not comment 
on the selection of correlations for walls or windows. 
A heated office room was simulated from January 
until August. The first six months are used as 
initialization period for the room and the thermal 
comfort during July and August is assessed. Office 
hours are assumed from 8 h to 18 h and night 
ventilation is used between 20 h and 6 h. 
The highly insulated facade with window is oriented 
south and is exposed to a Belgian climate. Floor and 
ceiling have an identical composition: a 1 cm floor 
finishing, followed by 8 cm of light concrete and 20 
cm of heavy concrete, with densities of respectively 
650, 1200 and 2400  kg/m³. All adjacent zones have 
conditions identical to the investigated zone, 
resulting in adiabatic internal walls. Following a 
common rule of thumb, the thermal capacity of the 
air is multiplied by 5 to take into account influence of 
furniture. A time step of 600 s was used. The 
boundary conditions are summarized in Table 1. 
Four parameters are varied: the internal heat gains 
(IG), the air change rate at night (ACH), the CHTC at 
the ceiling during the increased ventilation and the 
accessibility of the thermal mass. Firstly, the internal 
heat gains vary from 12 to 30 W/m² with steps of 3 
W/m². They are divided as 70 % convective and 30 
% radiative. Outside office hours, 10 % of the total 
internal gains are assumed. The air change rate at 
night was varied from 4 to 12 h-1 with steps of 1 h-1. 
Thirdly, eight CHTC correlations are selected for 
usage at night; an overview is given in Table 2. 

During the daytime, the default natural convection 
correlations from TRNSYS are used at the internal 
surfaces. No reference was found for these 
correlations, which are given in Equation (2) and (3) 
for buoyant and stratified flow respectively over a 
horizontal surface.  
Finally, the simulations are made with and without a 
dropped ceiling panel of plasterboard, with a 
horizontal air gap of 5 cm, blocking direct contact 
between room air and the concrete slab. 

݄௖ ൌ ʹοܶ଴Ǥଷଵ (2) 

݄௖ ൌ ͳǤͲͺοܶ଴Ǥଷଵ (3) 

 
This parameter variation results in a total of 1008 
cases. The cases are compared using the weighted 
overheating hours (WHO in [Kh]), given by Equation 
(4). The maximum comfort temperature Tlim is set at 
25 °C. The WOH take into account how many hours 
of the year the maximum comfort temperature was 
exceeded, but also by how many K. As such, this is a 
weighted evaluation of the overheating time. The 
impact of moisture absorption and desorption by the 
building construction and furnishings was ignored. 

ܪܱܹ ൌ ෍݉ܽݔ ቀ൫ ௔ܶǡ௜ െ ௟ܶ௜௠൯ ή οݐǡ Ͳቁ
௧೐೙೏

௜ୀ௧బ
 (4) 

 
Table 1. Boundary conditions 

Room parameters 
room dim.  W 1.8 x L 3.45 x H 2.4 m 
window char. Ugl = 1.1 W/(m².K), g = 0.39 
window dim. W 1.25 x H 1.6 m 
heating setpoint night: 10 °C, day: 20 °C 
heating power 2 kW 
CHTC 
internal walls internal calculation TRNSYS 17 
façade exterior 17.8 W/(m².K) 
floor internal calculation TRNSYS 17 
ceiling – day  internal calculation TRNSYS 17 
ceiling – night parCORR see Table 2 
Internal gains (IG) 
rad/conv. part 30/70 % 
18h – 8h 10 % IG 

8h – 18h 
(office hours) 

from 8-9h: linear increase from 10 
to 100 % IG 
9h-17h: 100 % IG 
from 17-18h: linear decrease from 
100 to 10 % IG 

internal gains parIG (W/m²)  
12/15/18/21/24/27/30 

Ventilation
Tsupply Text
supply opening 1 x 0.1 m 
infiltration 0.2 h-1 
day (hygienic) 1 h-1 
Night (purge) parACH: 4/5/6/7/8/9/10/11/12 h-1 
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Table 2. Used correlations in parameter variation 
Code Description 
TRN_NaHorStr default calculation TRNSYS 17 

AwH_ForClStr forced, jet over heated ceiling 
(Awbi & Hatton 2000) 

BM_MixClStr 
mixed, ceiling diffuser, warm 
ceiling (Beausoleil-Morrison 
2000) 

Fi_ForClHor forced, free horizontal jet in 
isothermal room (Fisher 1995) 

Fi_ForClDif forced, ceiling jet in isothermal 
room (Fisher 1995) 

AwH_MixClStr mixed, jet over heated ceiling 
(Awbi & Hatton 2000) 

AwH_NaClStr natural, stratified flow, ceiling 
(Awbi & Hatton 1999) 

CTE-ISO 

horizontal surface, 
 upwards heat flow = 5 W/(m².K); 
downwards heat flow = 0.7 
W/(m².K) (ISO 13791) 

DISCUSSION OF RESULTS 
For each case, the total WOH are summed up over 
the two month period. The influence of varying 
ACH, IG and CHTC are visualized below for the 
simulations with accessible thermal mass. Figure 1 
show the total amount of WOH during the 2 summer 
months.  The cases with different correlations are 
distinguished by different markers. They are then 
sorted in groups, first according to internal gains (i.e. 
1-9: 12 W/m², 10-18: 15 W/m², etc.), then according 
to ACH, and numbered on the horizontal axis. For 
example, cases 1-9 all assume 12 W/m², but they 
have stepwise increasing ACH. For example, case 24 
on Figure 1 is the case with 18 W/m² of internal gains 
and an ACH of 9 h-1. Figure 1 shows a few clear 
tendencies: as the ACH increases, the overheating 
decreases. However, this effect starts to level out at 
higher ACH, seen by a decrease in slope. For 
example, at IG equal to 15 W/m², a change from 4 to 
5 ACH results in a reduction of 22 % of WOH, 
whereas a change from 11 to 12 ACH results only in 
a reduction of 10.6 %. At 21 W/m², the reductions are 
respectively 21.7 % and 8.9 %, and at 27 W/m², 
respectively 20 % and 8 %. 
The impact of different correlations can also be seen 
on Figure 1, though this is more clear on Figure 2, 
showing the change in WOH for each case compared 
to its reference case using the default correlations of 
TRNSYS, but with the same ACH and IG. The 
convection correlation is therefore the only parameter 
influencing the values plotted here. A positive value 
indicates an increase in WOH, and a negative value is 
equivalent to a decrease in WOH and therefore an 
improvement of the predicted thermal comfort. 
Correlations AwH_NaClStr and CTE-ISO represent 
natural convection, respectively by Awbi & Hatton 
(Awbi & Hatton 1999) and from EN ISO 13791. 
They will result in rather low CHTC values at night, 
as the ceiling surface is typically warmer than the air 

at these times. Additionally, AwH_ForClStr refers to 
the forced convection correlation for a jet over a 
heated ceiling by Awbi & Hatton (Awbi & Hatton 
2000). Its value is still rather low however, as it is 
based on the jet momentum number. As the supply 
opening is quite large, the supply air velocity is low 
and so is the jet momentum. Finally, AwH_MixClStr 
takes into account combined natural and forced 
convection, developed by Awbi & Hatton, and is 
based on correlations AwH_ForClStr and 
AwH_NaClStr. At low ACH, the mixed convection 
results agree best with the natural convection results. 
As the ACH increases, the forced convection based 
CHTC becomes higher than the natural convection 
based, and the forced convection part, though still 
low, becomes dominant in the mixed convection 
result. Furthermore, increasing the internal gains 
obviously increases the overheating, but it also 
reinforces the influence of the correlation on the 
overheating by 5 to 15 %. 
Correlations BM_MixClStr and Fi_ForClDif both 
result in a decrease of overheating hours compared to 
their parallel reference cases. They show very similar 
behaviour throughout all cases. BM_MixClStr 
combines natural and forced convection, but is 
dominated by the forced convection part, equal to 
Fi_ForClDif (Fisher 1995). This explains their 
similar behaviour. The CHTC predicted by these 
correlations is rather high, as they assume air supply 
through ceiling diffusers. Therefore, they result in a 
significant decrease of the predicted overheating, 
with the influence going from 10 to 50 % decrease in 
Kh as the ACH increases.  
The last correlation is Fi_ForClHor, which is the 
forced convection correlation for a free horizontal jet 
by Fisher (Fisher 1995). At low ACH, this correlation 
behaves similar as the natural convection 
correlations, but at ACH > 8 h-1, it shifts towards 
forced convection, with rapidly decreasing 
overheating hours at increasing ventilation rates.  
A fourth parameter was whether or not the thermal 
mass was made accessible. The influence of covering 
up the concrete slab at the ceiling is shown in Figure 
3. Here, the spread on thermal comfort for all cases is 
shown for the different correlations. Each boxplot 
represents 63 cases with varying IG and ACH. On 
Figure 3a, the cases with accessible thermal mass are 
given, whereas on Figure 3b, the ones without are 
displayed. First of all, the thermal comfort is 
substantially worse if the thermal mass is covered up. 
The shift in WOH due to varying correlations is clear 
if the thermal mass can be reached. The same 
tendencies are seen in the cases without accessible 
thermal mass, though they are less obvious. In the 
latter case, the influence of the correlations on the 
average WOH of all 63 cases is between -3.5 % and 
+ 11.5 % depending on the correlation used. The case 
with internal correlation from TRNSYS (TRN 
NaHorStr) was used as the reference.  
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Ugl U-value of glazing [W/(m²K)] 
W room width [m] 
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