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ABSTRACT
To study the impact variations in input on output vari-
ation (Sobol index) of building model, a stochastic
model (time series) of variables is introduced. To build
the time series we used data measured in a building for
each hour for a duration of one month.
The external temperature does not appear directly in
the model but affects all the input. So after model it as
Auto-Regressive process we propose to model input,
for example the heating flux, by an ARMAX process.

INTRODUCTION
Energy consumption is becoming an important issue.
The building sector contributes up to 40% of total en-
ergy expenditure. An important part of waste comes
from a poor design, the use of inappropriate technolo-
gies (e.g: choice of the heating system) and from the
users’ unreasoned behaviour.
Different models reflecting the design parameters and
taking into account different inputs (external temper-
ature, users’ behaviour) are used today to improve
the performance energy of new buildings(Clarke et al.
(2002)). The uncertainty of the inputs must also be
taken into account to forecast the consumption and
predict some comfort.

To study the impact variations in inputs on variations
in the output one of the tools is Sobol’s index (Saltelli
et al. (2004) and Da Veiga et al. (2009)) based on vari-
ance that allows to classify inputs X following of their
influence on the output Y .

S1 =
V (E(Y |X))

V (Y )
2 [0, 1] (1)

There is no existing model for all this inputs. The
first step is to introduce a stochastic model in order to
generate useful data for this analysis that will present
in an other paper.

We address an accurate model for temperature and
heat flux hour per hour in order to make forecasts (var-
ious model temperature day per day exist (Semenov
and Barrow (1997)).

In the first part we describe the model and the data that
we have used. In the second we briefly introduce the
time series model. The third part explains the different
choices of model and presents some practical results.

MODEL AND DATA DESCRIPTION
A building is composed of a thermal envelope, elec-
trical equipments which can consume or store energy
and of users.
Building can be modelled using state space represen-
tations: ⇢

.

x = Ax+Bu

y = Cx+Du

(2)

u: operative vector (temperatures, heat flux,
occupancy,. . . )
x: state vector: e.g. wall temperature
y: output vector: internal temperature
A,B,C,D are matrices containing the physical char-
acteristics of the building.

Figure 1: Building model

The following data of 1 are measured on the system
with a sampling of one hour:

• the external temperature: T
extt

• the heat produced by the occupant: N
t

• temperatures of adjacent rooms: corridor, next
office, lower office, shed.

• the heating flux: K
t

• intern temperature of the room of interest: Y
t

The heat flux is calculated using the specific heat of
water fixed at C

e

= 4000J/kg.�C, the water flux
maintained constant by a regulation loop Q

e

(kg/s),
and the difference upstream and downstream of the
water in the heater.

K

t

= Q

e

⇤�T ⇤ C
e
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Unfortunately, the data contains a large amount of
drop-outs. We decide to work only on one month.

From the study of the data, different trend observa-
tions can be drawn to choose the types of models
constructed for different inputs.

External temperature is modelled by an AR(Auto-
Regressive) process which is detail in the second part.
A fast graphical study shows a strong seasonality of
24-hours (figure: 3 and 4).
The external temperature is not properly included in
the model 2 presented above, but affects all of the in-
puts (except the heat produced by the occupants).The
temperatures of adjacent rooms are closer to a clas-
sical regression. We have chosen to create a second
model linking the temperatures of adjacent rooms to
T

ext

by Spline regression (figure: 2)(Eubank (1999)).

Figure 2: Temperature scatterplot

Figure 3: External temperature in April 2012: mea-
sured every hour for a month

Figure 4: External temperature in April 2012: mea-
sured every hour of a day

As before the first graphical analysis shows a 24-hours
seasonality (figure:7) and also a 7-day (figure:6) sea-
sonality.

Figure 5: Scatterplot of working days

Figure 7: flux in November 2012: measured every
hour of a day. Each ray of the circle represents a time
of day
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Figure 6: flux in November 2012: measured every hour for a month

The variance of the heat flux during working days is
much superior to that of weekends and nights (fig-
ure:6 and figure:7) so we choose to study three dif-
ferent models:

• Nights: from 9 pm to 4 am

• Working days from 5 am to 8 pm

• Weekends

Next we will detail only the model of working days.
The work is the same for the other two models.

TIME SERIES
The most often, the time series X

t

is considered as an
additive model (Brockwell and Davis (2009)):

X

t

= m

t

+ s

t

+ Z

t

(3)

• m

t

is the trend component which represents a
slowly changing function

• s

t

the seasonal component, a function with a
known period: d

• Z

t

is a “random noise component” which is sta-
tionary and general not white.

A time series is a set of observations x
t

, each one be-
ing recorded at a specified time t.
The specificity of time series analysis, which distin-
guishes it from other statistic analyses, is precisely
the emphasis on the order in which the observations
are made. Classical statistical methods often require
variables which are stochastically independent and ob-
served several times. In time series analysis the main
source of information is the temporal dependence be-
tween variables.
The study will consist in supposing that the observa-
tions, after some possible transformations, are station-
ary. The structure of the phenomenon is thus reflected

by the correlation between the variables. The classical
models used are ARMA (Autoregressive moving av-
erage) models.

Our first aim is to estimate and extract m
t

and s

t

in the
hope that Z

t

will turn out to be a stationary random
process. We can then use the theory of such processes
to find a satisfactory probabilistic model for {Z

t

}, to
analyse its properties, and use it in conjunction with
m

t

and s

t

for purposes of prediction and control of
{X

t

}.
An alternative approach, developed extensively by
Box and Jenkins, is to apply difference operators re-
peatedly to the data {x

t

} until the differenced observa-
tions resemble a realization of some stationary process
{W

t

}. We can then use the theory of stationary pro-
cesses for the modelling, the analysis and prediction
of {W

t

} and hence of the original process.

1.1 Graphical description
Before starting to study the time series, we need to
check some points:

• regularity of observations

• stability of structures conditioning the phe-
nomenon studied: The analysis technique seeks
to determine the slow evolution of the phe-
nomenon and its seasonal variations. This im-
plies some kind of stability. When not checked,
it can be obtained by decomposing observed
time series in several series for instant working
day and week-end.

• permanence of the definition of the variable
studied (e.g.the rate air flux change can change)

So the first step in the analysis of any time series is
to plot the data. Graphs allow to detect discontinuities
and outlying observations and to detect a seasonality
or see a trend. The inspection of a graph is also useful
in the choice of the model.
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Estimation and Elimination of trend and seasonal
components
To estimate and eliminate the trend and the seasonal
components we can use one of those three methods:

1. Small trend method (when the trend is small):
We will estimate the mean trend on one period,
then create a pattern through a period of season-
ality after removing the trend.

2. Trend and seasonality are parametrized and
we adjust each parameter by the least square
method.

3. Differencing at lag d:
We introduce the lag-d difference operator r

d

defined by:

r
d

X

t

= X

t

�X

t�d

(4)

To suppress a linear trend m

t

= at + b we just
apply the operator r = r1: rm

t

= a. In the
same way any polynomial trend of degree k can
be reduced to a constant by application of the
operator rk = r � · · · � r.
If X

t

= m

t

+ Z

t

with m

t

= ⌃k

j=0ajt
j and Z

t

is stationnary with zero mean then:

rk

X

t

= k!a
k

+rk

Z

t

(5)

rk

X is a stationnary process with mean k!a
k

.

Now X

t

= s

t

+m

t

+Z

t

where s
t

is the seasonal
component of period-d, that means s

t+d

= s

t

.
To remove s

t

we will apply the r
d

. We obtain:

r
d

X

t

= (m
t

�m

t�d

) +r
d

Z

t

(6)

Then, to remove the new trend (m
t

�m

t�d

) we
can use rk.

Modeling a stationnary process: Z
t

After removing trend and seasonality components we
have to model the stationnary process Z

t

.
When dealing with a finite number of random vari-
ables, it is often useful to compute the covariance ma-
trix in order to gain insight into the dependence be-
tween them. For a time series {X

t

, t 2 T} we need to
extend the concept of covariance matrix to deal with
infinite collections of random variables. The autoco-
variance function provides us with the required exten-
sions.

Definition 1.1.1 Autocovariance function:
If {X

t

, t 2 T} is a process such that V ar(X
t

) < 1
for each t 2 T , then the autocovariance function
�

X

(., .) of {X
t

} is defined by:

�

X

(r, s) = Cov(X
r

, X

s

) r, s 2 T

= E[(X
r

� E(X
r

))(X
s

� E(X
s

))]

(7)

Definition 1.1.2 AutoCorrelation Function ACF:
The autocovariance function of a stationary process is
the function of just one variable defined by:

�

X

(h) ⌘ �

X

(h, 0) = Cov(X
t+h

, X

t

) 8t, h 2 T

(8)
The autocorrelation function (ACF) of {X

t

} is the
function whose value at lag h is

⇢

X

(h) ⌘ �

X

(h)

�

X

(0)
= Corr(X

t+h

, X

t

)8t, h 2 T (9)

Definition 1.1.3 Partial AutoCorrelation Function
PACF:
The partial autocovariance function ↵(.) of a station-
ary time series is defined by:

↵

X

(1) = ⇢(1)
↵

X

(k) = Corr(X1 � P

X2,...,Xk(X1),
X

k+1 � P

X2,...,Xk(Xk+1))
(10)

where P

X2,...,Xk(X1) is the projection of X1 on the
space (X2, . . . , Xk

). It can be interpreted as the
best explanation of X1 by the linear function of
(X2, . . . , Xk

). (ditto for P
X2,...,Xk(Xk+1))

This coefficient expresses the dependence between X1

and X

k+1 which is not due to the other X2, . . . , Xk

AutoRegressive process of order p: AR(p)

Definition 1.1.4

X

t

= ⌃p

j=1ajXt�j

+ ✏

t

{✏
t

} ⇠ WN

1(0,�2)
(11)

The PACF will be zero for all k > p and the ACF will
decrease to zero when k tends to infinity.

Moving Average of order q: MA(q)

Definition 1.1.5

X

t

= ⌃q

j=1✓j✏t�j

+ ✏

t

{✏
t

} ⇠ WN

1(0,�2)
(12)

The ACF will be zero for all k > q and the PACF will
decrease to zero when k tends to infinity.

AutoRegressive Moving Average process of order
(p, q): ARMA(p, q)

Definition 1.1.6

X

t

= ⌃p

k=1ajXt�j

+⌃q

j=1✓j✏t�j

+✏

t

{✏
t

} ⇠ WN

1(0,�2)
(13)

The ACF and PACF will decrease to zero when for all
k > q tends to infinity.

1White Noise
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AutoRegressive Moving Average with eXogenous
inputs process of order (p, q): ARMAX(p, q)

Definition 1.1.7

X

t

= ⌃p

k=1ajXt�j

+⌃q

j=0✓j✏t�j

+⌃b

i=0⌘iDi

{✏
t

} ⇠ WN

1(0,�2)
(14)

with {D
t

} an external time series

Choice of the model order
The study of the PACF and the ACF can suggest the
nature of the model. Once the model chosen and the
coefficient estimated some criteria allow to choose the
best the model combining complexity and the preci-
sion.

• AIC criteria :

AIC = �2log(L(✓)) + 2⌫ (15)

where L(.) the likelihood function, ✓ model pa-
rameters and ⌫ numbers of model parameters

• BIC criteria :

BIC = �2log(L(✓)) + log(n)⌫ (16)

where n is the number of observations of the se-
ries.

We will choose the model that minimize this criteria.
Parameters’ model are estimated by the Yule Walker
algorithm (Brockwell and Davis (2009))

MODELS CONSTRUCTION:
Temperature model:
First we have to remove the trend (m

t

) and the sea-
sonal component (s

t

).
We chose for this example the second method because
we can easily estimate the trend and the seasonal com-
ponent.

1. The trend is set so as polynomial. We choose the
best polynomial that minimizes the AIC criteria
and the most simple. We obtain a polynomial of
third order:

m

t

= a0 + a1t+ a2t
2 + a3t

3

Regression coefficients are obtained by a least
square method.

2. After removing the trend, the seasonal compo-
nent is identified by a Fourier series of period 24
hours (regression coefficients are obtained by a
least square method). We can observe in figures
4 and 3 there is a seasonal form sinusoidal of
period 24 hours.

3. The seasonal component is subtracted. The new
process is called Zt.

To choose the best model process, we plot the ACF
and PACF functions.

Figure 8: ACF and PACF of Zt

There is a strong correlation at 24 hours. The PACF
function tends to zero for all lag superior to 24. The
ACF tends to zero when lag tends to infinity. It sug-
gests an AR(p) process. The best AR(p) identified
under the AIC criterion is AR(25) (AIC=2304)

The work of Cao and Wei (1998) and Dischel (1999)
suggests to integrate a periodic variance for tempera-
ture model.
The time series decomposition can be written:

X

t

= m

t

+ s

t

+ v

t

⇤ Z
t

(17)

with v

t

a periodic function and m

t

the trend of the
variance.

Figure 9: Z
t

-variance as a function of time

The seasonal component is identified as an average
daily pattern of length 24 v

t

repeated 30 times (30
days) (figure 10).
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Figure 10: Daily patern variance: v
t

The new process studied is the centred standard pro-
cess:

⌘

t

=
X

t

�m

t

� s

t

v

t

=
Z

t

v

t

(18)

The study of the ⌘

t

’s ACF and PACF, shows that ⌘
t

is
an AR(p) process. There is always a strong correla-
tion: at 24 hours. The best AR(p) identified under the
AIC criterion is AR(25) but this time AIC criterion is
equal to 542 (a decrease of 76%). Taking into account
the periodicity of the variance we improved our model
(the criteria of second model is smaller). We choose
the second AR(25).

Before conclude we will test the residual part. The hy-
pothesis says that the residuals must be independent.
One way is to plot the ACF function of the residual
part or the p-value of the test of Ljung-Box which test
the non correlation perform on them.

Figure 11: study of the residual parts ✏
t

Here the residual are independent: the p-value is
around 0.9 so the hypothesis that there are indepen-
dent is accept more over the coefficient of the ACF are
near to zero since the first lag.
To conclude we present the results of simulations.

Figure 12: Simulated outdoor temperature as a func-
tion of real outdoor temperature

Figure 13: Simulated outdoor temperature and real
outdoor temperature as a function of time

In figure 12, the curve representing the simulated out-
door temperature as a function of real outdoor temper-
ature is almost a straight line through the origin with
slope 1.
The figure 13, shows that the simulated outdoor tem-
perature has the same behaviour than the real outdoor
temperature with an aleatory part.

Heat flux:Working days

Introduced the ARMAX model for K
t

the heat flux.

K

t

= s

K

t

+m

K

t

+ �

K

t

⌫

K

t

�

t

X

t

= m

t

+ s

t

+ v

t

⇤ ⌘
t

�

t

= ↵⌘

t

+ �

t

+ ✏

t

(19)

where �

t

is an ARMA process.
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Figure 14: �
t

per hours

We calculate the trend and seasonal (mK

t

,sK
t

, �

K

t

, ⌫

K

t

)
component and remove them (figure:14) .
After remove the link with the external temperature,
we study the process �

t

(figure:15).

Figure 15: �
t

per hours

Figure 16: ACF and PACF of �
t

There remains a strong correlation at lag 16. We
will model after minimisation of AIC criterion by a
AR(16) process.
To choose definitely this model after plot the ACF
and the p-value of the Ljung-Box test of the residuals
part(figure:17):

Figure 17: ACF and the p-value of the Ljung-Box test

All the coefficient of the ACF are close to zeros since
the first lag and the p-value is around 0.9: the residuals
are independent.
We model the heat flux by an ARMAX(16,0).
In figure 18, the curve representing the simulated heat
flux as a function of real heat flux is almost a straight
line through the origin with slope 1.

Figure 18: Real heat flux as a function of simulated
heat flux

Figure 19: Simulated heat flux and real heat flux as a
function of time
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The figure 19, shows that the simulated heat flux has
the same behaviour than the real heat flux with an
aleatory part.

CONCLUSION
Time series provide a good representation of the tem-
perature and heat flux.
These models allow us to take into account the tem-
poral dependence between different times, which is
essential for our application: computation of Sobol
index.
It can be observed that seasonality plays an impor-
tant role in the modelling of these time series. It’s
important to take into account the seasonality of the
variance.
External temperature is an exciting variable of the
model. All the inputs have to be model as an ARMAX
process. After it will be necessary to integrate the
users has the modeling process.
All the inputs can be considered as an ARMAX pro-
cess of the external temperature and the number of
occupants.
The result of this work will be to compute Sobol index
for each input, in order to see which input is the most
influent over time.
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