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ABSTRACT 
We propose a methodology for determining internal 
heat gains in workspace for peak cooling/heating 
load calculations. First, we collected measurement 
data of the lighting and plug loads in workspaces in 
Japan and analyzed these data. The investigation 
results show that internal heat gains remain relatively 
flat during work hours for each space, but their 
magnitudes vary considerably from space to space. 
Time-averaged heat gains during work hours 
conform to a lognormal distribution if those spaces 
are approximately the same size in floor area. Next, 
we present a methodology to determine the value of 
heat gains at specified frequencies of occurrence for 
each space. We present detailed procedures to 
calculate the probabilistic distributions with the 
Markov chain Monte Carlo method in conjunction 
with the Bayesian approach and analyze the 
calculation results by using the measured data. 
Finally, we discuss the applicability of the proposed 
stochastic approach. 

INTRODUCTION 
Peak load calculations are carried out to determine 
the capacity of air handling units, pumps, chillers, 
and every other component of an HVAC system. 
Climate conditions and internal heat gains are major 
uncertainty factors that affect the peak load. Usually, 
individual countries prepare peak design weather 
data that occur at a specific frequency. Peak internal 
heat gains, in contrast, are commonly presented as 
deterministic value, and seldom defined according to 
their stochastic nature. 
For example, 2009 ASHRAE Handbook - 
Fundamentals, lists recommended load factors for 
several load density such as “Light” or “Medium” in 
deterministic way (e.g., 10.8 W/m2 for “Medium” 
density). Wilkins, 1998 measured electric power for 
each piece of equipment as well as the total plug load 
of the space. The results show the usage diversity, i.e., 
the ratio of the measured total plug load of the space 
to the total maximum possible power for each piece 
of equipment, is approximately 50%. Considering 
that the usage diversity is less than 1 because of the 
gap of time during which each equipment is in 
operation with maximum power, the peak internal 
heat gains per floor area of a space should decrease 

with increase of the floor area due to the load 
leveling. However, the relationship between the peak 
internal heat gains and the floor area has remained 
unclear. 
Pedersen, 2007, Pedersen et al., 2008 developed a 
new method for load modelling of buildings in mixed 
energy distribution systems. The method aggregates 
individual building load profiles to derive the load 
profile for a specified planning area under the 
assumption that the load profiles for different 
building categories are independent. The author 
noted that the correlation between each building’s 
load demand has little influence on the resulting 
aggregated load. However, there is a possibility that 
electricity load for a particular space correlates with 
the load of the adjacent space in the same building. 
There are other literatures on day-to-day variations of 
internal heat gain for each building (Abushakra et al., 
2001, Saldanha et al., 2012), but the authors could 
not find previous research that focuses on 
quantitative analysis of space-to-space variations in a 
building in the absence of information about the type 
and the number of installed equipment in the target 
space. 
This paper presents a probabilistic approach to 
determine design conditions for internal heat gains in 
an office building for peak load calculations. The 
design conditions for heat gains can differ according 
to the target floor area; for example, the peak design 
heat gains for selecting chillers could be smaller than 
those for selecting air handling units because chillers 
cover a much larger area than do air handlers. The 
derived chart that illustrates percentiles of internal 
heat gain at a specified floor area gives opportunity 
for equalizing exceedance probability of overload for 
each HVAC equipment. Especially, the chiller 
capacity could be reduced by the derived chart, and it 
might lead to reduction of construction cost and 
improvement of the efficiency of the chiller due to 
higher load ratio through the year. 
In this paper, we firstly collect measurement data of 
the lighting and plug loads in workspaces in Japan. 
The variability of internal heat gains generally 
consists of two factors: the variation associated with 
the difference in spaces, and the diurnal variation in a 
space. We analyze the collected data and show the 
dominating factor. 
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Next, we present a methodology to derive a specific 
percentile of heat gains for each floor space area. We 
employ the Bayesian method with the Markov chain 
Monte Carlo (MCMC) method to determine the 
parameters for the probabilistic distributions of 
internal heat gains for a specified floor area. 
Finally, we analyze the calculation results by using 
the measured data, and discuss the applicability of 
the proposed stochastic approach. 

OBSERVATIONS OF INTERNAL HEAT 
GAINS 
Data source 
We collected hourly observation data of the 
electricity consumption in workspaces in office 
buildings in Japan (Refer to SHASE, 2011). Some of 
the data were measured by the authors, and the 
remaining were collected from other literature 
sources. Table 1 shows an outline of the data. “No.” 
in the table refers to a literature source reported by 
each author(s). Each report targets one building 
except report No.11, which targets 4 buildings. In 
this paper, each report is referred to by a building 
number (for example, “Building No.2” referrers to 
the report No.2) if not otherwise specified. 
The target spaces include meeting space, walking 
space, and workspace, but do not include corridors, 
restrooms, staircases, etc., in the common space. The 
spaces vary from approximately 150 to 1600 m2. 
There were three ways of measurements: (1) plug 
loads were measured separately from lighting load, 
(2) the total lighting and plug loads was measured, 
(3) only plug loads were measured. The data for 
analyzing the total lighting and plug loads are 
gathered from measurements in the first two cases, 
i.e., case (1) and case (2). Analyses on plug loads are 
carried out by using the data in case (1) and (3). The 
total number of measured spaces is 35 for analyzing 
the total lighting and plug loads, and 42 for the plug 
loads. The years in which measurements were carried 

out ranged from 2004 to 2010. 

Variation of plug loads (Building No. 2) 
Figure 1 shows the diurnal variation of the plug loads 
in Building No. 2 on one day of weekday. In this 
building, plug loads are measured separately in three 
spaces on both the 4th and 5th floors. From Figure 1, 
we find that the plug load varies from space to space. 
The areas of those spaces are 289, 167, and 247m2. 
(The total is 703 m2 for each floor, which is the value 
appeared in Table 1. The total plug loads over each 
floor are analyzed since the next section.) The 
variability of plug loads tends to be large because the 
facility layout greatly affects the plug load per area in 
such small spaces. 
Figure 2 shows the differences on three days in the 
plug loads of the “Center” space, which is one of the 
three spaces on each floor. The differences between 
days are small compared to the variation from space to 
space. Moreover, the time variation is rather small 
during work hours. 
To summarize, the variation from space to space is 
large, especially in small spaces, but both the time 
variation during work hours and the daily variation is 
rather small. 
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Figure 1 Differences in plug load in three spaces 

(Nov. 4, Building No. 2) 

Table 1 Outline of measured data (SHASE, 2011) 
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Figure 2 Differences in plug load on three days 

(Center, Building No. 2) 
 

Reduction in variation due to increase of floor 
area (Building No. 2) 
Figure 3 shows the mean and the standard deviation 
(S.D.) of internal heat gains in Building No. 2. Those 
statistics are derived by using the hourly data of three 
weekdays from 9 a.m. to 5 p.m. (except the lunch 
hour). We count the number of persons every hour in 
each target space by visual inspection, and assume 
110 W/person to estimate the heat gain for each 
space. 
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Figure 3 Daytime means and standard deviations of 

internal heat gains (Building No. 2) 
 
The mean of the lighting load is approximately 13 
W/m2, and the S.D. is very small because almost all 
lighting switches were turned on during work hours. 
The S.D.s of the occupants are larger than those of 
the lighting or plug loads. The S.D. of the occupants 
of the 4th and 5th floors combined is not less than that 
of either the 4th or 5th floor, even though the area is 
double. 
The means of the plug loads greatly differ from space 
to space, but the mean for the 4th floor is 
approximately the same as that for the 5th floor. That 
suggests the variation in the mean decreases with the 
increase of floor area. 

Diurnal variation and daytime average (all 
buildings) 
Figure 4 (left) shows the averaged diurnal variations 
of each measured space. Basically, heat gains remain 
flat during work hours except during the lunch hour. 
Thus, we assume the peak heat gain of each 

measured area can be estimated approximately by 
averaging over these periods. 
Figure 4 (right) shows the relationship between the 
time-averaged daytime heat gain and the floor area. 
The data are averaged over the period of 9 a.m. to 6 
p.m. except from 12 p.m. to 1 p.m. The variation of 
the lighting plus plug loads decreases as the floor 
area increases. This relationship is stochastically 
modeled in the section “Methodology for deriving 
percentiles of internal heat gains.” 
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Figure 4 Diurnal variation and daytime average of 
internal heat gains (All buildings) 

 

Probability distribution of time-averaged daytime 
internal heat gains (Building No. 6) 
In Figure 4 (lower right), some plotted points form a 
vertical line at a floor area of approximately 800 m2. 
These points come from measurements in Building 
No. 6. To identify the probability distribution, we 
plot these points on a probability chart for a 
lognormal distribution, as shown in Figure 5. In this 
figure, the horizontal axis, )-1(p) is the inverse of the 
cumulative probability function for a standard normal 
distribution (e.g., )-1(0.5) = 0) where p is the 
cumulative probability. To derive the scatter plot, we 
sorted measurement values [W/m2] in ascending 
order, and calculate the cumulative probability for 
each measurement value. For example, the ith-
smallest measurement value gives the cumulative 
probability of i/(N+1) where N is the number of the 
measurements. The vertical axis is the logarithm of 
the random variable, i.e. the internal heat gain in this 
case. Thus, the scattered points are linearly 
distributed if the probability distribution can be 
approximated to a log-normal distribution. 
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Figure 5 Probability plot for lognormal distribution 

(Building No. 6) 
 
The points in Figure 5 approximate a straight line, 
which means that the variation of the plug loads 
conforms to a lognormal distribution when the floor 
areas are the same. It is preferable to collect more 
data from various types of buildings to identify the 
probability distribution, but we assume a log-normal 
distribution for the internal heat gain at the same 
floor area henceforce. 

METHODOLOGY FOR DERIVING 
PERCENTILES OF INTERNAL HEAT 
GAINS 
We present a method for deriving the percentiles of 
daytime internal heat gains. A percentile is the value 
of internal heat gain below which a certain percent of 
observations falls. As seen in Figure 4 (upper right), 
the variation of daytime internal heat gains decreases 
with the increase of floor area. Thus, percentiles need 
to be calculated for each floor area. 

Stochastic model 
Based on Figure 5, we assume that the variation of 
internal heat gains conforms to a lognormal 
distribution when their floor areas are the same. Thus, 
the probability density function of internal heat gains 
at a floor area of A [m2] is represented as follows: 
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Here, x is the value of the random variable, i.e., the 
internal heat gain per area in this case, and O and ] 
are parameters that represent the following statistics. 

� xEA ln)(  O �
`

             (at floor area A) (2) 

� �^ 21ln)( xVarA  ]     (at floor area A) (3) 

Here, E and Var are mean and variance operators, 
respectively. 
To provide a versatile model applicable to various 
floor areas, we introduce two parameters, D and ]0 

(=](A0)). We can calculate O(A) and ](A) in Equation 
(1) by the following equations, given the two 
parameters, D and ]0. 
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Here, A0 is a reference area, which can be selected 
arbitrarily; P�is the mean of the internal heat gain; 
V�2(*) is its variance at the floor area of *. We 
assume P��=E(x)) is constant with floor area, and 
estimate it by averaging all sample data. Equations 
(4), (6), and (7) are general formulas for the 
lognormal distribution. Equation (5) represents the 
reduction in variance with the increase in floor area. 
The variance decreases rapidly when parameter D is a 
large value, such as 1.0. The value 1.0 means that the 
internal heat gain in a space is independent from the 
adjacent spaces. On the other hand, the variance 
decreases slowly when D is small, and the variance is 
constant when D is 0. Here, the value of 0 means that 
the internal heat gains in a space completely 
correlates to that in the adjacent spaces. Thus, the 
possible range of D is from 0 to 1. 

Bayesian method for deriving posterior 
distribution of unknown parameters 
We use the Bayesian method for estimating the 
probability distribution of the unknown parameters, 
D and ]0. The Bayesian method revises the 
probability density function with additional 
information related to unknown parameters, and the 
equation is schematically represented as follows. 

(Posterior probability distribution) 
v  (Prior distribution) u  (likelihood)  (8) 

where the likelihood is a function of the unknown 
parameters and gives the probability density of the 
observed outcomes, i.e., the combination of the 
values of observed daytime internal heat gains, given 
the values of D and ]0. Equation (8) is rewritten for 
our problem as follows. 

� � � � �
 

u 
N

i
iApripos Qfff

i
1

000 ),,(,, ]D]D]D  (9) 

where fpos, fpri are the posterior and prior probability 
density functions, given the parameter values of D 
and ]0; i is an index that identifies the observation of 
internal heat gains; N is the number of spaces for 
observations; and Qi is the observed daytime-
averaged internal heat gain in ith space; fA(Qi,D,]0) is 
the likelihood, i.e., the conditional probability density 
of an observation being equal to Qi, given the 
parameter values of D and ]0. The value of fA(Qi,D,]0) 
is calculated by substituting the value of Qi for x into 
Equation (1) after applying Equations (4) to (7). 
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MCMC method for deriving percentiles of 
internal heat gains 
The percentile of an internal heat gain that conforms 
to a lognormal distribution is derived from the 
following equation. 

� �)()()(exp)( 1 pAAAxp
�)� ]O               (10) 

where xp is the value of the internal heat gain below 
which p percent of the observations fall. 
We can calculate the percentile at a certain floor area 
by Equation (10), given the values of D and ]0, 
because O and ] in Equation (10) are derived from 
Equations (4) to (7). However, D and ]0 are assumed 
to be stochastic parameters in this paper; thus, the 
percentile is also a stochastic variable. We use the 
MCMC method to obtain the mean and the S.D. of 
the percentile. The MCMC sampling is a form of 
Monte Carlo simulation and generates sampled series 
of stochastic parameters that conform to a known 
probability distribution. In this study, we can derive a 
series of parameter combinations of D and ]0 that 
conform to the posterior distribution expressed by 
Equation (9). 
The mean and the S.D. of the percentile are derived 
by calculating the sample mean and the sample S.D. 
of xp in Equation (10), directly with use of the 
parameter series generated by the MCMC sampling. 

The reason for using Bayesian and MCMC 
method 
It was possible to use maximum-likelihood method to 
derive percentiles of internal heat gains. In that case, 
a certain type of optimization method would be used 
to determine the combination of D and ]0 that 
maximizes the likelihood, L, which is represented as 

�
 

 
N

i
iA QfL

i
1

0 ),,( ]D  (11) 

where the notation of the right-hand side is the same 
as Equation (9). The optimization would give the 
maximum likelihood solution, but could not give the 
uncertainty of the estimated parameters. 
MCMC method with Bayesian approach is used in 
this paper because the methodology estimates 
probability density represented in Equation (9) rather 
than the most probable point of parameters. With use 
of MCMC method, we can check the uncertainty of 
the estimated parameters as well as deriving the 
means of percentiles. 

ANALYSIS RESULTS FOR LIGHTING 
PLUS PLUG LOADS 
We apply the methodology described above to the 
observed data of the lighting and plug loads in the 35 
spaces listed in Table 1. 

Calculation settings 
The target data are derived by averaging the lighting 
plus plug loads [W/m2] from 9 a.m. to 6 p.m. (except 

for the 12 p.m. to 1 p.m. lunch hour) for each 
measured space. Those data coincide with the plots in 
Figure 4 (upper right). The average of those data, P, 
is 24.10 W/m2, and this value is used when Equations 
(4), (6), and (7) are applied. Reference area A0 is set 
to 1,000 m2. 
A uniform distribution over the interval [0, 1] is 
assumed for the prior distribution of D. An inverse-
gamma distribution is assumed for the prior 
distribution of ]0

2. An inverse-gamma distribution 
has two parameters: the shape parameter and the 
scale parameter. We set 0.01 for both of these 
parameters, and so the value of ]0

2 is almost 
uncertain before the observations are available. 
The starting values of the parameters in the MCMC 
method are 0.4 for D, and 0.3 for ]0, respectively. We 
use the Metropolis–Hastings algorithm for the 
MCMC method and generate a proposed sample 
parameter (D’, ]0’) from the proposed density, 
P((D’, ]0’)| (Dt, ]0, t)), which suggests a new sample 
parameter (D’, ]0’) given the present sample 
parameter (Dt, ]0, t). We employ a two-dimensional 
Gaussian distribution for P, centered at (Dt, ]0, t) with 
an S.D. of 0.10 for D and 0.03 for ]0. The random 
variables of D’and ]0’ from the proposed density, P, 
are independent each other. The number of samplings 
is 10,000, and the first 2,000 points are discarded to 
avoid the effect of the starting sampling point. 

Posterior distribution of parameters 
Prior to carrying out the MCMC sampling, we 
examine the posterior distribution of parameters D 
and ]0 (Figure 6). This figure is derived by assigning 
the values of (D, ]0) at the grid points of an 
orthogonal lattice to Equation (9). The values of the 

lative because we do not consider 
constant that makes the posterior 

density integrate to the value 1. 
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Figure 6 Posterior distribution for parameters D, ]0 
 
According to this figure, the value of ]0 is distributed 
narrowly around approximately 0.2. However, D is 
distributed widely from 0 to 1, which implies that the 
value of D cannot be estimated with a high degree of 
accuracy. 
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Parameter estimation by MCMC 
Figure 7 shows the sampling points generated by the 
MCMC method. The distribution of the sampling 
points is consistent with that of Figure 6, which 
suggests the MCMC sampling works properly. 
Statistics such as the mean and the S.D. of 
parameters D and ]0 are directly calculated by using 
the sampling points except the first 2,000 points. 
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Figure 7 Sampling points derived by MCMC method 
 

Table 2 Statistics related to parameters D, ]0 

 D� ]0 
Mean 0.431 0.220 

Median 0.413 0.217 
Standard 
deviation 0.255 0.034 

 
Table 2 shows the statistics derived. Again, the 
obtained S.D. is large for D and small for ]0. 
Parameter ]0 determines the variability around the 
mean value, P, at the reference floor area of A0, and D 
determines how rapidly the variability decreases with 
the increase of floor area. The obtained S.D. implies 
that the variability around the mean can be estimated 
with relatively high accuracy, but the estimation of 
the decreasing rate is not so reliable. 

Percentile of lighting plus plug loads 
Finally, we present the percentiles of the lighting plus 
plug loads in relation to floor area. Figure 8 shows 
the mean of the percentiles. Here, the mean values 
are derived by computing the average of xp(A) in 
Equation (10) taken over the last 8,000 sampling 
points of (D, ]0). 
The value of the 95th percentile is approximately 41 
W/m2 at a floor area of 100 m2, which is 1.7 times 
higher than the average. The 95 th percentile 
decreases with the increase of floor area and is 
approximately 30 W/m2 at 10,000 m2. We can use 41 
W/m2 for the peak cooling load calculation to 
determine the cooling capacity of an air-handling unit 
that covers a workspace of 100 m2. In contrast, we 
can reduce the setting of the internal heat gain to 30 

W/m2 for determining the cooling capacity of chillers 
that cover the whole building of 10,000 m2 with the 
same exceedance probability. In other words, setting 
the value of the internal heat gain constant, no matter 
what the floor area is, gives a higher risk of overload 
for an air-handling unit than for a chiller. 
In Japan, we commonly ignore the internal heat gain 
for calculating the peak heating load. However, 
Figure 8 suggests that 10 to 20 W/m2 of the internal 
heat gain can be anticipated as a heat source that 
leads to the reduction of the heating capacity of the 
air handler, boiler, etc. 
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Figure 8 Mean of percentile of lighting plus plug 

loads in relation to floor area 
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Figure 9 Standard deviations of percentile of lighting 

plus plug loads in relation to floor area 
 
The number of data used to calculate the percentile is 
relatively small at 35, and so the reliability needs to 
be examined. Figure 9 shows the S.D.s of the 
percentiles, which are derived by computing the S.D. 
of xp(A) in Equation (10) taken over sampling points. 
According to this figure, S.D. for the 50 th percentile 
or median, is lower than 1 W/m2 and demonstrates 
high accuracy. In contrast, higher percentiles such as 
the 90th and 95 th percentiles have lower reliability 
because their S.D.s are higher. The reliability is high 
at approximately 500 m2 and low at smaller or larger 
floor areas. One reason for the difference is that the 
scale of the measured spaces is concentrated at the 
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medium floor area of approximately 500 m2. We 
need to collect more measured data of smaller or 
larger spaces, and add these to the estimation 
procedure to improve the accuracy of the percentiles 
of internal heat gains. 

CONCLUSIONS 
We proposed a methodology for deriving a certain 
percentile of daytime averaged internal heat gain in a 
workspace, given the floor area. To demonstrate the 
methodology, we applied it to the total of lighting 
and plug loads measured in 35 workspaces in 
Japanese offices. 
The methodology is also applicable to a plug load 
only, or to other internal heat gains, such as the 
number of people in the space. By using the derived 
percentile, we can determine a setting value of the 
internal heat gain for calculating the peak 
cooling/heating load. The setting values can be 
different depending on the HVAC equipment 
because the covered floor area differs according to 
the equipment. The difference is reasonable in terms 
of equal risk for an overload of each item of 
equipment. The capacity of central heat source such 
as chillers or boilers would be reduced if the overload 
risk is adjusted to be equal to that of terminal units. 
In that case, equipment characteristics, especially 
part load performance, should be considered to figure 
out the amount of energy and cost reduction. 
To improve the accuracy of the derived percentile, it 
is necessary to collect more data, especially in small 
or large floor areas. Moreover, the derived chart is 
valid only when no other information related to 
internal heat gain is available. If we know in advance 
the design value of the electricity capacity for the 
lighting or plug load, the percentile must change 
accordingly. We need to modify the methodology to 
consider such prior knowledge. 
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