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ABSTRACT 
The present contribution describes an approach to 
implement simulation-powered virtual sensors in a 
building information framework. Measurements from 
physical sensors are used to calibrate simulation 
models. Subsequently, virtual sensors can derive 
information on parameters that are either difficult or 
expensive to measure. The presented building data 
service provides a uniform interface to virtual and 
physical sensors. 

INTRODUCTION 
Previous research and development efforts by the 
authors and other groups have shown the potential 
benefits that could result from the integrated and 
concurrent analysis of multiple data streams in 
buildings (energy use, indoor climate, etc.). For 
instance, within the framework of a recent research 
effort (MOST 2012, Zach 2012), we conceived and 
implemented a vendor and technology independent 
toolkit for building monitoring, data processing, and 
visualization. This monitoring toolkit provides a set 
of versatile preprocessing algorithms (e.g., to 
generate temporally structured data sets), offers 
interfaces for batch processing (MySQL 2012, OPC 
UA 2012, RESTful web service, etc.) and includes 
applications for data aggregation, display, 
visualization, and analysis (e.g., temperature 
distribution maps, psychrometric charts, thermal 
comfort plots, data encapsulation and export, etc.). 
The overall toolkit is implemented as open-source 
and available at http://most.bpi.tuwien.ac.at. 
Experiences in this project have compelled us to 
further explore and implement the concept of run-
time simulation-powered virtual sensors. Due to 
various reasons pertaining to technical constraints 
and cost considerations, there are limits to the 
deployment of real sensors in view their numbers, 
types, quality, locations, accessibility, connectivity, 
etc. Simulation, if reliably and effectively 
incorporated, can not only expand the reach of real 
sensors by creating additional virtual sensors, but 
could also support the pervasive and continuous 
monitoring of compound performance criteria (such 
as visual glare indices or various measures of thermal 
comfort) that could be otherwise monitored – if at all 
– under unreasonable costs. 

APPROACH AND OVERVIEW 
In the present paper, we first describe a general 
solution for the incorporation of such simulation-
powered virtual sensors in the general architecture of 
a vendor and technology independent monitoring 
system. Thereby we outline the required underlying 
abstractions and techniques. Moreover, we 
demonstrate how, by integrating virtual sensors into 
the proposed building monitoring solution, 
processing applications (visualization, fault 
detection, predictive building systems control, etc.) 
can access diverse building related data in a uniform 
way. For the purposes of this demonstration, we 
show two prototypical implementations of virtual 
sensors. 

BUILDING DATA SERVICE 
The aforementioned building monitoring system 
consists of a number of software services, which 
enable the user to request desired building 
information. The general system structure is shown 
in Figure 1. The connector service collects data from 
diverse building systems or other data sources (e.g. 
personal feedback). The storage service provides 
historical data access to pure measurements. 
Information about the sensor location, measurement 
unit, accuracy, etc. is covered within the Building 
Information Model (BIM) service. The model 
calibration service periodically calibrates desired 
building simulation models (e.g. EnergyPlus 2012, 
Radiance 2012, etc.) based on monitored data (see 
Tahmasebi and Mahdavi 2012). The simulation 
service abstracts different simulation tools to a 
uniform interface. The building data service provides 
a uniform interface to all underlying data sources. It 
implements diverse software communication 
standards (e.g. OBIX 2012, OPC UA, RESTful Web 
Service, GWT-RPC 2012, etc.) to support a wide 
range of possible data processing applications. 
Provided software interfaces enable application to 
batch process building data in real-time. Prototypical 
applications are shown in Zach et al. 2012a (e.g., 
Webinterface, MATLAB Framework, etc.). The 
presented services are implemented as maven 
modules. Internal communication is based on Java-
RMI 2012.  
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Figure 1. General structure of the proposed building monitoring system 

 
The building data service contains so called virtual 
datapoints, which enable aggregation of real 
measurements to the desired information. They are 
used to obtain information that is not directly 
measured. The proposed implementation represents 
all information points with the abstract class 
Datapoint. Figure 2 shows a class diagram of how 
this datapoints can be accessed within the 
framework. Two distinct implementations of the 
class Datapoint are available (DpPhysical and 
DpVirtualXXX). The class DpPhysical represents 
real sensors and actors of a building and 
reads/writes directly to the storage service. Virtual 
datapoints are named with the prefix “DpVirtual”. 
To add a new virtual datapoint, the abstract class 
DpVirtualFactory must be implemented and 
registered to the Java Service Loader (by using the 
text file META-INF/services/bpi.most.server. 
DpVirtualFactory). Each implementation of a 
virtual datapoint has to provide a unique identifier 
(String ID).  It needs to return an instance of the 
desired Datapoint implementation with the method 
getVirtualDp(String uniqueString). On request, the 
DpController searches for the respective 
implementation and returns the desired instance. 
Generic virtual datapoints are provided within the 
framework (see Zach 2012). Virtual datapoints can 
implement any kind of data processing 
functionality. Tests of prototypical implementations 
have been conducted with rule/formula based and 
simulation based virtual datapoints. For example, 
the formula based virtual datapoint 
DpVirtualRadiatorHeatPower calculates the heat 
power of a radiator based on the mean temperature 
and the standard heat output of the radiator together 

with the room temperature of the respective zone. 
The calculation is based on the K values described 
in DIN 1994. The simulation based virtual 
datapoint DpVirtualRadiance is currently under 
development. It calculates the visual conditions at 
any location (e.g. desktop) via Radiance. Each 
luminaire is modelled in the simulation model as an 
individual light source. The building data service 
provides state information (light on/off) for each 
luminaire. Given a request for data, all luminaire 
states within the simulation model are replaced with 
the associated values provided by the monitoring 
system. The sky model is generated based on the 
weather station measurements (irradiance data). 
Finally, Radiance is executed and the output is 
parsed and returned. In the current setup, all 
electrical lighting circuits are captured via the 
monitoring system. In practice, the state of 
luminaires may be generated in terms of another 
virtual datapoint, which could use occupancy (or 
other correlating factors) to make a pertinent 
assumption. Future developments will also include 
a sky scanner to generate a more detailed sky 
model. 
Caching 
To improve the performance of virtual datapoints, 
caching strategies can be applied. For example, the 
calculated values of a desired request can be stored 
using the storage service. The virtual datapoint 
checks on the next request if previous calculated 
values exist. New calculations are only executed for 
new requests. This strategy can significantly 
improve the performance while enabling virtual 
datapoints to include any calculation/simulation to 
retrieve the desired information. 
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Figure 2. Class diagram of the virtual datapoint implementation 

 
Depending on the amount of data supported by the 
storage service, different caching strategies may be 
appropriate. From the user's point of view, the same 
mode of access (abstract class Datapoint) can be 
applied to both physical (sensor-based) and virtual 
datapoints. The functionality provided by virtual 
datapoints enables the reduction of the vast amount 
of measured data in buildings to the information 
required. By using the data preprocessing 
functionality of the proposed storage service, 
information processing is accelerated. For example, 
the calculation of temporally structured data sets, 
e.g. hourly/weekly/monthly/etc. values, linked 
queries of energy use for specific time intervals and 
building zones under specific occupancy 
conditions, etc. are implemented within the storage 
service. This approach increases the performance 
and scalability of the overall system. 

DATA PREPROCESSING 
To simplify data analysis, powerful data 
preprocessing algorithm for data requests were 
developed. For example, window state information 
can be stored in a high-resolution fashion by saving 
timestamps marking the window opening and 
closing actions. Subsequent data processing 
applications may want to obtain this information in 
a periodic manner (e.g., hourly). Therefore, the 
preprocessing algorithm must deliver, for each 
discrete interval, either the value "open" or "close". 
This is achieved via appropriate reasoning 
depending on the use case of the processing 
application. For example, window may be declared 
open or close if a corresponding action took place 
in the respective interval. Alternatively, window 
may be declared open if it was open during most of 
the respective interval. To account for this and 
other data preprocessing challenges, a number of 

data preprocessing algorithms are implemented. 
Figure 3 to Figure 7 show examples of data 
requested with the method getValuesPeriodic(dp, 
start, end, period, mode) using different modes. 
Crosses mark stored measurements while circles 
show calculated return values. Dp is the id of the 
requested datapoint. Start and end define the 
requested timeframe. Period contains the desired 
interval in seconds. Mode enables data 
preprocessing with different algorithms. 
 
In mode 1, a linear interpolation and temporally 
weighted arithmetic average is used for calculating 
periodic values. If the requested period contains 
more than one measurement, the temporally 
weighted arithmetic average is calculated. If no 
measurement is available for the requested period, a 
linear interpolation to the next measurement is 
performed. Mode 2 uses sample & hold instead of 
linear interpolation. Mode 3 (majority/sample & 
hold) returns the majority of non zero (true) or zero 
(false) values if more than one measurement is 
available in the requested period. If no 
measurement is available, the last value of the 
previous period is returned. Mode 4 (dominating 
"0"/default "1") returns "0", if one or more 
measurements in the requested period are "0". If no 
measurement is available, the default value "1" is 
returned. Mode 5 (dominating "1"/default "0") 
works the same way, but swaps "0" and “1”. 
 
By using the proposed data preprocessing algorithm 
and virtual datapoints, processing applications can 
query desired information based on appropriate 
software interfaces and data structures in real-time. 
This enables the processing application to focus on 
the respective use case. 
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Figure 3. Data preprocessing - mode 1: time-weighted average / linear interpolation 

 
Figure 4. Data preprocessing - mode 2: time-weighted average / sample & hold 

 
 

 
 

Figure 5. Data preprocessing - mode 3: majority decision / sample & hold 

Figure 6. Data preprocessing - mode 4: forced 0 / default 1 

Figure 7. Data preprocessing - mode 5: forced 1 / default 0 
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STORAGE SERVICE 
The storage service covers historical data access to 
measurements. Zach et al. 2012b shows how 
relational databases can be used to store desired 
data. Benchmark tests are used to examine the 
limits of this approach. Due to constraints (e.g., 
MySQL partitions can only split up values based on 
one criteria) for adequate separation of 
measurements in appropriate (independently 
indexed) dimensions, inefficient memory usage 
may result with relation databases. For example, in 
the proposed database design, all datapoints within 
one partition (timeframe) are cached (indexed) the 
same way, even if they are never used. Reduced 
memory usage could be achieved by keeping only 
the currently relevant datapoints and timeframes in 
memory. To overcome this limits, NoSQL big table 
technologies are promising. By improving the 
scalability of the storage service, additional data 
from the caching feature of virtual datapoints can 
be processed more efficiently. 
 
The database schema discussed by Zach et al. 
2012b introduces datapoints to store physical and 
virtual sensor data. Each datapoint is related to an 
arbitrary number of measurements (1-n relation). 
The measurements are separated into partitions to 
fit certain use cases. Performance optimization 
efforts primarily focus on the data entity, because 
most traffic deals with reading and writing sensor 
measurements. This raised the question if the 
sensor measurements can be stored and maintained 
separately to allow the appliance of scaling and 
performance strategies on sensor data without 
affecting the entire database schema. NoSQL 
solutions offer mechanisms that seem more suited 
to store sensor measurements than relational 
database systems. These include the ability to scale 
horizontally over multiple servers, a weaker 
concurrency model than ACID (Atomicity, 
Consistency, Isolation, Durability), efficient use of 
indexes and memory for data storage, and the 
possibility to dynamically add new attributes to 
data records (Catell 2010). Our building sensor data 
does not need to be type secure, because record 
security is not an issue. Therefore, changing the 
schema at runtime (e.g. adding new attributes to 
data tuples) offers possibilities to simplify the data 
handling. For example, the current implementation 
allows one timestamp by measurement. If a value 
does not change over time it is not possible to 
update the record without deleting the existing one. 
A NoSQL solution offers the possibility to add 
multiple timestamps to a measurement record. To 
reuse the processing algorithm developed in the 
current database design and to keep the benefits of 
a relational database management system for non-
performance critical parts of the database schema, a 
mix of relation databases (MariaDB 2012) and 

NoSQL solutions (Cassandra 2012) is used. 
MariaDB is an open source replacement for 
MySQL that implements access to data stored in a 
NoSQL Cassandra cluster via the Cassandra 
Storage Engine (Cassandra SE, Figure 8).  
 

 
Figure 8: MariaDB/ Cassandra setup 

Cassandra organizes data in column families that 
can be seen as a counterpart to tables in a relational 
database schema. Cassandra provides a simple data 
model that supports dynamic control over data 
layout and format. It was designed to handle high 
write throughput, while not sacrificing read 
efficiency (Lakshman and Malik 2010). The 
relational table that holds the sensor measurements 
maps to a Cassandra cluster. Instead of containing 
measurements, the relational table represents a view 
of a column family. The Cassandra SE defines an 
interface to query and manipulate (insert, update, 
delete) data in a cluster via common SQL 
commands. 
 
The current implementation defines column 
families with a 36 sign long primary indexed key 
hash that references each row, a STRING 
referencing the datapoint name, a timestamp and a 
value record of type DOUBLE. The primary key 
determines which node the tuple is stored on. A 
secondary index is attached to the datapoint name 
column value to improve querying time by 
introducing a row cache. Whenever a certain 
datapoint name is called the entire record is pulled 
into memory and cached. Cache sizes are not set 
manually. Cassandra offers a possibility to weight 
cached data by access frequency and size 
automatically. The data is distributed across the 
nodes by using a MurMur3Partitioner. A 64-bit 
hashed value of the primary key (MurmurHash) is 
used to distribute the data evenly. The test wise 
implementation uses a replication factor of 1, which 
means that there is 1 copy of each data tuple on one 
node. 
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APPLICATION SCENARIOS 
Virtual sensors can be used to obtain desired 
information based on real measurements. Due to 
various reasons pertaining to technical constraints 
(e.g., limits to the deployment of real sensors) and 
cost considerations, only a limited number of 
sensors are installed in real world buildings. The 
proposed framework enables so called virtual 
datapoints to include any kind of virtual sensor. By 
providing a uniform interface to real world and 
virtual sensors, client applications can process all 
building data streams consistently and focus on the 
respective use case. Complexity of integrated 
simulation tools is hidden from the processing 
application. Different building monitoring setups 
can be processed the same way. 
 
If available sensors are not sufficient to calculate 
the requested information, additional devices can be 
added during the buildings lifecycle. Simulation 
powered virtual datapoints can use calibrated 
simulation models from the calibration service. If 
the accuracy of the simulation model is not 
sufficient, additional sensors can be installed to 
improve calibration. This approach allows 
collecting a rich data set with a minimum of 
installation costs. Virtual datapoints can also be 
used to calculate desired building performance 
indicators in real time. Figure 9 shows an overview 
of the proposed approach. 
 
 

In many realistic circumstances, it is not possible to 
install monitoring systems with full building 
coverage. To address this issue, the simulation 
model of virtual datapoints can be calibrated based 
on monitored data obtained from a selected subset 
of building zones. Assuming that the monitored 
area has similar characteristics as the non-
monitored area, virtual datapoints can be used for 
non-monitored areas based on the calibrated 
simulation model. 

DISCUSSION AND CONCLUSION 
The paper shows the usability of simulation-
powered virtual sensors in a building information 
framework. A calibration service is used to provide 
accurate simulation models based on the recent 
history. Virtual sensors can derive information on 
parameters that are either difficult or expensive to 
measure. The relational database setup will be 
tested against the introduced MariaDB/Cassandra 
solution. A series of performance tests (write, read, 
concurrent write and read) should show if the 
hybrid database approach offers an alternative to 
the existing setup an can be used in a heavy-load 
production environment to provide efficient access 
to virtual datapoints. 
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Figure 9. Building monitoring based on virtual datapoints 
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