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ABSTRACT 
In the Swiss research project OptiControl 
(www.opticontrol.ethz.ch), new predictive building 
control strategies are developed and applied to a fully 
occupied, well instrumented demonstrator building.  
Here we report on the development and validation of 
the EnergyPlus building energy performance 
simulation model used in the project.  Validation was 
done in three stages: (i) plausibility testing, (ii) 
tuning of room temperature dynamics based on 
HVAC excitation experiments, (iii) comparison of 
longer-term net energy and room temperature 
statistics in different operation modes.  The mean and 
variability of spatially averaged indoor temperatures 
were generally well reproduced.  Simulated total 
heating and cooling net energy usage showed 
however in many cases deviations > 50%.  They 
were traced plausibly (but not conclusively) to 
specific modeling and input assumptions.  Validation 
results depended strongly on incorporation of 
controller feedback in the simulations.  The used 
validation strategy helped to improve the model and 
advanced the understanding of the building. 

INTRODUCTION 
Predictive control presents a promising option to 
enhance the energy efficiency and comfort of 
buildings, and to reduce their peak power demand at 
modest additional cost.  The Swiss project 
OptiControl deals with the development and testing 
of predictive building control solutions.  These are 
currently being tested on a representative, well 
functioning, fully occupied office building.   
To support the develpoment of the control algorithms 
and to overcome the limitations of field experiments 
(particular weather conditions, effects of user 
interactions etc.) the project heavily relies on 
computer-based modeling and simulation.   
Energy modeling of a building typically presents an 
iterative process consisting of alternating model 
development and model validation phases.  In model 
validation independent data are used to check in as 
far the model meets certain requirements.  The results 
are then normally used to further improve the model, 
e.g. based on the refinement of submodels, the 
adjustment of key input assumptions, or the tuning of 
model parameters.  

Here we present a three-stage model development 
and validation procedure that we used to structure 
our overall model construction process.  The goal of 
the paper is to report the capacity of the (tuned) 
multizone building and HVAC model to predict room 
temperatures and net energy usage, and to discuss the 
model’s strengths and limitations with regard to 
controller development. 

MATERIAL AND METHODS 
Building 
The target building (Figure 1) was a typical Swiss 
office building located in Allschwil close to Basle, 
Switzerland.  Constructed in 2007, the building has 
six levels with a conditioned floor area of ~6'000 m2, 
a typical Swiss thermal insulation level (U-value 0.32 
Wm-2K-1), insulation glazing (U-value 1.34 Wm-2K-1, 
total solar heat transmittance 60%), and a window 
area fraction of 50%.  The usage is representative for 
an office building.   
 

 
Figure 1  View of the target building from the south 

 

The HVAC system consists of the following compo-
nents:  (i) thermally activated building system 
(TABS), i.e. pipes buried in the concrete slabs of the 
floors carrying hot/cold water;  (ii) a central air 
handling unit (AHU) with a heat exchanger for return 
air heat/cold recovery, a heating coil in the supply 
air, and an evaporative cooler in the return air;   
(iii) radiators in the corner offices and the lounge;  
(iv) centrally controlled external blinds.   
A gas boiler generates the hot water for the TABS, 
the AHU heater and the radiators.  The cold water for 
the TABS comes from a dry cooling tower, which is 
only operated at night.  
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There is only one TABS zone, i.e. the TABS 
massflow rate and supply water temperatures are 
determined globally for the entire building.  The 
AHU provides all zones with a constant minimum 
outdoor air flow rate. It is operated during working 
hours only.  Supply air temperature is determined 
globally for the entire building.  There are no local 
reheating coils.  For the radiators thermostatic control 
is used.  The blinds are set on working days three 
times a day on a per façade basis.  Their position can 
be overriden by the occupants.  The windows can be 
opened manually. 

Measurements 
The following measurements were used for model 
tuning and validation:  Whole-building heating 
energy consumption by TABS, radiators, and ventila-
tion;  whole-building cooling energy consumption by 
TABS;  electrical consumption for the entire second 
floor and for lighting and equipment in each individ-
ual office of that floor; room temperature, presence, 
illuminance and window opening state in each office 
of the second floor. 
The measurements were originally available at 
irregular points in time, mostly at a sub-hourly 
sampling rate.  For comparison with the simulated 
data they were interpolated to hourly totals or hourly 
mean values, depending on the physical variable.  
High-quality hourly weather data for the years 2011 
and 2012 were obtained from the MeteoSwiss 
weather station Basel Binningen at a few kilometers 
distance from the building site.  The following 
variables were used as an input to the simulations: 
dry bulb and dew point temperature, and direct 
normal and diffuse horizontal radiation that were 
derived from global horizontal radiation. 

Model Description 
The simulation model represented the target build-
ing’s entire second floor (Figure 2).  The model was 
implemented using the EnergyPlus (EP) Version 7.0 
software (EnergyPlus, 2013).  EP is a simulation 
engine for building energy performance analysis and 
thermal loads of buildings.  
 

 
Figure 2  Geometrical model and zoning of the 

second floor 
 

The second floor is mainly used for office space.  It 
was subdivided in 20 thermal zones (Figure 2).  
Zoning was initially based on façade orientation, but 
additional subzones for the non-corner zones were 
necessary to accurately model mechanical ventilation 
and the use of the hall as a return air plenum.  All 
zones were thermally coupled assuming adiabatic 

boundary conditions for the floors and ceilings.  
Additional floors and neighbouring buildings were 
considered for shading calculations.  
All HVAC components were scaled such as to fit the 
needs of the second floor only.  Internal gains due to 
occupancy, lighting and electric equipment were 
introduced based on number of workplaces, installed 
equipment and Swiss standard usage schedules as 
provided by SIA (2006).  Infiltration was taken into 
account, using a constant value of 0.1 h-1 (after final 
tuning). Natural ventilation due to possible window 
openings by occupants was neglected.  

Set-Up of Simulations 
In order to drive the EP model with measured exter-
nal data and to be able to use precisely the same 
control as implemented in the target building we 
coupled EP to the MATLAB scientific computing 
environment (MathWorks, 2013).  This was accom-
plished with the Building Controls Virtual Test Bed 
middleware (BCVTB; Wetter, 2011).  Details on the 
used modeling and simulation environment can be 
found in Sagerschnig et al. (2011). 
 

 

 
Figure 3  Signal flows in open (top) and closed loop 

control (bottom) simulations 
 

We performed two kind of simulations:  Open loop 
control (OLC) simulations, where the model was 
entirely driven by measured control signals for 
TABS, blinds and ventilation;  and closed loop 
control (CLC) simulations where the model was 
controlled by the same rule-based control procedure 
as used in the real building (Figure 3).  Details on the 
used control strategy can be found in Gwerder et al. 
(2010 and 2013).  Both kinds of simulations were 
driven by measured weather data plus pre-
determined, weekly recurring hourly schedules for 
occupancy and internal loads.  

Proceedings of BS2013: 
13th Conference of International Building Performance Simulation Association, Chambéry, France, August 26-28

- 284 -



The simulations were run for 2011 and 2012, but 
depending on the availability of measurements only 
selected time windows could be used for validation. 
All simulations were done at a 15 minutes time step 
and their outputs were aggregated to hourly totals or 
averages.  The 15 minutes time step was chosen to 
minimize computational effort for model integration 
and co-simulation.  Use of shorter time steps down to 
one minute was found to have no significant effect on 
the key statistics reported here. 

Model Development and Validation  
The used procedure for model development, valida-
tion and tuning was characterized by the fact that 
detailed measurements from the building became 
increasingly available during the course of the 
project.  Overall, we developed three main model 
versions, Models A–C in chronological order, as 
shown in Table 1. 
 

Table 1 
Model Versions 

 

MODEL  MAIN INPUTS USED FOR MODEL 
DEVELOPMENT AND VALIDATION  

A Planning data, standard weather data, standard 
internal load profiles, out-of-the-box controls. 

B Measured room temperatures from AHU and 
TABS excitation experiments;  measured 
weather; measured control signals;  realistic 
control. Tuning of time-mean room operative 
temperatures.   

C Same as B, but model extended/tuned with 
focus on room temperature dynamics. 

 

We distinguished three validation stages, as follows:   
Stage 1: Initial modeling and plausibility testing.  
Result: Model A.  The initial model was constructed 
based on planning data and best practice guesses 
where no such data were available.  It was tested for 
general correctness and plausibility in simulation 
studies covering a few days to a whole year using 
design reference weather data, standard internal load 
profiles, and out-of-the-box controls.  The simula-
tions were analyzed to make sure that the model (i) is 
implemented correctly, (ii) shows a physically 
plausible and consistent behaviour, (iii) processes 
external controller outputs accurately, and (iv) yields 
room temperatures and energy consumption that 
were roughly within the observed range.  
Stage 2: Tuning of operative room temperatures.  
Result: Models B and C.  Tuning was done by 
driving the models with measured weather data and 
realistic controls and then comparing the simulated 
hourly mean operative room temperatures with the 
room temperature measurements from two multi-day 
periods (Periods I and II, cf. Table 2). To maximize 
the information content of the measurements during 
these periods we performed two open-loop control 
experiments, as follows.  
In the first experiment we investigated the building’s 
thermal response to an AHU supply air temperature 

excitation.  We employed two doublet signals (+15/ 
-20/+5 K, and -5/+20/-15 K), as shown in Figure 4 
(top).  The second experiment allowed us to measure 
responses from step changes in the TABS supply 
water temperature.  The TABS were first operated at 
maximum cooling capacity for three days, after that 
maximum heating was switched on (Figure 4, 
bottom). During both experiments the blinds were 
kept generally closed to minimize the influence of 
solar gains on the measured temperature trajectories.   
Stage 3: Comparison of long-term energy and opera-
tive room temperature statistics.  Result: Final 
validation statistics.  Here we applied the model to 
three further periods (Periods III–IV, Table 2) of 
several weeks length each.  During these periods the 
building was operated normally.  Simulation results 
for these periods were compared to measured data for 
both, operative room temperatures, as well as net 
heating/cooling energy usage.  

 
Figure 4  HVAC actuation, and measured outside air 
temperature and internal gains during the AHU (top) 

and the TABS (bottom) excitation experiments 

Tuning Procedure 
Tuning of all three models was done in an iterative 
manner by matching qualitative model behaviours to 
expected outcomes based on expert knowledge, by 
rough quantitative comparisons with measured data, 
and by visual matching of simulated and measured 
trajectories.  Detailed statistical analyses were under-
taken for the Stage 3 validation, as explained later. 
Model B resulted from Model A based on a tuning 
exercise that aimed at reducing the average differ-
ence between the simulated and the measured room 
temperatures.  We employed the following adjust-
ments:  
• Modification of the assumed construction of the 

floor covering/internal ceiling; 
• Removal of insulation layer in the internal walls; 
• Raising of radiator setpoints in the corner rooms;  
• Reduction of infiltration and internal gains in the 

core zone;  
• Introduction of base load in equipment schedules 

based on measured electricity consumption. 
Note that these modifications affected only issues 
where no planning data were available.  Where 
planning data were available (such as for the façade 
construction) they were not modified.   
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Development of Model C was motivated by the fact 
that Models A and B were both found to only poorly 
reproduce the room temperature dynamics from the 
AHU step experiment (see Figure 5).   
Additional measurements during a two-week special 
monitoring phase showed that the air temperature at 
the office zones’ air outlets differed from the meas-
ured supply air temperature that is set in the AHU 
located at the building’s basement by up to 2-4 K.  A 
closer investigation showed, firstly, unexpectedly 
high heat losses during the transport in the shaft.  
Secondly, we discovered that the ducts to the offices 
are partially embedded in the concrete core of the 
ceiling, such that the supply air is apparently strongly 
conditioned towards the concrete temperature.  
Unfortunately, EP does not support the use of two 
heat sources (such as TABS water pipes plus supply 
air ducts) within a single construction.  Therefore in 
order to be able to simulate the thermal implications 
of the embedded ducts we resorted to the following 
approach:  The supply air temperature entering the 
room was modified as a function of supply air 
temperature in the basement based on linear 
regressions fitted to data from the special monitoring 
phase.  This modification was implemented by 
introducing virtual heating and cooling coils that 
were acting on the supply air in the model.  The 
coils’ energy consumption was not considered in the 
AHU’s final energy usage statistics.  However, it was 
used to compute at each time step a corresponding 
adjustment of the TABS supply water temperature to 
impose appropriate heat gains or losses and 
associated temperature modifications to the concrete 
ceiling. The TABS’ final energy usage was evaluated 
based on the unmodified supply water temperatures.  
This procedure clearly presented but a rough 
approximation of the physical processes in the 
building.  This was because it assumed the same 
average effect on the concrete temperature for all 
zones, and because the used modification of the 
supply air temperature did not depend on the 
concrete core temperature.   
Model C incorporated one further refinement as 
compared to Model B:  It accounted for the fact that 
the outdoor air travels to the AHU via an earth 
embedded duct of several meters length.  To predict 
the air temperature at the AHU supply air inlet we 
used a first-order model that was tuned to several 
months of hourly temperature measurements.  This 
extension influenced the heating and cooling energy 
used by the AHU, but otherwise it did not affect the 
model’s dynamical behavior.  

Comparisons 
Comparisons between measured and simulated 
hourly data were done for five selected periods, as 
summarized in Table 2.  
Period I included the weekend from Nov. 4th–6th, 
2011, where the AHU supply air temperature 

experiment was performed (see Figure 4). Period II 
covered the TABS experiment that was executed 
during Dec. 23–31, 2011 (see Figure 4).  Periods III 
and IV were heating periods, whereas cooling was 
active during the warm Period V. 
 

Table 2 
Validation periods.   

Tout: Mean outside air temperature. 
 

PERIOD TIME WINDOW T!"#$

[ºC] 
DESCRIPTION 

I Nov. 2–8, 2011 10.2 AHU experiment 
II Dec. 20–31, 2011 3.5 TABS experiment 
III Jan. 26–Feb 17, 2012 -4.5 Cold period 
IV Mar 1–Apr 19, 2012 8.6 Mild period  
V Aug 8–Sep12, 2012 19.5 Warm period 

 

Deviations between simulated (s) and measured (m) 
hourly time series were assessed quantitatively by the 
mean error (ME) and the mean absolute error with 
the bias removed (MAE): 

ME  = 1/n ! (si – mi) (1) 

MAE  = 1/n ! |(si-ME) - mi| (2) 

Here n and i denote the sample size and the time step 
index, respectively.  ME measures the time-averaged 
deviation over the comparison period, whereas MAE 
measures the average deviation in the simulated 
signal’s dynamical behavior after it has been shifted 
to have the same time-mean as the measurements. 
The following quantities were analyzed: the area 
weighted mean operative temperature of all offices 
plus the meeting room of the second floor (TRM), the 
net energy usage for TABS heating and cooling 
(HTABS, CTABS), and the net energy usage for AHU 
(HAHU) and radiator heating (HRAD). The total heating 
energy usage by TABS, AHU and radiators is 
denoted as HTOT.  Energy measurements where scaled 
to the second floor based on its fraction of the total 
building’s conditioned area. 

RESULTS 
Figures 5 and 6 compare the measured temperatures 
for two selected office rooms with the simulated 
operative temperatures for the corresponding model 
zones during Periods 1 and II, respectively. 
It can be seen that during Period I (Figure 5) all three 
models overestimated the amplitude of the room 
temperature responses to the imposed changes in 
AHU supply air temperature.  Model C was however 
clearly the best.   
Quite differently, in Period II (Figure 6) this model 
showed the poorest performance in reproducing the 
effect of the imposed TABS heating step. 
Figures 7 and 8 show the ME and MAE of TRM for 
all model versions and periods, respectively.  They 
confirm the findings from Figures 6 and 7 for the 
entire second floor.   
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Figure 8 further shows that the simulated TRM were 
cooler than the measurements for all models and 
validation periods, except for the OLC cases in 
Period V.  Also, the magnitude of the ME was mostly 
smaller for the CLC as compared to the OLC cases.  
 

 
Figure 5  Measured office room temperatures (red) 
and simulated operative temperatures in Period I 
(AHU experiment).  A–C: Model versions.  Data 
refer to two selected office rooms and the related 

model zone with façade orientation “West” 
 

 
Figure 6  Same as Figure 5, but for Period II  

(TABS experiment) 
 

From Figure 8 can also be seen that the MAE of the 
simulated TRM was generally below 0.6 K, the only 
exception being Model C in Period II.  For 
comparison note that the mean absolute deviation of 
the measured TRM data from their respective period 
mean was for Periods I, III and IV ~0.36 K, for 
Period II 2.11 K, and for Period V 0.77 K.   
All TRM comparisons showed a statistically 
significant linear relationship between the measured 
and simulated time series.  This relationship was 
always stronger for the OLC as compared to the CLC 
cases (results not shown). 
Figure 9 juxtaposes the measured and simulated net 
energy usages for the Periods III–V.  Relative devia-
tions are given in Figure 10.  It can be seen that the 
simulations got the differences between the different 
validation periods and between the total heating and 
cooling demand roughly right (Figure 10).  However, 
except for Period III, relative deviations from the 
measured values were found to be large, often > 50% 
(Figure 10). 
Figure 11 shows the average daily cycles of TRM and 
HTABS during the cold Period III.  It can be seen that 
all simulations were not only too cool (cf. Figure 7), 
but also that they showed a much larger daily TRM 
amplitude than the measurements.   

 

 
Figure 7  Mean error (ME) from the comparison of 
measured and simulated room operative tempera-

tures TRM.  A–C: Model versions 
 

 
Figure 8  Same as Figure 7, but for the mean abso-

lute error with the bias removed (MAE) 
 

From Figure 11 can further be discerned that the 
average diurnal course of HTABS in the OLC 
simulations showed an intermittent behavior, similar 
to the one found in the measurements.  Under CLC, 
however, the TABS heat delivery showed a basically 
different, much more continuous pattern. 
Figure 12 presents a similar analysis as Figure 11, 
but for the warm Period V.  Here TRM was higher 
than measured for the OLC and lower than measured 
for the CLC simulations (cf. Figure 7).  Again, all 
simulations overestimated the amplitude of the TRM 
daily cycle.  
Both the measurements and the simulations showed 
qualitatively similar diurnal cycles for CTABS 
(Figure 12, bottom) that reflected the fact that the dry 
cooling tower is only operated during night-time.  
The real building required less cooling energy than 
suggested by the simulations (cf. Figure 10, bottom). 
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Figure 9  Measured (Meas) and simulated total net 
energy usages for heating (HTOT, top) and cooling  

(CTABS, bottom).  A–C: Model versions. 
 

 
Figure 10  Percent deviations of simulated total net 

energy usages from the measured values. 
 

DISCUSSION 
The validation exercise revealed a very varied picture 
about the three model’s ability to predict measured 
room temperatures and net energy usage.   
Overall, Model B gave the best results with regard to 
reproducing the dynamics (Figures 5, 6 and 8) and 
long-term means (Figure 7) of the measured TRM.  In 
terms of simulating net energy usage Model B 
proved to be the best in 3 of the 5 available OLC 
comparisons, and in one of the 5 available CLC 
comparisons (heating energy in Period IV, Figures 9 
and 10).  However, this ranking is of secondary 
importance given that all simulated energies showed 
large deviations from the measured data, except 
perhaps for heating energy in Period III (Figure 10).   

 

 

 
Figure 11  Comparison of measured and simulated 
average diurnal cycles for room operative tempera-
tures (top) and TABS heating power (bottom) during 

the cold Period III.  A–C: Model versions;  
OLC/CLC: Open/closed loop control. 

 

 

 
Figure 12  Comparison of measured and simulated 
average diurnal cycles for room operative tempera-
tures (top) and TABS cooling power (bottom) during 

the warm Period V.  A–C: Model versions;  
OLC/CLC: Open/closed loop control. 
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A further salient feature of our results are the found 
large differences between the OLC and CLC simula-
tions (Figures 7–12).  
All these findings depended on a multitude of model-
ling decisions, input data sets and assumptions that 
made it difficult to trace the individual deviations to a 
single cause.  Nevertheless, several specific state-
ments can be made.   
Too low average TRM in the cold Period III (Figures 7 
and 11): A closer analysis showed that for both, OLC 
and CLC, HAHU was reproduced to within ca. ±10%.  
However, the three OLC simulations were found to 
underestimate HTABS by 18–39% and to overestimate 
HRAD by 13%–65%.  CLC showed opposite trends of 
similar magnitude.  Moreover, in all simulations the 
average diurnal cycles for HRAD were found to differ 
strongly from the measured ones (not shown), as this 
was also the case for the average diurnal HTABS 
patterns, in particular under CLC (Figure 11).  
The operation of the TABS and the radiators in the 
real building as well as in the models depends on 
operating modes and setpoints (high-level control) 
that are being tracked by low-level controllers.  In the 
simulations the high-level control signals were either 
prescribed by measurements (in case of OLC) or 
computed online (in case of CLC; cf. Figure 3).  
Quite differently, the low-level control was com-
pletely left over to the EP simulation engine.  We 
therefore suspect that the various deviations found in 
Period III were at least partially caused by differ-
ences in low-level control.  Sources of error are for 
instance the radiator setpoints (that we had to guess) 
and differences in the sensed temperatures used by 
the radiator thermostats and the TABS control 
algorithm (e.g., due to differences in real vs. mod-
elled sensor locations).   
Underestimation of heating energy usage in the 
mild/warm Periods IV and V (Figure 10):  As shown 
in Figure 7 during these periods the average room 
temperature level was quite well reproduced.  Ac-
cordingly, the reduced energy usage in the model is 
indicative of too high internal and/or solar gains.  
The latter depend crucially on the positioning of the 
blinds.  During working days the blinds are set by the 
building’s automation system three times per day, but 
the occupants may override the automatic settings at 
any time.  Unfortunately, no data was available that 
would have allowed us to account for the occurrence 
of manual blind repositioning and the resulting 
modification of solar heat gains in the simulations.   
Overestimation of cooling energy usage in Pe-
riods IV and V (Figure 10):  This result could have 
been caused, firstly, again by too high internal and/or 
solar gains.  Secondly, it could be due to the fact that 
cooling by natural ventilation was not considered in 
the simulations.  An analysis of window contact 
sensor data (not shown) suggested that during August 
and September 2012 on ca. 45% of all days where an 
office was occupied at least one window had been 

opened for at least 5 hours.  For a single opened 
window we estimate for a single office of the target 
building the resulting heat flux to be somewhere 
between a few W/m2 and several tens of W/m2, 
depending on the size of the window opening, the 
temperature gradient and the resulting outdoor air 
change rate.  Considering that the measured peak 
CTABS in Period V was 20–25 W/m2 (time-average: 
2.13 W/m2; cf. Figure 12) it can be stated that natural 
ventilation has probably contributed significantly to 
reducing the measured cooling energy demand.   
Differences between open and closed loop control 
(Figures 8–13):  The OLC simulations accounted 
implicitly for occupancy-induced internal loads and 
the possible blind repositioning or opening of win-
dows by the occupants because the recorded control 
sequences included the control system’s response to 
these disturbances.  In contrary, the CLC simulations 
depended entirely on the assumed internal loads 
schedules and did not account for windows and 
blinds operation by the occupants.  Given the afore-
mentioned importance of natural ventilation this 
difference in the two set-ups might well have contri-
buted to the found smaller CTABS deviations in the 
OLC as compared to the CLC simulations (Fig-
ure 10).  Note that the overestimation of CTABS in the 
CLC simulations was particularly large for the mild 
Period IV where comparatively large outdoor-indoor 
air temperature gradients yielded a very high cooling 
potential by natural ventilation.   
Deterioration of Model C temperature dynamics 
during the TABS experiment (Figure 6):  This result 
showed that the used correction for the thermal 
interaction between the supply air and the concrete 
floor was either too crude and/or not general enough.  
Note that in our simple model fix we modified TABS 
supply water temperature rather than the concrete 
temperature directly.  This probably explains the 
much delayed room temperature response of 
Model C as shown in Figure 6.  Moreover, the used 
regression models were fitted to data measured in 
May 2012, whereas the validation was applied to the 
much cooler TABS experimental period in December 
2011.   
Further factors that may have contributed to the 
found deviations between measurements and simula-
tions are the limited accuracy of the room tempera-
ture measurements;  the use of non-local weather 
inputs in the simulations (possibly affecting solar 
gains and temperature gradients, e.g. with implica-
tions for cooling tower operation, cf. Figure 12); 
various assumptions on construction details that are 
very difficult to check; the assumed boundary condi-
tions to the adjacent floors;  the lack of realistic 
submodels for air and water transport;  the use of a 
quasi-steady-state submodel for the radiators;  the 
need to rescale HVAC design values and measured 
energies to the 2nd floor; and finally limitations of the 
EP software such as the inability to simultaneously 
model TABS and embedded air ducts, limitations in 
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the simultaneous use of the TABS heating and 
cooling loops, and the limited ability of EP users to 
influence the software’s low-level control.  
The three-stage validation approach presented here 
appears suitable for application also to other model-
ling projects.  At Stage 1 one will typically produce a 
first guess (Model A), essentially based but on 
planning data.  In Stage 2 first improvements (e.g., 
Models B and C) can be developed thanks to initial 
measurements.  Here we found that the use of excit-
ation experiments (Figure 4) was essential with 
regard to motivating the development (Period I) of 
possibly improved models (e.g., Model C) and to test 
the various model’s performance (Period II).  The 
poor response of Model C to the TABS excitation 
would have probably gone undetected if validation 
data had been only available from the standard 
operation Periods III–V (cf. Figures 7 and 8).  Our 
results further suggest that it was wise to test the 
updated models in a further stage (Stage 3, but 
possibly also in further stages) using longer-term 
measurements that reflect a wide range of operating 
conditions.   
The increasing availability of measurements during 
the course of a project such as the one presented here 
can in principle be exploited to tune model param-
eters using automated algorithms such as GenOpt 
(2013).  However, our findings suggest that such 
tuning exercises require careful examination of all 
relevant disturbances (related, e.g., to internal or 
solar gains and natural ventilation) in order to avoid 
spurious agreement between reality and simulations.  

CONCLUSION 
The model development, tuning and validation 
process described here proved very challenging.  The 
model’s predictive accurracy for room temperature 
dynamics and net energy usage was found to depend 
as much on the correctness of the building and 
HVAC submodels, as on control details and the 
choice of various input data sets and assumptions.   
We found (once more) that measurement-driven 
tuning may improve some aspects of the model while 
worsening others.  This highlights the need to 
carefully trace the effects of possible model 
adjustments by considering several variables, oper-
ation modes and statistics.  Targeted HVAC excit-
ation experiments can provide valuable insights and 
validation datasets otherwise not available from 
normal building operation.   
While average measured temperatures and 
temperature dynamics could be reproduced well, the 
validation revealed large deviations between 
simulated and measured energy usages.  These can be 
traced plausibly (but not conclusively) to a series of 
specific modeling and input assumptions.  Simulation 
models like the one developed here are often used to 
investigate long-term differential effects on the 
building’s energy usage due to alternative building, 

HVAC or control designs. The magnitude of the 
found errors suggests that in our case to allow firm 
conclusions with regard to the real building’s energy 
usage any such differential results should be tested 
under a variety of parameter uncertainty and disturb-
ances scenarios (related, e.g., to windows opening, 
blinds operation, occupancy etc.).   
Overall, the proposed validation approach provided 
important insights into the building and its control.  
These insights, together with the ability to conduct 
simulation experiments using a reasonably realistic 
model (Model B) allowed us to successfully develop 
and implement new control strategies in the real 
building (Gwerder et al, 2013;  Sturzenegger et al., 
2013).  The model’s limited predictive accurracy 
proved not too critical since the developed control 
solutions were robust and general enough not to 
depend on the details of the target building.   

ACKNOWLEDGEMENTS 
The financial support by swisselectric research and 
Siemens Building Technologies is gratefully acknow-
ledged.   

REFERENCES 
EnergyPlus Energy Simulation Software, www. 

energyplus. gov.  Accessed 20. Feb. 2013. 
SIA (2006). Standard-Nutzungsbedingungen für die 

Energie- und Gebäudetechnik.  Merkblatt 2024. 
Schweizerischer Ingenieur- und Architekten-
verein, Zürich, Switzerland, 122 pp. 

MathWorks MATLAB Software.  www.mathworks. 
ch. Accessed 20. Feb. 2013. 

Wetter, M. (2011).  Co-simulation of building energy 
and control systems with the Building Controls 
Virtual Test Bed.  Journal of Building 
Performance Simulation, 4(3):185-203.  

Sagerschnig, C., Gyalistras, D., Seerig, A., Prívara, 
S., Cigler, J. & Vá"a, Z. (2011). Co-simulation 
for building controller development: The case 
study of a modern office building. In: Proc. 
CISBAT 2011, 14-16 Sept. 2011, Lausanne, 
Switzerland. 

Gwerder, M., Gyalistras, D., Oldewurtel, F., 
Lehmann, B., Stauch, V. & Tödtli, J. (2010). 
Potential assessment of rule-based control for 
integrated room automation.  Paper presented at 
the 10th REHVA World Congress Clima 2010, 
Antalya, Turkey. 

Gwerder, M., Boetschi, S., Gyalistras, D., 
Sagerschnig, C., Sturzenegger, D., Smith, R. & 
Illi, B. (2013).  Integrated predictive rule-based 
control of a Swiss office building.  Paper 
presented at the 11th REHVA World Congress 
Clima 2013, Prague, Czech Republic. 

Sturzenegger, D., Gyalistras, D., Gwerder, M., 
Sagerschnig, C., Morari, M. & Smith, R.S. 
(2013). Model Predictive Control of a Swiss 
office building. Paper presented at the 11th 
REHVA World Congress Clima 2013, Prague, 
Czech Republic. 

GenOpt (2013).  Generic Optimization Program. 
http://simu lationresearch.lbl.gov/GO/. Accessed 
24. Feb. 2013. 

Proceedings of BS2013: 
13th Conference of International Building Performance Simulation Association, Chambéry, France, August 26-28

- 290 -


