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ABSTRACT

As simulation researchers in the field of performance-

driven architecture, we mainly describe in this paper 

an  interactive  genetic  algorithm  (IGA)  especially 

developed for eco-performance and real-time creative 

design  simulations,  associated  with  a  simple  and 

intuitive  human  machine  interface.  It  has  been 

originally  created  during  the  french  ANR  project 

EcCoGen dealing with creativity assistance, with the 

objective of "reducing the gap” between architectural 

design  and  current  scientific  knowledge  needed  to 

optimize  the  building  form  in  early  design  stage, 

reduce its energy consumption and bring a real help to 

the architect’s decisions.

INTRODUCTION

The integration of building performance simulation in 

the early stages of the design process is a recent field 

of  research,  put  in  the  context  of  sustainable 

development  and  energy  savings.  During  the  last 

decade,  many  publications  on  simulation  for 

architecture  and  engineering  design  have  been 

released,  combining  generative  and  optimization 

techniques,  sometimes  including form synthesis  and 

multicriteria decision aid (Attia et al., 2012), (Baverel 

et al., 2012),  (Hamdy et al., 2012),  (Kicinger, 2006), 

(Mourshed  et  al.  2003),  (Shi  et  al.,  2013). This 

coupling, designed to drastically reduce the explorable 

solution space provides in reasonable time a number 

of optimized solutions low enough to be considered in 

practice.

It is nowadays a priority to assist the architects during 

the  early  design  stages,  by  integrating  most  of  the 

parameters and constraints of sustainable development 

through contemporary design approaches in order  to 

guide  the  creation  through  innovative achievements. 

In this way, our IGA introduces creativity within the 

generative strategy, bringing optimization, exploration 

and  inspiration  for  architects.  It  is  an  evolutionary 

strategy  derived  from  Jaszkiewicz  MOGLS  (2002) 

and  improved  with  recent  advances  on  adaptive 

parameters  tuning  in  order  to  preserve  high 

performance  while  maintaining  high  diversity.  The 

criteria chosen by the user can be aesthetic, energetic, 

functional or constructive (or all), as they can be based 

on an analysis of the potential solution’s performances 

displayed  by  EcCoGen.  Our  IGA preserves  certain 

characteristics  of  the  selected  objects,  while  it 

continuously optimizes and evaluates in real time their 

overall performances (in the Rhinoceros software). In 

this  way,  it  is  very  different  from  MIT  Design 

Advisor,  or  BEopt,  among  other  programs,  because 

we  have  almost  real  time  fitness  evaluation  while 

preserving continuous 3D interaction and performance 

outline visualization.

During  the  process,  the  architect  interacts  with 

populations  of  optimized  solutions  and  still  has  the 

possibility to orient the evolution in various specific 

directions,  according  to  performance  or  subjective 

choices. Our algorithm mixes genetic capabilities with 

a  pheromone  approach  derived  from  Ant  Colony 

Optimization (Angus et al., 2009), in order to enhance 

the user's creativity with persistence and evaporation 

features.  The  underlying  concept  is  to  achieve 

improved  performance  via  evolution  while  keeping 

certain  resemblance  with  the  user  selected  choices. 

Thus, our IGA behaves  as a user  preference learner 

with a coherent stabilization effect.

An  original  Graphical  User  Interface  (GUI)  is 

conceived,  embedding  complex  simulation  model. 

However,  the  interaction  between  the  user  and  the 

software is permanently preserved.

The morphogenetic model

Within  a  built  environment  (figure  5),  the  architect 

draws a blank plot (green) cut by a 3D regular mesh 

whose  ground  frame  is  configurable  but  fixed,  and 

sets the maximum floors number. This mesh leads to 

the  “capable  volume”  (CV)  which  outlines  and 

describes  all  possible  solutions.  A  solution  is  a 

collection of dwelling units (variables = form genes), 

each  one  owning  a  programmatic  function  (office, 

housing,...)  and  properties  (materiality,  opacity, 

energy characteristics).  The number of such units is 

the  programmatic  constraint,  which  can  own  a 

tolerance, or freely evolve in an exploratory approach.

The energetic model

The  current thermal  model  used  in  EcCoGen  is 

restricted  to  heating-dominated  buildings  with  high 

levels  of insulation. Since our main objective is  the 

preservation  of  interactivity,  simplified  polynomial 

regression  models  have  been  designed  to  make  the 

evaluation time less than one second. The validation 

procedure  of  these  have  been  published  in  an 

international journal (Mavromatidis et al. 2013).

The software framework

EcCoGen  framework  is  based  on  two  software 
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environments (figure 1). The first one is  Processing, 

an open source programming language based on Java. 

The  Morphogenetic  Engine,  the  Interactive  Genetic 

Algorithm  and  the  Graphical  User  Interface  are 

implemented within Processing. The second software 

environment  is  Rhinoceros®  with  its  Grasshopper 

plug-in. Rhinoceros is a 3D modeler and Grasshopper 

allows  easy  3D  programming  for  the  evaluation 

engine.  The  communications  between  them  are 

performed by UDP protocol.

Figure 1 The IGA within EcCoGen framework 

PREVIOUS WORK

Multiobjective IGA

IGA denotes a genetic algorithm (GA) where the user 

can  interact  with  the  process  and  the  populations, 

especially  in  the  selection  and  mutation  steps.  The 

main difficulty is to find a compromise between pure 

optimization and the persistence of interest areas and 

research directions in the landscape research. 

To track the user's choices, a good IGA must ensure a 

certain persistence, which should not be too short (to 

give the GA the time to soak in) or too long (not to 

restrain  exploration  to  other  areas  of  potential 

interest). As in (Quiroz et al., 2008), one may accept 

to  keep  solutions  "objectively  worse"  if  they  are 

amplified  by  repeated  choices  of  the  user,  which 

relativizes  the performance rating at  this level.  This 

avoids time-consuming methods of computation (local 

search,  for  example)  to  focus  more  on  diversity 

(Carpentier, 2008).

In multiobjective optimization, we always try to find a 

good approximation of the Pareto front (PF), the set of 

all non-dominated solutions, that is to say at least as 

good as  all  the others  on the overall  objectives  and 

best  on  at  least  one  objective.  These  solutions,  by 

definition, are not comparable with each other, and the 

user  ultimately  chooses,  involving  non-quantifiable 

criteria. This is a main characteristic of an IGA, whose 

goal is to find configurations that best meets the user 

requirements. It is often assumed that these solutions 

must be found somewhere on the Pareto front, since 

we  claim  that  the  user  will  necessarily  prefer  non 

dominated solutions to dominated ones. 

In mixed mode, the user can occasionally let the GA 

take on pure optimization, without necessarily guiding 

the  process  at  each  iteration.  This  back  and  forth 

forces  the  GA to  select  potential  parents  in  a  more 

diverse  population,  partly  coming  from  the  user's 

previous  choices  that  can  even  be  somewhat 

consistent. Finally, to avoid the user fatigue associated 

with a number of choices over time that may be too 

high,  the  IGA  should  promote  rapid  convergence 

toward  the efficient  frontier  while maintaining good 

diversity within the population and among the optimal 

solutions (often contradictory). 

Quiroz's IGA

(Quiroz et al, 2008) describe an IGA in cooperative 

mode, which is based on NSGA-II algorithm (Deb et 

al.,  2002)  and  conventionally  uses  a  binary  Pareto 

tournament  for  parent  selection.  In  (Quiroz  et  al, 

2009),  they  give  recommendations  to  reduce  user 

fatigue  and  at  the  same  time  promote  rapid 

convergence to optimized solutions. 

The main originality of their work is to build at each 

iteration  a  “virtual  interpolated  fitness”  in  order  to 

guide the IGA toward the user choice.  This choice is 

then associated with a maximum virtual  fitness,  and 

other  individuals  are  evaluated  based  on  their 

similarities with it in the criteria space.  In this case, 

the  virtual  fitness  is  no  longer  able  to  take  the 

objective quality of a solution into account, but only 

its subjective importance.  This approach seems a bit 

artificial  compared  to  the  method  derived  from 

Jaszkiewicz  MOGLS described below. 

Another  advance  of  their  work  relates  to  the 

persistence  of  a  solution  chosen  by  the  user.  To 

prevent  the  IGA  selections  from  disappearing  too 

quickly from the population, Quiroz  adds additional 

fitness equal to 1 for a while (which keeps the PF), 

and  then  decreases.  Through  this,  he  artificially 

modifies  NSGA-II's  behaviour  to  follow  a  research 

direction imposed by the user, for a time sufficient to 

influence populations. But he says nothing about how 

to take into account several choices.

Jaszkiewicz's MOGLS

MOGLS is a stationary GA (SSGA) for estimating the 

Pareto front, whose goal is to find a set of good non-

dominated solutions using a single  fitness randomly 

combining  N  independent  targets  fi.  The  original 

algorithm (Mutli  Objective Genetic Local Search) is 

due to (Ishibuchi et al, 1996). At each iteration, after a 

selection step, a new solution is obtained by crossover 

and  improved  by  a  local  search  method  with  the 

current “scalar function”. It replaces in the population 

the  solution  of  lowest  fitness.  This  scalar  function 

maximizes  a  weighted  sum  of  the  criteria,  whose 

weight set  {λ} is randomly chosen at each iteration. 

Each  λi is  given  a  sign  that  indicates  whether  the 

associated fitness has to be maximized or minimized. 

In  2002,  Jaszkiewicz  shows that  MOGLS,  although 

based  on  a  linear  aggregation  of  the  criteria 

approximating  "goal  programming"  methods,  allows 

access  only  to  convex  areas  of  the  PF.  Instead,  he 

offers a more efficient version of MOGLS where the 
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weighted sum is replaced by the “scalar Tchebycheff  

functions” (1), more suitable than linear ones to access 

concave areas of the Pareto front (Jaszkiewicz, 2002).

∥ f∥λ=max
i

( λi . f i ) with ∑
i

λi=1 (1)

The use of Tchebycheff functions promotes the search 

for  diversified  solutions,  the  weights  {λ} being 

randomly  generated  by  the  algorithm  in  [0,1]n.  In 

practice,  we  evaluate  at  each  iteration  normalized 

fitness  between  0  and  1  to  overcome  amplitude 

differences, using the lower and upper bounds of each 

fitness  fi. By  this  mean,  we  can  define  the 

Tchebycheff norm (2).

∥ f∥λ=max
i

( λi .
f i−min( f i )

max ( f i)−min( f i)
)

   (2)

In  (Carpentier,  2008),  the  author  notes  that  in  this 

hybrid  algorithms  class,  the  genetic  part  (without 

mutation)  has  an  exploration  role  while  the  local 

search,  devoted  to  research  intensification,  is  very 

costly in computation time. So we can decide not to 

implement it, since maximum optimization is not the 

first  goal  in  an  IGA.  Instead,  it  shows  that  an 

operation mode like “evolution strategy (μ + λ)-ES” 

allows MOGLS to get excellent results, faster. Recall 

that in this type of strategy, the parent population of μ 

+  λ  children  shall  be  reduced  to  μ  parents  at  each 

iteration. In the following, this algorithm implemented 

in EcCoGen will be called MOGLS-(μ + λ)-ES. 

Directional IGA optimization in MOGLS

(Ishibushi  et  al.,  2002)  suggest  an  improvement  in 

their  algorithm  using  in  the  local  search  step  an 

optimization direction for every solution, independent 

of  the  current  weight  set,  allowing  to  separate  the 

genetic evolution from the local exploration.  Even if 

we do not use local search, we were inspired by this 

improvement  for  directing  the  research  effort  in 

interactive  mode,  once  the  user  has  designated  its 

preferences.  We simply deduct the weights {λ'} from 

the  “induced  norm  of  Tchebycheff”  (3),  which 

optimizes  the  classification  of  criteria  fi associated 

with the user choice.

λk
' =

∏
j≠k

f j

∑
i=1

N

∏
j≠i

f j

(3)

Then, we use MOGLS as a series of single-objective 

optimizations (blocking each new choice values {λ'} 

for  subsequent  iterations).  If  the user  makes several 

choices,  we get  a sampling of the preferences space 

that is used to build a distribution substituted to the 

uniform distribution in [0,1]N.

Maintaining population diversity

In mono criterion research, maintaining the population 

diversity  helps  avoiding  being  trapped  in  local 

minima,  and  in  multi-criteria  search,  an  additional 

objective  ensures  uniform  distribution  of  solutions 

along the  Pareto  front.  Indeed,  GA have  a  “natural 

tendency  to  drift”  toward  a  particular  area  of  the 

Pareto  frontier  (Goldberg,  1989),  and  to  effectively 

counter this phenomenon, one can act :

- upstream : by encouraging convergence to the Pareto 

front  (or  global  maximum)  while  maintaining  the 

population diversity in the fitness space but also at the 

genetic  level.  Here  we  can  note  that  MOGLS  is 

designed to promote the first diversity because it uses 

a  new  weighting  of  fitness  at  each  iteration,  while 

ACROMUSE (see below) rather favours the latter. 

-  downstream :  by using  measurements  of  the  local 

population density in the fitness space to facilitate the 

exploration  of  the  less  frequented  zones.  This 

mechanism  is  activated  by  penalizing  the  densest 

areas  in  the  selection  step  or  remove  individuals 

during the current population upgrade.

One of the best solutions to measure the local density 

is  the  non-parametric  algorithm  PADE  (Population 

Density  Estimation  Adaptive  size,  Elaoud  et  al., 

2008).  PADE is called to reduce the population size 

when it exceeds a threshold value which is fixed at the 

outset.  To do this,  it  divides  the fitness  space  by a 

hypergrid whose size and cells number are computed 

from  the  current  population  state.  Applied  with 

MOGLS,  PADE  iteratively  removes  individuals  of 

maximum local density and poorer fitness (2).

Adaptive CRoss-Over MUtation and SElection

ACROMUSE  is  a  recent  single-objective  GA 

(McGinley  et  al.,  2011)  which  automatically  adapts 

crossover / mutation  rates  and  selection  pressure 

depending on the current population state. Its purpose 

is to maintain a population of individuals both diverse 

and healthy, able to quickly adapt to fitness landscape 

changes, particularly multi-modal. This robust method 

exploits  more  the  research  landscape  than 

conventional techniques : one often gets new optima 

even after hundreds of iterations. 

The  breeding  pool  is  divided  in  two  populations : 

individuals  which  undergo  crossover  and  low 

mutation  rate,  and  those  who  are  only  strongly 

mutated  (figure  2).  A  genetic  measure  of  the 

population  diversity  (SPD)  is  used  to  adjust  the 

crossover and high mutation rates, while the selection 

pressure  (number  T  of  individuals  involved  in  the 

selection  tournament)  is  controlled  by  another 

measure  (HPD)  coupling  genetic  diversity  and 

performance.  The  mutation  rate  is  adapted  to  each 

individual by taking its performance into account (the 

less it is, the higher the individual is likely to mutate). 

The  parents  selection  is  based  on  their  local 

contribution  hpd to the HPD measure, rather than on 

pure  fitness.  Thus,  ACROMUSE  achieves  a  good 

balance  between  exploration  and  exploitation,  but 

requires the estimation of 3 parameters : the maximum 

values of SDP and HPD (SPD_max, HPD_max) and 

the  maximum  selection  pressure  (the  authors  use 

T_max = | P | / k, k being blocked at 6.
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Using GA as a constraint solvers

GA usually do not  transmit  consistency (constraints 

imposed) : consistent  parents  give  little  consistent 

children.  To  address  this  shortcoming,  one  can  use 

repair  mechanisms  (time-consuming,  penalizing 

evolving  capacities),  ad-hoc  genetic  operators  that 

guarantee the consistency of the produced solutions, 

but  lose  their  effectiveness  when  the  number  of 

constraints increases,   or the strain relief, which is a 

tolerance on which to act. Another method is to turn 

constraints  into  fitness,  which  increases  the 

complexity in terms of calculations, makes the PF size 

grow,  and  fosters  the  emergence  of  random  or 

uninteresting solutions. 

Best  results  are  obtained  when a  certain  amount  of 

inconsistency is tolerated within the population, which 

does  not  disturb  too  much  the  evolution.  It  often 

achieves  to  reduce  the  inconsistency  rate  by 

introducing a fitness penalty function z. 

A good way to deal with this problem is to integrate 

the  consistency  notion  within  the  dominance 

relationship  (Deb,  2011),  conducting  selection 

tournaments based on fitness or on the minimization 

of the inconsistency. An even recent method redefines 

the  dominance  relation  with  constraint-dominance 

(Coello,  2007).  With  MOGLS,  since  it  does  not 

directly  convoke  a  dominance  function,  we  use  the 

current  scalar  function  f(x)  defined  by  the 

Tchebytcheff norm in order to penalize the fitness (4) 

during the selection step (in maximization) : 

f z (x)= f (x)if z (x)=0,else min( f )−z (x)  (4)

ORIGINAL DEVELOPMENT OF AN IGA

The  MOGLS-based  method  adapted  by  Carpentier 

was chosen  in  preference  to  Quiroz  NSGA-II-based 

method. It is somewhat simpler to implement, allows 

natural implementation of ACROMUSE and provides 

more flexibility to manage a research effort from the 

user's choices in interactive mode.

Our contribution is threefold : MOGLS hybridization 

with  ACROMUSE,  extension  of  ACROMUSE 

capabilities  to  the  multiobjective  case  (already 

favoured by MOGLS) with significant improvements 

in  its  operation,  and  finally  development  of  a 

pheromone learning technique in interactive mode. 

Components. The  algorithm  that  we  designed 

consists  of  five  modules :  Jaszkiewicz  MOGLS-

(μ + λ)-ES  (amended  by  Carpentier),  ACROMUSE, 

PADE, a pheromone IGA and a constraint satisfaction 

one  (Figure  2).  The  IGA  pheromone  is  our  largest 

contribution,  but  some  module  arrangements  and 

substantial improvements are also part of it.

Genomic structure. The genetic coding assumes that 

all CV units are indexed. Each index is allocated : a 

“form gene” which is a binary occupancy index (0 or 

1)  and  a  “function  gene”  (1 = office,  2 = activities, 

3 = housing,  4 = annex  space).  Other  genes  encode 

facade  properties.  Such  a  structure  preserves  the 

genetic  patterns  and  topological  consistency  when 

applying variation operators. Crossover and mutations 

(swap,  insertion,  deletion,  random  shift) affect  the 

same locations along the chromosomes, so the result is 

still  inside the CV.  Since ACROMUSE is based on 

genetic  diversity,  we  choose  a  representation  in 

several  chromosomes  (here,  two  chromosomes  for 

genes form and function). This also allows to separate 

the shape evolution from the functions evolution and 

clarify the design of mutation operators. 

Populations. The GA manages three populations : the 

current one (P), the local Pareto front (non-dominated 

elites  of  the run) and the global  Pareto front  (elites 

collected  on  all  runs  based  on  the  same  set  of 

parameters). The initial population is created pseudo- 

consistent regarding to the programmatic constraint. It 

can  also  be  locked  to  the  global  Pareto  front,  for 

advanced optimizations from previous best solutions. 

Our approach is not to calculate the optimal solutions 

in  a  large  number  of  runs,  as  it  is  performed  in 

(Hamdy et  al.,  2012).  Instead,  we focus on a broad 

exploration of the Pareto front during each run (thanks 

to ACROMUSE), where important decisions are made 

by the architect during interaction.

Population  Size.  In  a  GA  based  on  a  mesh 

representation of size N, (Cerf, 1994) showed that the 

size of the population P varies substantially linearly 

with N (number of genes). Thereby, P varies from 50 

to 300 individuals in our experiments.

Constraints. A  programmatic  constraint  deals  with 

the volume or surface-to-build specification, together 

with a possible tolerance. To resolve this, we define 

the  penalty  function  z used  in  formula  (4)  as  the 

difference  between  the  imposed  surface  and  its 

measured value for a solution. A “form” constraint is 

also treated in interactive mode (see §IGA).

ACROMUSE

Multiobjective extension. In order to use Acromuse 

in multi-objective mode, we have replaced its single 

fitness by the scalar function of MOGLS, with some 

minor adjustments.

Selection. Although the binary tournament (T = 2) has 

been shown to be the best for Jaszkiewicz MOGLS, 

this is not true for the MOGLS-(μ+λ)-ES without local 

search and ACROMUSE hybridization.  T individuals 

are  still  randomly  taken  from  the  population,  with 

replacement, but the best is selected according to its 

hpd contribution.  Crossover  and  mutation  operators 

are then applied to the candidates from the pool, and 

new  individuals  are  integrated  into  the  current 

population. In  all  our tests,  the size of  the breeding 

pool was set to 50 in order to avoid high computation 

time per iteration. We also worked on the best settings 

for  the  parameter  k involved  in  Acromuse  selection 

pressure  formula  | P | / k,  through  many  tests.  This 

setting does not really seem to be problem dependent.

Crossover  and  mutation.  We  obtain  good  results 

with the uniform crossover (random but aligned genes 

inversion  on  parent  chromosomes),  the  multipoint 

mutation,  and  with  the  form  and  function  genes 
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mutated and cross-overed separately.

We have shown that the SPD/HPD measures should 

be made after the reduction step (fig. 2), a point not 

clearly specified by McGinley in his paper. We have 

also  proved  it  is  better,  in  order  to  accelerate  the 

convergence, to use dynamic values of SPD_max and 

HPD_max, updated at each iteration according to their 

highest  values  on the run.  These two improvements 

lead to faster convergence to the Pareto frontier. 

Figure 2 IGA framework

Regardless  of the Deb technique (4) implementation 

to adapt the inconsistency fitness, the GA should be 

able to adjust its mutation rates to limit the number of 

highly  inconsistent  solutions  that  penalize  the 

population evolution and slow convergence. 

Certainly,  increasing tolerance reduces  inconsistency 

and allows faster convergence, but this is not the right 

way.  When  mutations  promote  too  much 

inconsistency (e.g.  gene form), an adaptive decrease 

of  insertion / deletion  mutation  rate  is  operated  in 

favour  of  an  increase  of  the  swap  mutation  rate 

(figure 2 : dynamic Pm ).

Replacement. The replacement  step  invokes  PADE 

algorithm  in  a  way  close  to  the  method  used  in 

(Carpentier,  2008). But  the  withdrawal  is  made  by 

randomly removing in a grid-box of maximum density 

an individual with lowest  hpd  (instead of the current 

scalar function). We begin by first applying PADE to 

the Pareto front if its size exceeds a fixed threshold 

currently equal to 40% of | P |. Then, we consider the 

non-Pareto  population.  Either  we iteratively  remove 

the least consistent solutions to return to the desired 

population size, or the number of solutions of minimal 

consistency  always  exceeds  the  size  limit,  and  the 

population is PADE-reduced.

Fitness functions. EcCoGen currently deals with up 

to  five  fitness fast-computed  with  reduced  models 

within  Rhinoceros/Grasshopper  software :  1-low 

winter  consumption,  2-high  compactness,  3-low 

shadow  casting  on  the  neighborhood,  4-summer 

thermal comfort, 5-luminous comfort. Figure 3 shows 

an evaluation of fitness (1,2,3).

IGA. A good IGA must let a population evolve while 

resembling to a space of solutions chosen by the user 

during  the  run,  even  without  knowing  his  motives 

(implicit  learning).  It  is  well  known  that  the  shape 

criterion is essential for an architect. So we use it in 

conjunction  with  the  performance  measured  by  the 

fitness  to  establish  research  directions  in  the 

privileged landscape solutions.  This can be achieved 

quite simply by providing the stochastic  distribution 

of induced {λ'} with pheromone markers M(λ). 

Recall that in nature, ants move and direct depositing 

pheromones  (volatile  olfactory  substances  that  play 

the role of collective memory). This concept forms the 

basis  of  the  ACO  meta-heuristic  (Ant  Colony 

Optimization), applied in combinatorial optimization, 

using pheromone tracks to mark elements promoting 

the best solutions (Angus et al., 2009). 

We  have  adopted  the  following  principle :  when  a 

solution  is  chosen  by the  user,  it  is  stored  with  its 

induced  {λ'}  and  associated  form  in  a  distribution 

space E. We define a function Resemblance(λ) which 

compares the occupancy genes of a solution CV with 

those  of  the  form associated  with  {λ'}.  The overall 

similarity is nothing more than the sum over E of the 

product M(λ). Resemblance(λ).

During each IGA iteration, a single pair (λ, form) is 

selected in E (as in ACO) with a random stochastic 

roulette  based  on  markers  M.  Then,  we let  the  GA 

follow its normal process,  but we manage to satisfy 

the overall similarity constraint. To do this effectively, 

we define an “ad-hoc” variation operator that directly 

provides  consistent  solutions,  that  is  to  say  whose 

overall similarity is at least equal to the threshold of 

72%.  Our  tests  show that  below this  threshold,  the 

similarity is lost quite quickly in the next generations.

The interface displays this global similarity index for 

each elite,  which can help the architect  making new 

relevant choices. Indeed, if the set of similarity indices 

displayed during several successive iterations is bad, it 

tells the user that the choices are not consistent with 

the  previous,  which  can  there  again  help to  change 

selections.  Finally,  the  user  may  convoke  an 

additional  pheromone  track  for  function  genes,  in 

order  to  force  the  GA  considering  more  precise 

functional choices in addition to the form preferences.
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The  pheromone  award  is  based  on  the  choices 

repetition  in  E  and  not  on  performance  (which  the 

weight  {λ}  already  takes  into  account).  This  takes 

place at the end of each iteration, then markers M are 

updated by applying the evaporation mechanism (5), 

whose rate ε varies from 0.05 to 0.1 :

M =M (1– ε) (5)

This mechanism strengthens repeated user choices and 

all solutions that are close ; it lowers the influence of 

old choices. When the IGA mode is not activated, the 

markers are useless and just undergo evaporation.

Figure 3 Fitness evaluation within Rhinoceros

Conception of an intuitive GUI

The Graphical  User  Interface,  developed  by  Renato 

Saleri (MAP-ARIA) is organised in two screens. The 

main  one  allows  the  elite  population  visualization, 

while  the  second  one  zooms  in  the  phenotype 

representation.  The  first  screen  is  divided  in  three 

main parts (Figure  4) :  the current  elites population, 

the selected individuals collection and the algorithm 

preferences  composed  of  evaluation  parameters, 

constraints values and evolution monitoring.

The architect has the possibility to select one or more 

individuals and to keep them available for subsequent 

manipulations.  These  selected  solutions  constitute  a 

collection. At any time during the IGA process,  the 

architect  can  export  them or  inject  them  inside  the 

evolutionary loop in order to redirect the optimization, 

to re-balance the Pareto front by favoring these new 

entering. 

The  zoom  window  displays  the  phenotype 

representation integrated inside the urban context ; it 

is possible to manipulate the 3D model in rotation / 

scale  and  to  display  the  performance  outlines 

(Figure 5).  These  kind  of  information  allow both  a 

subjective interpretation and an access to an objective 

knowledge, the relative and the absolute performance 

of the analogon.

The GUI easily allows to control the evolution of the 

genetic process and its numerous options. It operates 

on three populations :

● the current population P, viewable on demand, 

● the  selection  S  of  “heart-favoured”  solutions,  of 

small  size  (12  squares  on  right  column) :  this  is  a 

privileged elites population,

● the global Pareto front of all runs started with the 

same parameters, viewable and linkable on demand.

Every  K  iterations  (K  being  tuned  to  reduce  the 

waiting  time  of  the  user),  the  interface  displays  a 

subset  A of  nine  elite  solutions  of  the  local  Pareto 

front, distinct (if possible) and diverse. 

Figure 4 Main screen with elite and privileged  

population visualisation and GA monitoring.

With  a  simple  “drag  and  drop”,  elites  can  be 

transferred from A or F to S (preferential memory), or 

from S to E (hybridization, recovery).  Once the user 

selects one or more solutions among A and S elites, 

the process switches to IGA mode, and the algorithm 

operates  in  the  {λ'}  distribution  induced  by  the 

multiple choices stored in E and the formal similarity 

space. It is possible to reverse the process, when the 

users  encounters  a  deadlock  (no  more  interesting 

proposals for several  iterations), or when there is no 

more  possible  optimization  (a  GA  which  has 

converged has virtually no chance to diversify ! Even 

with  MOGLS hybridized by ACROMUSE after a few 

hundred  iterations).  The  process  being  deterministic 

(it depends on a seed stored with each run), a “restart” 

button  enables  to  start  again  with  the  same  initial 

population (same seed and settings). You can also use 

the  “reset”  button  to  start  with  a  different  initial 

population (new seed) and change the settings.

Each solution is legended (Figure 4) by :

● a series of scaled color squares for the visualization 

of its fitness values relative to the best ones obtained 

from  the  beginning  of  the  run  for  all  consistent 

solutions,

● a  color  indicator  of  similarity / consistency  with 

previous IGA choices to visualize at a glance the local 

or global relevance of solutions,

● its age (the iteration index which generated it).

Finally,  the  user  can  continuously  monitor  the 

evolution progress through a dual graph displaying a 

mix  of  SPD / HPD  values  and  a  “generational 

distance”  showing  the  local  PF  improvement  (Deb, 

2011).  The latter is  based on a comparison between 
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two successive PF in the fitness space, which just sum 

the Euclidean distances between the closest elements 

in both fronts. This measure is robust : it works even if 

the fronts are of different sizes.

RESULTS AND DISCUSSION

Figure  6  shows  an output  of  the  evaluation  and 

classification of potential solutions through a real time 

comparison of the whole building’s energy rating, its 

shading impact  in  the  urban  fabric  and  its  compact 

shape.  The  program  is  built  on  two  floors  with  an 

imposed  constructive  area  of  2520m2 and  a  240m2 

tolerance.  The  user  has  selected  four  preferences 

during the first IGA generations (right-up), and figure 

6  displays  34  well  diversified  individuals  obtained 

from the local Pareto set after 300 iterations (which is 

a minimum required for correct convergence).

Figure 5 Interaction and performance visualisation.

It is difficult to compare our algorithm (complex by its 

modular  nature and the ACROMUSE add-on which 

operates as a good explorer tool) with other existing 

GA. However, a case study is still conducted and will 

be published in a peer reviewed journal. Preliminary 

results show that  evolution can be oriented in  more 

varied ways than usual techniques like the NSGA-II 

implementation of Quiroz, with slower convergence.

It is undeniable that ACROMUSE integration and the 

improvements  that  we  have  made  are  a  strong 

progress in this work oriented towards creativity and 

performance,  with  a  good  ability  to  optimize  in 

diversity.  This has been thoroughly tested in single-

objective and multi-objective modes.

Our IGA module, meanwhile, also benefits from this 

diversity, although it is oriented by the user in “niche 

preferences”.  An  intensive  study  questioning  if  the 

architect's  creativity  is  enhanced  by  EcCoGen  has 

been  carried  out  by  our  partner  Codysant-Interpsy 

from  French  Lorraine  University 

(http://www.aria.archi.fr/blog/wp-

content/uploads/2013/04/Evaluation-Creativite-

EcCoGen.pdf).  It  confirms  from  the  first  user 

feedbacks the software potential to assist the decision-

making processes of the designers, preserving at  the 

same  time  their  creativity. Partly  because  the  GUI 

allows to focus on the design without worrying about 

the model source code, the architect  can interactively 

design building forms being more aware of the energy 

performance features and their impact on the energy 

consumption of the final building. We also observed 

that the genetic algorithm enriches the variety of the 

environmental-friendly solutions (Figure 6).

Figure 6 Example of Pareto front from an IGA 

optimization on 3 energy fitness

CONCLUSION

In this project,  we have developed a multi-objective 

and  interactive  genetic  algorithm  which  meets 

important  requirements :  diversity,  performance  and 

adaptation to an architect's  subjective choices in the 

sketching or design stages. The case study was based 

on three fitness related to the minimization of energy 

consumption,  but  not  yet  incorporated  the  comfort 

parameters or embodied energy.

From the evolutionary point of view, it is rare that an 

initial shape optimization leads to a qualitative jump 

when morphogenesis  was  not  designed  to do  so.  A 

promising line of research is the “proteome concept” 

(Lefort-Mathivet, 2007), which consists in separating 

the  evolutionary  process  into  three  areas,  as  in 

biology :  genes,  proteins  and  protein  products.  This 

could  be  applied  to  a  building  as  follows :  proteins 

represent materials, assemblies, methods, construction 

rules or architectural techniques ; while an  intelligent 

genes  selection  encode  these  proteins,  and 

qualitatively new solutions can emerge from the GA 
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behaviour through the intermediary of the proteome.

From  the  interaction  point  of  view,  the  ability  to 

manually  change  the  phenotype  of  a  solution  (e.g. 

blocking positions in CV) is desirable but has not yet 

been addressed in our IGA.

Finally,  we  have  tried  to  increase  the  convergence 

speed without sacrificing the diversity needed to foster 

creativity.  This  delicate  issue  should  be  further 

investigated,  although the  use  of  highly  parallelized 

GPU makes it possible to significantly accelerate the 

most  consuming  step  of  a  GA :  fitness  evaluation. 

Depending on the case, (Master et al., 2009) speak of 

impressive factors ranging from 7 to 1000.
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