
STRUCTURED BUILDING MODEL REDUCTION
TOWARD PARALLEL SIMULATION

Justin R. Dobbs and Brandon M. Hencey
Cornell University, Ithaca, NY

ABSTRACT

Building energy model reduction exchanges accuracy
for improved simulation speed by reducing the number
of dynamical equations. Parallel computing aims to im-
prove simulation times without loss of accuracy but is
poorly utilized by contemporary simulators and is inher-
ently limited by inter-processor communication. This pa-
per bridges these disparate techniques to implement ef-
ficient parallel building thermal simulation. We begin
with a survey of three structured reduction approaches
that compares their performance to a leading unstructured
method. We then use structured model reduction to find
thermal clusters in the building energy model and allo-
cate processing resources. Experimental results demon-
strate faster simulation and low error without any inter-
processor communication.

INTRODUCTION

Emerging software tools promise to streamline the ar-
chitectural process by bridging conceptual design to en-
ergy simulation. These tools save time by translating a
CAD model directly to a building energy model (BEM),
but they can lengthen simulation time by conveying in-
significant dynamics and redundant states to the BEM.
Meanwhile, simulators have not kept pace as computers
have become increasingly parallel. The result has been
excessive runtimes that discourage the use of simulation
in early-stage design.

Efforts to reduce simulation runtime have been based
on either model order reduction or parallel simulation.
Model reduction, historically a manual process requiring
experience and discretion, is poised to become accessi-
ble to more users through automation (Dobbs and Hencey
2012). Nonetheless, differences among various reduction
schemes make choosing the best method for a given sit-
uation difficult. Parallel simulation methods suffer from
startup or communication overhead or benefit certain sce-
narios that exclude real-world, nonlinear building energy
simulations.

Our contribution is two-fold. First, we begin with a sur-
vey of two broad classes of model reduction—structured
and unstructured—and detail three structured approaches:

state deletion, state aggregation, and structured balanced
truncation. Although all three are considered struc-
tured, their properties and applications differ consider-
ably. Removal of states from a physical state space (Pa-
pachristodoulou et al. 2010) is simple but gives poor
error performance. State aggregation applies narrowly
to resistor-capacitor thermal networks but offers insight
into the building’s thermal structure (Deng et al. 2010;
Dobbs and Hencey 2012). Structured balanced trunca-
tion reconfigures the state space under the constraint of an
externally-imposed macrostructure using an energy-based
stability analysis (Sandberg and Murray 2008).

Second, after comparing the performance of these
methods on a resistor-capacitor network, we present a par-
allel simulation scheme that uses structured model reduc-
tion in two ways. First, it uses state aggregation to ex-
tract the building’s thermal structure and then uses that
information to allocate processing resources. Second, it
invokes structured balanced truncation to create partial
reduced-order models that allow each processor to iter-
ate autonomously with an approximation of the others;
this circumvents the communication bottleneck. The dis-
cussion concludes by comparing the method’s speed and
error performance for various processor configurations
using a two-zone building model. Although the results
demonstrate performance worse than that of unstructured
balanced truncation, we view this work as a positive step
toward parallel simulation of real-world nonlinear build-
ing energy models.

MODEL REDUCTION BACKGROUND

Building models natively use physical quantities as
states, so it makes sense to classify model order reduction
methods by whether the results can be mapped back to the
object-oriented building energy model (BEM). Those that
make limited changes to the original state space and thus
preserve its physical integrity are termed structured. In
contrast, methods that preserve only input-output equiva-
lence while freely reconfiguring the states are called un-
structured. The widely used unstructured balanced trun-
cation algorithm offers good performance and analytical
error bounds, but the resulting state space is physically

Proceedings of BS2013:
13th Conference of International Building Performance Simulation Association, Chambéry, France, August 26-28

- 3769 -

unintuitive. Put another way, an unstructured method is
best used within a simulator as a one-way process just be-
fore simulation begins and not as a way to simplify the
source BEM. Structured methods preserve an intuitive re-
lationship to the input model, but this benefit comes at
the expense of model accuracy. We now discuss the de-
tails of three structured methods. The first two operate
directly on the physical state space, while the third em-
ploys balanced truncation bound to an externally imposed
clustering topology.

Greedy State Removal

This method removes less important states and replaces
references to them with steady-state values. Suppose
the building model has been converted to a linear time-
invariant system G = {A,B,C} with state equation ẋ =
Ax+ Bu and output y = Cx. The vector x contains the
state during simulation, the vector u is an input stream
(such as EnergyPlus weather data), and y is the output ob-
servation. For a building thermal model, the states are
physical quantities such as temperatures. Now suppose
the model contains large thermal capacitances plus a few
very small ones that have little influence on the overall re-
sponse. The dynamics of these states decay very quickly
and are of minimal importance, so we can remove them
from the model. If we group those states into a vector xc

and call the remaining states x̂, then the original system
state vector can be described by a concatenation of xc and
x̂ permuted to their original positions in the vector x us-

ing a boolean matrix T : x = T
[
x̂T xT

c

]T
. The system

matrices can then be rewritten in a partitioned form as

[
˙̂x

ẋc

]
=

[
Ā11 Ā12

Ā21 Ā22

]

︸ ︷︷ ︸
Ā

[
x̂

xc

]

︸︷︷︸
T−1x

+

[
B̄1

B̄2

]

︸︷︷ ︸
B̄

u, y =
[
C̄1 C̄2

]
︸ ︷︷ ︸

C̄

[
x̂

xc

]
,

(1)
and the permuted matrices of the full-order system are
given by

Ā = T−1AT, B̄ = T−1B, C̄ =CT. (2)

Because the states in xc decay quickly, we can set ẋc =
0 and replace references to those states with steady-state
relationships. The reduced-order system is then

Ĝ =

˙̂x =
(
Ā11− Ā12Ā−1

22 Ā21

)
︸ ︷︷ ︸

Â

x̂+
(
B̄1− Ā12Ā−1

22 B̄2

)
︸ ︷︷ ︸

B̂

u

y = C̄1x̂.
(3)

The above gives a reduced-order model when the states
to be eliminated are already known. Choosing the
best states to remove is computationally difficult, but
a more tractable sub-optimal solution is offered by Pa-

Algorithm 1 Greedy state removal (Papachristodoulou
et al. 2010)

1. Generate a linear state space model G from the BEM.
2. Initialize xc← /0, x̂← x .
3. Repeat n times:

(a) Initialize norms[]← /0.
(b) For each state x̂i ∈ x̂:

i. Create a temporary state vector x̂temp =
x̂\ x̂i that omits state x̂i. Create a reduced-
order system Ĝtemp using x̂temp.

ii. Create an error system E = G− Ĝ whose
output is the error introduced by removing
the state.

iii. Compute the observability Gramian, Q, of
the error system, for example using the
MATLAB function gram(). (Note that Q

in this context is not the same as the re-
duced transition matrix Q given by Equa-
tion 4.)

iv. Compute the eigenvalues of Q. Set

norms[i]← λ̄
1/2
Q , the square root of the

largest eigenvalue magnitude.

(c) Update x̂, removing the state corresponding
to the smallest norm: x̂ ← x̂ \ x̂k where k =
argmini norms[i].

(d) Add x̂k to the list of omitted states: xc← xc∪ x̂k.

pachristodoulou et al. (2010). Suppose we want to re-
move n states from the system, where n < dim(x). (With-
out an automated way to choose the degree of reduction,
the user must choose n by trial-and-error.) We then pro-
ceed as given in Algorithm 1, removing physical states
in increasing order of their impact on the simulation er-
ror. Because the state space was not transformed before
reduction, some physical intuition is preserved, and one
can delete corresponding BEM objects if a simpler BEM
is desired.

State Aggregation

Using aggregation on building thermal models has been
proposed by Deng et al. (2010). The method requires
that all states be combinable through a closed (heat-
conservative) resistor-capacitor network whose discrete-
time state transition matrix is analogous to a Markov
chain. The restriction to RC networks may appear to
limit the utility of aggregation, but recent work has shown
that state aggregation can reveal the thermal structure of
an object-oriented model if an appropriate RC network is
used (Dobbs and Hencey 2012). We will use this insight
later in the paper to realize parallel simulation. The ag-
gregation procedure is detailed in Algorithm 2.

Proceedings of BS2013:
13th Conference of International Building Performance Simulation Association, Chambéry, France, August 26-28

- 3770 -

Algorithm 2 Capacitor aggregation (Deng et al. 2010)

1. Generate a closed resistor-capacitor network from
the BEM.

2. Create one supernode (cluster) containing the entire
network: φ(k) = 1, k ∈N .

3. For each supernode j ∈M :

(a) Extract the continuous transition matrix A.
(b) Compute the modified discrete transition ma-

trix P̂ and its second eigenvector u2.
(c) Sort the components of vector u2 numerically.

Each component of u2 corresponds to a capaci-
tor in the cluster.

(d) Place all states to one side of the zero-crossing
in one cluster, and all others in another cluster.
(This divides the supernode into two pieces.)

(e) Check for disconnected subnetworks within the
new supernodes and further subdivide as neces-
sary to ensure full connectivity within each.

(f) Treating each supernode as the sum of its con-
stituents, compute the reduced-order transition
matrix Q followed by the Kullback-Leibler
(K. L.) distance between Q and the full-order
discrete-time transition matrix P.

4. If no supernodes can be divided, proceed to step 7.
5. Select the non-singleton supernode whose division

yields the lowest K. L. divergence.
6. Recurse on step 3.
7. Extract the reduced-order network (see below).

Improvements to the Method. For applications that
require a resistor-capacitor network, the equivalent resis-
tance computation scheme greatly impacts the quality of
the result. We have improved the accuracy of the equiva-
lent resistance calculation over the reference implementa-
tion of Deng et al. (2010). We start with the same reduced-
order discrete time transition matrix,

Qkl(φ) =
∑i∈φ−1), j∈φ−1(l) πiPi j

∑i∈φ−1(k) πi
k, l ∈M . (4)

The reference implementation approximates the
continuous-time reduced-order transition matrix Ā

using exp(At)≈ I +At, giving

Ākl(φ) =
∑i∈φ−1(k), j∈φ−1(l) πiAi j

∑i∈φ−1(k) πi
. (5)

The equivalent resistance matrix follows straightfor-
wardly from Ā. Make the partition function φ a boolean
matrix

φ jk =

{
1 Cj ∈ C̄k

0 otherwise
: ∑

k∈M

φ jk = 1, ∑
j∈N
k∈M

φ jk = N, (6)

5 10 5

10 1 1 10

10

11 11

18.3

11 11

(a)

(b) (c)

Figure 1: A case that highlights the different results be-
tween two equivalent resistance computation methods.

(a) Full-order system, with two clusters to reduce; (b)

Reduced-order system using the approximation in Deng
et al. (2010); (c) Reduced-order system using log(Q).

meaning φ jk = 1 when capacitor j is a member of the
supernode k. Because the capacitance of a supernode is
the sum of its members, each element of the reduced-
order capacitance vector is C̄k = (φTC)k. The continuous
transition matrix is Ā = diag(C̄)−1Ḡ; rearrange and use
C̄ = φTC to get

Ḡ = diag(φTC)Ā, R̄i j =

{
Ḡ−1

i j i $= j

0 i = j
. (7)

Equation 5 effectively ignores resistance within clusters,
thereby introducing error. Figure 1(a) depicts a case
where the error is significant: a chain with very large ca-
pacitors at the ends, small capacitors toward the center,
and a large resistance separating the clusters. The in-
fluence of the inner capacitors is small, so they can be
merged with the outer ones. Thus 20 resistance units sep-
arate most of the capacitance and we expect the equiva-
lent reduced-order resistance to be slightly less. The ap-
proximation of Equation 5 neglects the resistors within the
clusters, however, and yields an approximation of just 10
units, shown in (b).

A more accurate, if computationally more expensive,
approach is to take the matrix logarithm. The more ac-
curate transition rate matrix is Ā′ = log(Q)/τ, where the
time step τ = −λ−1

N−1(A) is the reciprocal of the smallest
magnitude non-zero eigenvalue of the full-order transition
matrix A. (Selecting τ this way ensures accurate transla-
tion of the dominant modes.) The conductance matrix Ḡ′

and more accurate resistance matrix R̄′ are then

Ḡ′ =
diag(φTC) logQ

τ
, R̄′i j =

(
Ḡ′i j

)−1
i $= j

0 i = j
. (8)

Returning to the special case of Figure 1(c), we see that
our method yields a reasonable equivalent resistance of

Proceedings of BS2013:
13th Conference of International Building Performance Simulation Association, Chambéry, France, August 26-28

- 3771 -

0 100 200 300 400 500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Reduced-order model size

W
ei

gh
te

d
R

M
S

er
ro

r (
°C

)

Figure 2: Simulation error for fifteen-room building using
approximation Equation 5 (!); using the more accurate

log(Q) of Equation 8 (·).

18.3 units. The difference is equally striking in more com-
plex cases. Figure 2 shows a 2:1 difference in simula-
tion error between the two resistance computation meth-
ods when applied to a fifteen-room, 454-state building
model using the EnergyPlus weather file for Elmira, NY.
The weighted root mean square error has been computed
using

EwRMS =
N

∑
k=1

CkEk

∑N
j=1 Cj

= Ekπk, (9)

where πk is the fraction of the system’s total thermal ca-
pacitance contained in node k, and Ek is the root mean
square temperature error for that node across a one-year
simulation. This weighting penalizes error in large ther-
mal masses more than smaller ones.

Structured Balanced Truncation

Block-structured reduction methods have been em-
ployed extensively for very-large-scale integration (VLSI)
circuit simulation to reduce subsystems internally while
preserving their interconnection topology (Odabasioglu,
Celik, and Pileggi 1997; Yu, He, and Tar 2005). We con-
sider a modified balanced truncation scheme by Sandberg
and Murray (2008) in which subsystem blocks are in-
ternally balanced and then truncated under assurance of
global system stability. The stability guarantee is particu-
larly important when models contain active elements such
as HVAC systems. For resistor-capacitor networks, the
hierarchical aggregation method presented in Deng et al.
(2010) yields a suitable clustering structure to frame the
operation.

The procedure begins with a special formulation of
the system model. Figure 3(a) depicts the linear frac-

tional transformation (LFT) layout in which each subsys-
tem cluster is disconnected from the others and modeled
as a stand-alone system within the lower block-diagonal
transfer function matrix G. An interconnection block N

connects the subsystems together using feedback. The
input-output characteristics of this model exactly match
a conventional realization, but the format allows a single
set of block-diagonal Gramians to be computed for the
entire system. In contrast to conventional unstructured
Gramians, which can be obtained by solving an explicit
equation, structured Gramians are found by solving linear
matrix inequalities (LMIs). The Hankel singular values
provide a specific order for states to be removed across
the entire model.

Figure 3(b) shows simulation error after structured bal-
anced truncation for a two-room, 43-state RC network.
The x axis is the number of clusters imposed on the sys-
tem. The y axis is the total size of the state space, or
the sum of all the subsystem sizes after reduction. The z

axis is a weighted sum of root mean square simulation er-
ror across all system nodes (Equation 9). Unsurprisingly,
the results show that low cluster counts achieve the low-
est simulation error; less structure is imposed on the LMI
solver. At very low cluster counts, the simulation error
approaches that of standard balanced truncation as shown
in Figure 4(").

We have modified the method of Sandberg and Mur-
ray (2008) to avoid deleting the last state in any cluster.
Otherwise, the removal of a cluster’s last state effectively
removes the cluster from existence and severs the thermal
communication among neighboring clusters. In the triv-
ial case (not shown in Figure 3(b)) where the number of
clusters equals the number of model states, this protection
prevents any reduction from taking place, because every
cluster is a singleton.

PERFORMANCE COMPARISON

Figure 4 compares the simulation error for the three
structured methods to unstructured balanced truncation.
We used a 43-state, two-room RC network model gener-
ated automatically from CAD data using physically real-
istic parameters. For each method, we reduced the model
incrementally, running a full year simulation at each step
using the EnergyPlus weather file for Elmira, NY.

Unstructured balanced truncation (") using the MAT-
LAB function reduce() yielded the lowest simulation er-
ror for the number of states. The greedy state deletion
algorithm (•) produced the largest error. Between these
extremes, structured balanced truncation, while not as ef-
fective as its unstructured counterpart, showed its best per-
formance at low cluster count (!). Higher cluster counts
increased simulation error (!). The cluster configura-
tions were obtained using hierarchical state aggregation
("), which as a standalone model reduction scheme per-

Proceedings of BS2013:
13th Conference of International Building Performance Simulation Association, Chambéry, France, August 26-28

- 3772 -

!

"!

#!

$!

%!
! "! #! $! %!

!

&

"!

"&

#!

'()*+,-./-01(23+,2
4353+-2650+-278+

9
+7
:;
3+
<-
=
>
4-
+,
,.
,-?
@A
-!
-"
!
$ B

G

N

Non-interacting
cluster subsystems

E

K

F

H

Interconnection
block

Ambient
conditions

Simulation
output

(a) (b)

Figure 3: Structured balanced truncation: Interconnection topology, showing the cluster subsystems G and the inter-

connection block N with feedback path emphasized (a); simulation error versus the total state space size and number of
clusters (b). Results are shown for a two-room 43-state model. Higher cluster count implies greater restriction on the

reduction. Best performance is achieved with less structure. (Plot is truncated at 20× 10−3 °C for clarity.)

0 10 20 30 40
0

5

10

15

20

State space size

W
ei

gh
te

d
RM

S
er

ro
r (

°C
 ×

 1
0

3)

Figure 4: Simulation error comparison for a two-room,

43-state model using unstructured balanced truncation
(#), structured balanced truncation with five clusters (!),

structured balanced truncation with twenty clusters ($),

capacitor aggregation ("), and greedy state deletion (•).

formed unimpressively. Clearly, better performance be-
comes possible as the need for a physically relevant state
space is relaxed.

PARALLEL PROCESSING

Simulation speed can be radically improved by using
parallel hardware more effectively, but communication
overhead limits the gains from adding more processors.

We can overcome this bottleneck by decomposing the
simulation into tasks that can iterate with little or no cross-
communication. Such decoupling may be implemented

1. within large matrix operations,
2. across time,
3. across methods, or
4. across the dynamical model.

Parallelizing linear algebra, as is done by readily available
libraries such as LaPACK, can boost the speed of single-
threaded simulators when large matrices are used. Unfor-
tunately, the use of large matrices runs counter to software
modularity and is ineffective in modular, nonlinear simu-
lation packages.

Decomposition across time, proposed by Garg et al.
(2011), splits the simulated period into N consecutive seg-
ments and simulates all segments simultaneously. It is
particularly appealing for boosting monolithic software
such as EnergyPlus using only an external wrapper. For
nonlinear simulations, the “warmup period” for comput-
ing the starting conditions approaches the actual simula-
tion period, yielding diminishing returns with large pro-
cessor counts. Transient dynamics are lost across time
slice boundaries due to the lack of communication among
jobs.

Decomposition across methods combines otherwise
disparate software components to work in lockstep (Ra-
dosevic, Hensen, and Wijsman 2006), encouraging mod-
ularity and data hiding in the software design. It is sen-
sitive to time step choice and, for large models, requires

Proceedings of BS2013:
13th Conference of International Building Performance Simulation Association, Chambéry, France, August 26-28

- 3773 -

Figure 5: Summary of parallel simulation process using
structured model reduction.

considerable data exchange at each iteration to maintain
stability. Cross-communication overhead ultimately lim-
its the benefit of this approach.

The above methods take into account properties of the
simulation input or algorithms but ignore the structure of
the building itself. Dividing the simulation across the
model is one way to account for building structure in al-
locating processors. It has been demonstrated with elec-
tric circuit simulation (Frohlich et al. 1998) but not for
building simulation in a way that accounts for thermal
interactions. Dividing the building along lines of weak-
est thermal interaction lessens the importance of frequent
iteration by reducing the error when communication is
skipped. To further reduce cross-communication, each
processor also hosts a reduced-order model of the others
so that it can iterate independently. The process of parti-
tioning the model, generating the reduced-order surrogate
models, and running the simulation is depicted in Figure
5.

The state aggregation algorithm described previously is
one way to partition the model to avoid cutting strong ther-
mal connections (Dobbs and Hencey 2012). To decom-
pose the model across M processors, one may terminate
the recursive division when M clusters have been found.
Each processor is assigned one of the clusters to simulate
at full fidelity. The remaining clusters are merged and re-
duced using structured balanced truncation, and iterating
with this reduced-order surrogate model takes the place
of iterating with the rest of the system. If the total sys-
tem size is N states, each processor simulates N/M states
plus the reduced-order approximation of the other proces-
sors. In this implementation, all models are linear and
time-invariant; we view this as an early step toward paral-
lelizing real-world, nonlinear simulations.

Discussion of Results

We have implemented a parallel simulation of the two-
room, 43-state building model RC network on two, four,
and eight processors, varying the size of the surrogate ex-
ternal models across the admissible range. The Energy-
Plus weather file for Elmira, NY has been used for in-
put. Figure 6 shows how states are allocated in the case
of two (◦), four ("), and eight (!) processors, and Figure
7 shows simulation error and runtime for those config-
urations. In the transition from two to four processors,
the portion of the model assigned to processor #1 (top
left) has stronger internal thermal coupling than that run-
ning on processor #2 (top right) and therefore is left alone
while states from processor #2 are reallocated to the two
additional processors. The number of full-fidelity states
on the most heavily loaded processor determines the max-
imum potential simulation speed; in the transition from
two to four processors, processor #1 sheds very few states,
so the speed gain is only slight. The situation improves
substantially with eight processors because the resulting
state distribution is more uniform. (A processor running
a smaller full-order cluster may run a more complex sur-
rogate model while maintaining the same total load—and
the same execution time—as the others.) Simulation error
from unstructured balanced truncation (#) and state aggre-
gation (") on a single processor are shown for compari-
son. Although balanced truncation yields superior perfor-
mance in this example, the salient feature of our paral-
lel simulation method is its ability to scale with minimal
inter-processor communication—an important feature for
computer clusters, for example, where communication is
expensive.

CONCLUSION

This paper has compared four model reduction meth-
ods to examine the tradeoff between structure preservation
and simulation accuracy. The results reinforce the well-
known result that unstructured methods yield the best per-

Proceedings of BS2013:
13th Conference of International Building Performance Simulation Association, Chambéry, France, August 26-28

- 3774 -

0

10

20

30

40

0

10

20

30

40

0

10

20

30

40
St
at
es

St
at
es

St
at
es

Processors1 8

(!)

(!)

(◦)

28

27

Figure 6: Processor load configuration for 43-state model
using two (◦), four ("), and eight (!) processors. The

solid bars are unreduced states. The upper portion of

each bar is the surrogate model of the other proces-
sors. The total number of states on the processors can

be varied across the indicated range (#), where more

states yields more accurate reduced-order surrogate mod-
els but a slower simulation. The processor load thresholds

(dashed) correspond to the dashed error threshold in Fig-
ure 7.

formance. Model reduction does not in itself address
the poor hardware utilization of contemporary simula-
tors. To that end, we have combined two structured reduc-
tion methods into a parallel simulation strategy that allo-
cates processor resources based on thermal structure. The
proposed scheme demonstrates good performance with-

!""" !#"" $""" $#"" %""" %#""
"

!

$

%

&

#

'()*+,*-+.()/012(34+5).6

7
*(
89
2*
:+
;<

=+
*-
-3
-+5
>?
+!
+!
"
% 6

Figure 7: Simulation error vs. run time for 43-state model
using two (◦), four ("), and eight (!) processors. The

dashed line is placed just above the knee in the simulation
error and corresponds to the dashed CPU load levels in

Figure 6. Single-threaded simulations of reduced models

using aggregation (") and unstructured balanced trunca-
tion ($) are shown for comparison.

out any cross-processor communication but would bene-
fit from more equal processor loading; in certain cases,
an entire processor may be assigned to simulate just one
model state for only a slight performance benefit. Dis-
tributing states more evenly across processors while still
respecting thermal clustering is an obvious area for im-
provement. Furthermore, although a larger model would
have been more illustrative, our attempts to reduce a more
complex (454-state) building model with structured bal-
anced truncation were foiled when each of two popular
linear matrix inequality solvers exhausted all available
computer memory. Addressing computational inefficien-
cies within the reduction methods themselves, for exam-
ple by avoiding computationally intractable LMIs, is a
worthy direction for future research.

References

Deng, Kun, Prabir Barooah, Prashant G. Mehta, and
Sean P. Meyn. 2010. “Building thermal model re-
duction via aggregation of states.” American Control
Conference. IEEE, 5118–5123.

Dobbs, Justin R., and Brandon M. Hencey. 2012. “Au-
tomatic model reduction in architecture: a window
into building thermal structure.” Proceedings of the

SimBuild, 5th National Conference of IBPSA-USA,
Madison, WI. IBPSA.

Frohlich, N., B.M. Riess, U.A. Wever, and Q. Zheng.
1998. “A new approach for parallel simulation of
VLSI circuits on a transistor level.” Circuits and Sys-

tems I: Fundamental Theory and Applications, IEEE
Transactions on 45 (6): 601–613.

Proceedings of BS2013:
13th Conference of International Building Performance Simulation Association, Chambéry, France, August 26-28

- 3775 -

Garg, Vishal, Kshitij Chandrasen, Jyotirmay Mathur,
Surekha Tetali, and Akshey Jawa. 2011. “Devel-
opment and performance evaluation of a methodol-
ogy, based on distributed computing, for speeding
EnergyPlus simulation.” Journal of Building Perfor-
mance Simulation 4 (3): 257–270.

Odabasioglu, A., M. Celik, and L.T. Pileggi. 1997.
“PRIMA: Passive reduced-order interconnect macro-
modeling algorithm.” Proceedings of the 1997

IEEE/ACM international conference on Computer-

aided design. IEEE Computer Society, 58–65.

Papachristodoulou, A., Y.C. Chang, E. August, and
J. Anderson. 2010. “Structured model reduction for
dynamical networked systems.” Decision and Con-
trol (CDC), 2010 49th IEEE Conference on. IEEE,
2670–2675.

Radosevic, M. Trcka, J. L.M. Hensen, and A. J.Th.M.
Wijsman. 2006. “Distributed building performance
simulation—a novel approach to overcome legacy
code limitations.” HVAC&R Research 12 (sup1):
621–640.

Sandberg, H., and R.M. Murray. 2008. “Model re-
duction of interconnected linear systems using struc-
tured gramians.” Proceedings of the 17th IFAC World

Congress. 8725–8730.

Yu, H., L. He, and SXD Tar. 2005. “Block structure
preserving model order reduction.” Behavioral Mod-
eling and Simulation Workshop, 2005. BMAS 2005.

Proceedings of the 2005 IEEE International. IEEE,
1–6.

Proceedings of BS2013:
13th Conference of International Building Performance Simulation Association, Chambéry, France, August 26-28

- 3776 -

