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ABSTRACT
The capacity of intermittent power sources like wind 
and PV is steadily increasing. The existing balance 
between production and consumption is seriously 
affected by these new sources. Flexible demand for 
example in buildings is one solution to come back to 
a stable system. Buildings provide a huge potential 
for flexible electricity demand. This flexibility can be 
addressed by using model predictive control (MPC) 
with optimized scheduling for the buildings’ heating, 
ventilation and air conditioning (HVAC) systems. 
Therefore, it is necessary to have detailed simulation 
models of each single building. To avoid the huge 
effort of setting up lots of different building models, 
two approaches for self-adapting building models are 
discussed in this paper. Those approaches can be 
differentiated by their mathematical structure. The 
neural network (NN) approach is called “black-box” 
model. In contrast to that, the physical “white-box” 
model is a system of differential equations with free 
parameters. These models are parameterized by 
measured data and are developed to be used in model 
predictive control to forecast the building’s thermal 
behavior. Once the thermal behavior is predictable, 
the optimal schedule at minimal costs for the HVAC 
systems can be determined with respect to thermal 
comfort. 
The investigations show, that the difference between 
the training phase and the prediction phase is 
decisive for the quality of the forecast. If test and 
training data are similar (e.g. same season), both 
models deliver satisfying results. 

INTRODUCTION
The increasing share of fluctuating electricity 
production by renewable energy evokes an increasing 
requirement for energy storage and demand side 
management capacities. The adaptation of the 
buildings energy consumption to flexible energy 
price has a high potential for integration of 
renewables [1]. On the one hand, it decreases the 
necessity for expansion of the grid, on the other hand, 
consumers could benefit from lower energy costs. 
The potential for demand response in buildings is 
mainly connected with their thermal inertia. This 
thermal inert mass could be used as storage for 
thermal energy. If surplus of wind energy for 

instance leads to low electricity prices, electrical 
heating systems are operated at peak load to charge 
the building with thermal energy. Typically, the 
heavier the construction of a building is the more 
energy can be stored. Charging a building means in 
this case to raise the temperature of floors, walls and 
ambient air. The optimization process is necessary to 
find out when the HVAC systems have to operate to 
charge the building at minimal costs. The solution of 
this process is the optimal schedule for the HVAC 
components. 
Depending on a flexible electricity price, the MPC 
calculates the optimal schedule for the HVAC 
systems of the building with an iterative method. To 
provide thermal comfort inside the building, the 
thermal behavior of the building is predicted with a 
model for each optimization step. The optimized 
schedule is then applied to the HVAC systems of the 
real building. Figure 1 provides the schematic 
configuration of the investigated system. 

Figure 1: Concept for MPC application 

Different buildings show different thermal behaviors, 
caused by different materials and structures. 
Consequently, for every individual building an 
individual model has to be made. To reduce the effort 
for modeling of different buildings, adaptive models 
are developed. These models have a universal 
structure and are shaped by fitting them to input-
output-data. Input data are e.g. weather data and 
control signals of HVAC systems, the output signal is 
the room temperature. 

NEURAL NETWORKS
Neural networks (NN) are a black box approach of 
system identification. Black box models need hardly 
any information about the system. In the following 
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section, an overview of theory and recent studies is 
given. 

Theory and recent studies 
In the last years numerous studies on modeling 
buildings thermal behavior with neural networks 
were published [2], [3], and [4]. Because of the 
nonlinear characteristic of the buildings thermal 
behavior, nonlinear model structures show satisfying 
adaptation results and are discussed in recent 
publications [5] and [6]. Nonlinear AutoRegressive 
model with eXternal inputs (NARX) models use the 
system output ! as an input of the neural network 
during training, to learn the dynamic behavior of the 
system. Models with this configuration are called 
serial-parallel models. 
Although the NARX models are supposed to be used 
for a one step prediction, it is possible to use them for 
simulation as an approximation (prediction of more 
than one time-step). But this is expected to lead to a 
bias-error, since they are not trained in that 
configuration [7]. 
This is why in dynamic system identification parallel 
models like the Nonlinear Output Error model (NOE) 
are preferred when the model is applied for 
simulation [8]. Because of the feedback and delay of 
the neural networks output !" to its input, it 
transforms into a dynamic neural network. The 
neural network now depends on its own previous 
outputs as well as on its inputs. Training dynamic 
neural networks in a parallel configuration is much 
more difficult than training static ones in a serial 
parallel configuration. Dynamic gradient calculation 
like Real Time Recurrent Learning (RTRL) or Back 
Propagation Through Time (BPTT) has to be used 
for calculating the gradient of the dynamic neural 
network instead of the standard Back Propagation 
(BP) algorithm, which can used for static neural 
networks only [9], [10]. Figure 2 shows the 
difference between a parallel model and a serial-
parallel model during the training. The shown 
Tapped Delay Lines (TDL) are used to delay the 
signals for any number of positive integral time steps 
(e.g. one TDL can delay one signal by the time steps 
0,1,4 and 8; feedback signals have to be delayed by a 
time step higher than 0). 

Figure 2: Difference between a serial–parallel 
model and a parallel model structure 

In this context, the purpose is to apply the neural 
network model in the model predictive control for the 
HVAC systems. The aim is to develop the HVAC 
schedule at least for the next day. Therefore, the 
model should provide reliable simulation results for 
at least the next 24 hours. To accomplish that, it is 
necessary to use a parallel model structure. 
In this work, in contrast to the previous publications, 
a nonlinear dynamic neural network with a NOE 
structure is used for modeling the thermal behavior 
of a building. The neural network was implemented 
within the Layered Digital Dynamic Network 
(LDNN) introduced in [10] and advanced and 
renamed (General Dynamic Neural Network, 
GDNN) in [9]. The schematic structure of the used 
NN is shown in Figure 3, where # is the system 
input, $%&  and '%&  are the input and layer weight 
matrices respectively, ( is the bias vector and !" is the 
output. For calculating the output ) of each layer the 
transfer function *+,- . /012+,- is used. A detailed 
description of calculating the neural network output 
can be found in [9] and [10]. 

Application of neural networks for indoor climate 
simulation 
The neural network has 7 inputs, two hidden layers 
with each 5 neurons and one output. The output has a 
feedback-connection to the first hidden layer, so that 
the outputs (state) of the last 4 time steps serve as 
additional inputs for the current time step. All direct 
inputs have a delay (TDL) of 0, 1, 2, 3 and 4. 

Figure 3: Schematic structure of the used NN 
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STATE SPACE MODEL
In the ongoing investigation, the neural network 
approach is compared with a white-box model with 
regard to adaptation time and deviation of simulation 
results. This model consists of several coupled 
energy balances, taking into account the internal 
energy of thermal masses [11]. The universal 
structure of this set of energy balances shapes a state 
space model with identifiable parameters [12]. 

Figure 4: Block diagram for state space model 

The equations below show the mathematical 
structure of a state space model. !" # $ % ! & ' % () # * % ! & + % (
The variables have the following meaning: ! = state vector, e.g. storage temperatures !" = derivative of state vector ) = output vector, e.g. room temperature ( = input vector, e.g. heating power, 

ambient temperature $ = system matrix ' = input matrix * = output matrix + = feedthrough matrix 

The vector ! represents the states of a system. 
Concerning the thermal behavior of a building, the 
state is quantified by the temperatures of the thermal 
storages. In the example presented below, the 
storages are the thermal mass of the buildings fabric 
and the thermal mass of the heating system. The 
input signals of the system are summarized in the 
input vector (. In this case, input signals are weather 
conditions (e.g. ambient temperature, solar radiation), 
control signals (e.g. inlet temperatures, mass flows) 
and occupation. The only output is the room 
temperature. Therefore, the output vector )
degenerates to a scalar. The interactions between the 
storages, the inputs and outputs are characterized by 
the parameter matrices $, ', * and +. The 
components of these matrices represent physical 
parameters like masses, heat capacities, heat transfer 
coefficients etc. The values of these parameters are 
estimated in a system identification process [13]. The 
number of signals on the input and output side 
defines the dimension of the state space model. 

COMPARISON OF NEURAL NETWORK 
AND STATE SPACE MODEL
In this section, the two different self-adapting 
building models are compared. The adaptive models 
have to reproduce the thermal behavior of a 
simplified building which consists out of one room. 
This building is modeled in the simulation software 
TRNSYS and is used as a data generator instead of a 
real building. This TRNSYS model delivers the 
room-temperature for the single-zone-building 
depending on different external and internal 
influences. The main characteristics of this model are 
illustrated in Figure 5. 

Figure 5: Single-zone-building as data generator 

In detail, the following input and output signals were 
created by the TRNSYS model and used for the 
model comparison, Table 1. 

Table 1: Model inputs and output 

 description type ,"- horizontal radiation 

inputs 

./ ambient temperature ,"0 internal gains 1" 2 radiator water flow rate .2 radiator inlet temperature 1" 3 supply air flow rate .3 supply air temperature . room temperature output 

The room temperature was simulated as a function of 
the inputs for different seasons. During the 
estimation process, input data and output data from 
the TRNSYS model was fed to both adaptive models 
for a limited time period, e.g. for one month. The free 
model parameters were determined to minimize the 
deviation between the room temperature simulated 
by the TRNSYS model and the output temperature of 
the adaptive models. 
In the following part the results for different 
estimation and prediction periods are presented and 
interpreted. As comparison criterion the mean 
absolute error (MAE) between the room temperature .456789: predicted by the adaptive model and the 
room temperature .;<=>?>9: simulated by the 
TRNSYS model was calculated for each prediction 
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period. The mean absolute error is calculated by the 
following formula: !"# $ %& '()*+,-./01 2 *34567601)&

18%
Every prediction period consist of discrete time steps 9 with a length of 15 minutes. The total number of 
time steps of one period is denoted by :. 
The following diagram shows the temperature curves 
for four days in March (Thursday, Friday, Saturday 
and Sunday). In this case, the TRNSYS generated 
data of all days in March were used for parameter 
estimation. 

Figure 6: Estimation in March, 
Prediction for March 

Over the whole period of 31 days, the deviation 
between the simulated temperature and the predicted 
temperatures is very low. The medium average error 
between the TRNSYS model and the neural network 
is 0,3 K and 1,3 K for the state space model, 
respectively. 

Figure 7: Estimation in March, 
Prediction for April 

The prediction error increases, if the adaptive models 
are estimated with the data of one month and are 
tested with the input data from another month. Like 
in the previous case, both models were estimated 
with the TRNSYS data of March. But in this case, 
the adaptive models have to predict the room 
temperature for April. To illustrate the results for 
April, the temperature curves from one Thursday to 
Sunday are shown exemplarily. The MAE increases 

to 1,4 K (NN) and 2,58 K (SS). The prediction error 
is relatively low thanks to the reason, that March and 
April are both part of the same season. In one season, 
the operation modes of the HVAC systems and the 
ambient temperatures lie in a narrowly limited range. 
It is possible for both adaptive models to identify 
parameters, which are valid for one whole season. 
The next example shows, that significant problems 
appear, when the time periods of estimation and 
prediction lie in different seasons. 

The temperature curves shown in Figure 8 represent 
the results for September of adaptive models trained 
in March. The prediction error in this case is above 
an acceptable level, but not extremely high. The 
mean absolute error is 3,0 K (NN) and 4,8 K (SS). 

Figure 8: Estimation in March, 
Prediction for September 

The prediction error could be lowered by enlarging 
the training period from one month to one year. For 
the results shown in Figure 9, the adaptive models 
had to predict the temperature for September as 
described in the example above, but were estimated 
with TRNSYS data of one year. Thus, the estimated 
models show acceptable predictions for a large 
horizon. By extending the estimation period to one 
year, the prediction error was reduced by 
approximately 50 % compared to the previous 
example. The mean average error is 1,1 K in case of 
the neural network an 2,4 K for the state space 
model. 

Figure 9: Estimation during one year, 
Prediction for September 
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The discussion above focused on the prediction error 
as comparison criterion. In future applications, the 
necessary calculation time to estimate a models 
parameter might be interesting. At present, both 
adaptive models were tested on common personal 
computers. In case of the state space model, the time 
required for determining the models parameters laid 
always below half a minute. In contrast to that, it 
took up to half an hour to adapt the neural network. 

CONCLUSION AND OUTLOOK
The results show, that the two approaches are 
generally able to reproduce a building’s thermal 
behavior. The quality of the room temperature 
forecast is significantly depending on the set of input 
data used for the training period of the model. If the 
training had similar conditions as the test phase, the 
outputs of both models deliver a good forecast for the 
indoor temperature. With these trained models, a 
model predictive control could be able to optimize 
the operation times of the HVAC system. This 
optimization allows the building to react to different 
internal or external signals, for example a flexible 
electricity tariff or own consumption of renewables. 
At the moment especially the neural network shows 
significant deviations, when the conditions for testing 
vary considerably from the training conditions. 
Because of its physical background, the state space 
model generates qualitatively good results, even if 
the test conditions differ very much from the training 
conditions. Anyway, the forecast error is above the 
acceptable tolerance range. 
Both approaches have very different characteristics: 
One advantage of the neural network is its flexibility. 
It needs hardly any information about the building 
and its building services to reproduce the thermal 
behavior. But it delivers results of low quality, if the 
training period varies from the test period. The state 
space model has a physical structure, which defines a 
certain framework of parameters. It needs general 
information about the building and its building 
services. This means, little adaptations are necessary 
for each single building. In contrast to the neural 
network, a state space model delivers qualitatively 
good results for a wide forecast range.  
With both approaches having different advantages a 
combined model could be very helpful. The further 
investigations should analyze how to implement the 
best aspects of the two models into one hybrid 
model. The presented adaptive models only predict 
the thermal behavior, respectively the indoor 
temperature of a building. New outputs to be 
predicted could be added to the models, to increase 
the quality of the forecast. For example humidity or 
concentration of CO2 in the indoor air could improve 
future investigations. 
In the ongoing scientific project the model predictive 
control will be implemented in a real building. This 
pilot experiment should validate the theoretical 

results and could form the basis for buildings to play 
an active role in a future renewable energy system.
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