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ABSTRACT 
In this paper, we give an overview of an on-going 
research work aiming at assessing the benefits that 
could be drawn from applying advanced software 
engineering techniques – namely model-driven 
architecture, component-based approaches and 
model-based system engineering – to support 
building life cycle tasks (especially design ones) 
which entail making use of digital models. 

INTRODUCTION 
The construction industry is rapidly evolving, 
propelled forward by growing ecological concerns, 
increased competition, globalized markets, and 
always more ambitious and stringent regulatory 
frameworks. This has a strong impact, both on 
workflows and on tools. Practices focus – more than 
ever – on efficiency, flexibility and integration, while 
buildings life cycle stakeholders tend to make use of 
more advanced tools, especially of those relying 
extensively on Information and Communication 
Technology (ICT) (Rezgui et al, 2011). For instance, 
it is now common practice to rely on ICT-intensive 
Building Management Systems (BMS) to support 
operation phase activities – e.g. relating to energy 
monitoring and management or to facilitate 
maintenance tasks. The same way, building design 
tasks heavily rely on software tools – e.g. Computer-
Aided Design (CAD) tools and physical modeling 
and simulation tools – to properly define, predict and 
optimize building behavior in all its dimensions 
(structural, energy, etc). 
From this steady and strong (r)evolution, new needs 
and requirements have emerged, which call for cross-
expertise in the considered business domain (the 
construction / building sector) and in cutting-edge 
software-intensive systems engineering approaches. 
Actually, the rush towards ICT/software support has 
led to a significant but somehow disordered growth 
of the related tools offer. As an illustration, a 
repository from the US Department of Energy (DoE) 
includes 393 software tools (as of January 2013) 
(DoE, 2013) dedicated to evaluating energy 
efficiency, renewable energy and sustainability in 
buildings. The issue there is that this massive offer 
comes with what could be termed colloquially a 
massive mess: from one tool to another, not only 
functionalities vary but also provider status and 
license kind, openness, physical domains targeted, 
software architectures, underlying languages and 
frameworks, mathematical modeling paradigms, data 

formats, etc. On the other hand, buildings are way 
more complex than they used to be: highly multi-
physical systems - sometimes even coined cybernetic 
given the importance of ICT in nowadays buildings 
(Wetter, 2011), requiring accounting for various and 
intermixed physical phenomena (lighting, airflow, 
energy, mechanical, control-command,…)  in an 
integrated way. The challenge is therefore to enable 
exhaustive and integrated buildings simulations, 
while relying on disparate and somehow natively 
incompatible tool: a challenge which is the research 
focus of the PLUMES project, funded by the French 
National Research Agency. 
The intent of this paper is to give an overview of the 
objectives of this research project and to share its 
first outcomes. The project is ongoing (one year to 
go) and a lot of work is required to implement and 
assess the first results. Still, it is our belief that the 
research issues dealt with and the paths taken to 
address them are worth sharing with the Building 
Simulation research community. 
The paper is structured as follows: section 2 gives an 
overview of the project’s research scope and 
highlights our motivation. Section 3 and 4 introduce 
two major research topic addressed in PLUMES, 
respectively model-driven architecture applied to 
building simulation, and a (still prospective) research 
thread aiming at devising an approach for model-
driven engineering of executable buildings modeling 
components. At last, section 5 gives some 
conclusions and perspectives. 

AN OVERVIEW OF THE PLUMES 
PROJECT 
When it comes to “integrate the incompatible” (see 
the introduction), the keyword is usually 
interoperability, i.e. “the ability of two or more 
systems or components to exchange information and 
to use the information that has been exchanged” 
(IEEE, 1990).  Indeed, the main issue in PLUMES is 
to devise an approach that could enable, in a 
systematic and reproducible way, information 
exchange between most (if not all) buildings 
modeling and simulation tools. In fact, in a broader 
sense, the aim is to contribute to improve building 
modeling and simulation support along the following 
dimensions: reusability, modularity, evolutivity, 
portability and, sustainability. These keywords are 
quite well-known in the software engineering area, 
where they are part of the motivation for several 
long-term research trends: software design and 
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development paradigms - e.g. component-based 
approaches (Szyperski, 2002) or model-based 
engineering (Schmidt, 2006), execution platforms - 
e.g. for distributed computing (OMG, 2012), 
methodological guidelines and design practices, 
standardization - e.g. of data and interfaces, or 
modeling language (OMG, 2011). Hence the base 
assumption of PLUMES, which is that, related to the 
aforementioned objective, consequent benefits can be 
gained by applying some key assets from the 
software engineering area to the one of building 
modeling and simulation. By the way, this is already 
somehow true: a quick tour of practices and ongoing 
research in the field of ICT for building design show 
that, like Mr Jourdain had been talking prose and 
never known it1, this community tackles well-known 
software engineering research challenges without 
explicitly naming them (and sometimes without fully 
benefiting from the rich state of the art pertaining to 
them). 
The interoperability issue quoted at the beginning of 
the section, is actually twofold - see (Howie et al, 
1997) for instance: (i) data-focused interoperability 
is related to how data may be exchanged between 
several systems / components; (ii) execution-focused 
interoperability concerns combined execution of two 
or more executable pieces of software, each 
potentially relying on different and non-
straightforwardly compatible technologies. The 
feedback we got in the scope of the project from field 
interviews shows that the current support for these 
two kinds of interoperability in the buildings 
modeling domain is still poor - this is also shown by 
the literature, see e.g. (Steel et al, 2012), (Radosevic 
et al, 2005), (Plume et al, 2007). This requires the 
stakeholders to implement ad-hoc strategies – 
dedicated data translators, one-to-one tools coupling 
– which tend to be effort and time-consuming, error-
prone, and which by no way end up in the long-term, 
scalable approaches and tools that are needed. 
When it comes to data-focused interoperability, one 
main issue is the connection between the so-called 
Building Information model (BIM) and the buildings 
physical modeling / simulation tools. The BIM 
covers an extensive range of assets (Succar, 2009), 
among which technological ones are prevailing – the 
main being the (still theoretical) possibility to rely on 
a single logical, consistent source for all information 
associated with the building (Howell, 2005): the BIM 
is basically the repository of all digital information 
pertaining to the building. It is now widely 
recognized as a cornerstone of future tools and 
practices in the construction industry, and many 
works aim at improving combined support for BIM-
based collaborative design work and building energy 
optimization (Crosbie, 2011). Here, combining 
actually means connecting: the intent is to be able to 
use the data contained in the BIM (building 3D 
                                                             
1 Le bourgeois gentilhomme, Molière, 1670 

geometry, physical parameters like e.g. walls thermal 
characteristics) to seamlessly feed downstream 
simulation tools. As shown in the subsequent section, 
the issue is not as straightforward as it seems and 
model-driven architectures (MDA)-like approaches 
(OMG, 2003) could be an elegant solution to deal 
with it. 
As mentioned in the introduction, properly modeling 
the breadth of physical phenomena that occur within 
the building usually requires relying on several tools. 
The issue here is therefore the one of execution-
focused interoperability, which may be tackled in 
two main ways. The first (and most widely 
implemented) is the runtime coupling one: two or 
more environments interact at runtime and exchange 
data in order to simulate jointly various physical 
phenomena (e.g. combined air flows and energy 
simulation). Different coupling strategies may be 
differentiated (e.g. strong vs weak) (Trčka et al, 
2010), and some implementations make use of a 
dedicated coupling middleware (Wetter et al, 2008). 
The second approach is the inter-environments 
porting one: the aim here is to enable reusing 
executable modeling components issued from one 
environment in another (non natively compatible) 
environment. In this matter, the state of the art 
focuses on simulation tasks and still lacks a 
generalist approach that would be enable not only to 
model the intermix of physical phenomena, but also 
to reuse and capitalize in a systematic and generic 
way modeling components across different 
application domains. As shown subsequently, 
PLUMES proposes a novel approach to the issue, 
relying on the component-based software paradigm 
(Szyperski, 2002). Combined with principles and 
tools stemming from Model-Based System 
Engineering (MBSE), this approach clears the path 
for an intensive use of physical modeling 
components in the whole building life cycle. 

A MDA APPROACH TO BUILDING 
SIMULATION 
From a theoretical point of view, using the BIM to 
perform energy simulation is not a high-end research 
challenge, since it eventually boils down to mere data 
processing (data-focused interoperability). However, 
the vitality of the related research area tends on the 
contrary to show that the issue is far from being 
straightforward and remains open (Hitchcock et al, 
2011). 
In order to combine BIM and simulation, one can 
distinguish two possible approaches. The first 
advocates full integration of tools and data models, 
and is mainly implemented by software vendors 
which tools span a large part of building design 
phases (and even life cycle). The aim is to rely on a 
single building data model (BIM), used as a sole 
reference in all design tasks, including simulation. 
BIM authoring and simulation tools are fully 
integrated at the data level, but often also at the user 
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interface level. This approach therefore treats 
simulation tools as BIM-aware tools, using the 
terminology introduced by A. Watson in (Watson, 
2011). This strategy lacks openness and is 
demanding: lacks openness, because only the 
simulation tool(s) already embedded may be used; 
demanding, because any extension, e.g. to add 
simulation capabilities, requires a significant 
implementation effort. The second approach to 
BIM/simulation interoperability advocates “light” 
integration and, relies on data translation in order to 
generate the building model required by the 
simulation tool from a building model conforming to 
a given BIM data model. This approach is the most 
frequent and several works have already attempted - 
and to some extent, managed – to perform such 
connections (Cormier, 2011) (Bazjanac, 2011). 
Implementing such a linkage basically requires the 
three following assets: (i) a base data format, in 
which architectural building models will be 
expressed; (ii) software tools to process the 
architectural model data format and to generate 
corresponding input files for simulation; (iii) a 
simulation tool. 
The choice of the data format to be used for 
architectural models (i) has already been discussed 
extensively. Most authors tend to prefer relying on an 
open, standard, public format than to rely on 
proprietary formats, and the Industry Foundation 
Classes (IFC) (Building Smart, 2007) appears clearly 
as a reference. The reason for fending off proprietary 
formats is quite obvious and stems from the necessity 
to ensure interoperability between tools from several 
– if not all – software vendors. The IFC is currently 
the only format implemented (as export / import 
functionalities) in most of the CAD tools, and the 
only open generalist format standardized by an 
international consortium. For more details about the 
IFC and its place in the BIM interoperability 
landscape, the reader may refer to the study 
performed by J. Steel and al in (Steel et al, 2012). 
 

 
Figure 1 Usual IFC to energy simulation process 
 

At this point, several difficulties arise. If we have a 
look at the usual BIM to simulation process sketched 
in Figure 1, we see that it starts with generating an 
IFC file from a BIM authoring tool (Design tool). 
This IFC file generally contains all information 
pertaining to the building geometry. However, the 
first issue is that this geometry requires some pre-
processing to be performed. This pre-processing 
consists first in a model-checking phase to identify 
errors and inaccuracies in modeling – e.g. meeting 
and intersection of objects – and to enrich building 
geometry with so-called upper levels space 
boundaries (Bazjanac, 2010) (those are necessary to 
obtain a valid geometry before translation to the 
simulation tool and, IFC-compliant BIM authoring 
tools do not generate them). The result of pre-
processing is a clean (containing no errors or 
inaccuracies) and complete (with an enriched 
geometry) IFC architectural file. This file has then to 
be enriched with additional properties pertaining to 
the building, that are required for energy simulation 
(e.g. wall thermal properties). After enrichment, the 
IFC file is translated to the input format of the 
simulation tool, and this is the point at which another 
difficulty is encountered: the file that is obtained 
from the IFC processing chain only includes 
information pertaining to the building, but not to the 
energy systems to be deployed (Heating Ventilation 
and Air Conditioning, HVAC). Actually, this stems 
from limitations of the IFC itself, since the data 
format does not include – at least in its current 
version - the necessary modeling elements, and from 
the poor IFC export capabilities of the CAD tools as 
well (Robert, 2012). This therefore requires these 
systems to be described in a dedicated separate 
format – generally the one of the targeted simulation 
tool. 
Now, what about Model-Driven Architecture? 
Well, looking at Figure 1, a reader familiar with 
MDE (Model-Driven Engineering) would probably 
have had the feeling that it reminds of a standard 
MDA (Model-Driven Architecture)-process (OMG, 
2003): several modeling steps, together with an 
iterative enrichment, and in between automated data 
translation. The process actually starts with what 
could be called an application-independent IFC 
model that is transformed and enriched to become an 
energy-simulation-focused IFC model, and then 
again enriched and transformed to the targeted 
simulation tool data format. And indeed it is the 
assumption of the authors that such a process is an 
MDA-one or at least, could be one provided some 
improvements are achieved: upgrading the IFC, in 
order to enable all information (building and HVAC 
systems) to be contained in IFC files, improving 
CAD tools export facilities, implementing the 
required data / model transformation support tools 
and, providing the adequate methodological 
guidelines. The resulting process we are aiming at is 
the one described in Figure 2: the information flow is 

Proceedings of BS2013: 
13th Conference of International Building Performance Simulation Association, Chambéry, France, August 26-28

- 2832 -



entirely based on IFC models that are iteratively 
refined: a first step is to generate the IFC (both 
building geometry & HVAC systems) from CAD 
tools – with, as in the usual way, a pre-processing 
phase for the geometrical part; then, the IFC model 
undergoes a two-step enrichment: first, to issue an 
energy-simulation-focused IFC file (dedicated to 
energy simulation but independent from any specific 
tool); then, to issue a tool-specific IFC file that is 
then translated to the targeted tool input data format. 
The interest here is to capitalize the information 
contained in the simulation-focused IFC file that may 
potentially be reused to target other energy-
simulation tool than the one initially targeted (note 
also that such a process may be generalized to target 
any kind of simulation). 
 

 
Figure 2 MDA IFC to energy simulation process 
 
As a first step to put this vision into practice, our 
work - detailed in (Robert, 2012) - first entailed 
evaluating the capabilities and assessing the 
limitations of IFC with respect to HVAC systems 
description and of CAD tools with respect to IFC 
export. As far as IFC is concerned, the second step 
was to issue some propositions of extension of the 
standard. The rationale of the study was not to target 
completeness, but more to follow an iterative 
process: (i) choosing a set of widely used energy 
simulation languages and environments (namely 
Modelica (Fritzson, 1998), TRNSYS  and 
EnergyPlus ); (ii) select a set of building energy 
systems to model (in our case: ventilation system, 
water heater, central heating system and electricity 
production); (iii) model those systems in the targeted 
environments; (iv) model those systems with IFC; (v) 
confront the models and analyze the outcomes; (vi) at 
last, when required, issue propositions of IFC 
enhancements. 
A first conclusion that can be drawn is that the 
current support, whether it concerns IFC or CAD 
tools IFC export facilities, is poor. Regarding the first 
point, we have defined a set of extensions to the IFC 
that enable modeling the classes of energy systems 
we have analyzed. These extensions are expressed as 

IFC property sets. These are native IFC mechanisms 
that allow adding properties to existing IFC meta-
elements. These mechanisms are not as powerful as 
those of MDA languages, like the UML (Unified 
Modeling Language) profiling technique (OMG, 
2011), but this is the easiest and most flexible way to 
extend the IFC specification. As far as the latter point 
is concerned, our observation is that IFC export 
capabilities are highly variable: in particular, some 
tools are more powerful for geometry aspects, while 
others show more compliance to the IFC standard for 
energy systems IFC export. Our prototyping plans 
therefore entail relying on different CAD tools, 
depending on the aspect being considered. The main 
aim of this prototyping phase (to be achieved by mid-
2013) is to be able to reify the process described in 
Figure 2, and to demonstrate the relevance of a clear 
and formalized separation of concerns between 
platform-independent models and platform-specific 
ones. This process will be assessed with two building 
models, one comprising only an energy system, the 
other a basic building coupled to an energy system. 
Two main energy simulation platforms will be used: 
TRNSYS and EnergyPlus, with the aim to 
demonstrate that the same energy-simulation focused 
IFC model may be used to target both tools. 

MODEL-BASED ENGINEERING OF 
EXECUTABLE MODELING 
COMPONENTS IN THE BUILDING 
DOMAIN 
A wide range of activities performed within building 
life cycle makes use of modeling software 
components. These are mainly used to simulate and 
predict resulting building behavior to assess design 
choice but there is a steady tendency to enlarge their 
scope of use - e.g. at operation time (Pang, 2012). It 
is foreseeable that these will be somehow pervasive 
to the whole building life cycle in a near future. One 
issue is however that – as mentioned in the 
introduction – the breadth of physical modeling 
environments and languages translates into a massive 
but highly heterogeneous offer. Related to this 
concern, one objective in PLUMES is to devise 
innovative ways to engineer executable modeling 
components, while making the most of legacy ones. 
We therefore advocates an engineering process that 
rely on both following approaches (Delinchant, 
2004): (i) the “white-box” approach, which consists 
in explicitly defining the intended behavior of the 
components thanks to a dedicated language (e.g. 
Modelica); (ii) The “black-box” approach, which 
advocates relying on legacy executable components. 
The components’ behavior is not explicit, only their 
interfaces are. 
The main added value of our work lies in the 
definition of a software component specification 
(MUSE) allowing to making the most of MBSE 
advantages, independently from any target 
application and able to tackle heterogeneous 
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environments. As shown thereafter, in this approach, 
a component can be viewed as a physical component, 
owning physical port, independently from the 
targeted application. More over, to facilitate model 
reuse, these components may be expressed as 
descriptive (white-box) model and / or as executable 
legacy (black-box) models. 
 

 
Figure 3: Structural view of a multi-facets MUSE 

component 
 

MUSE framework 
The MUSE2 framework includes both conceptual and 
software assets. From the conceptual point of view, 
MUSE is a specification of a multi-application 
modeling component standard for the building 
domain. In the scope of the PLUMES projects, two 
reports have clarified this specification, which may 
be summed up as follows: (i) a MUSE component is 
a technology and application-agnostic software 
component which features a set of well-defined 
interfaces; (ii) To ensure a better separation of 
concerns, MUSE components feature layered 
interfaces (Figure 3). MUSE components own 
physical ports (the ports related to the actual physical 
inputs / outputs of the actual system/equipment 
represented by the component, e.g. a flow) and 
general-purpose interfaces, e.g. to query components’ 
metadata. Then, a MUSE component may also own a 
set of independent, application-specific (e.g. 
dedicated to simulation) interfaces; (iii) in the latter 
case, the interface is called a facet. A facet gathers a 
consistent set of services (methods) dedicated to one 
particular application. A MUSE component may own 
several facets at the same time, and in its current 
state, three kinds of application have been defined: 
simulation, optimal sizing, and optimal control 
(PLUMES, 2012). By way of illustration, Figure 4 
shows the methods offered by the ODE dynamic 
simulation facet. These methods enable managing the 
underlying model in the scope of a simulation 
(notifying incoming events, asking for state variables 
derivatives to be computed, etc); (iv) MUSE supports 
several underlying mathematical modeling 
paradigms, including continuous, discrete and hybrid 
systems, ordinary differential equations (ODE), 
                                                             
2 MUSE is the French acronym for « building energy 
systems unified models » 

differential algebraic equations (DAE); (v) MUSE 
components may be atomic or composite. In the latter 
case, the capabilities (available facets) of the 
composite component depend on those of the internal 
components. 
The MUSE framework also includes a set of software 
modules dedicated to support MUSE components 
generation and import, in order to cope with the 
multiplicity of existing tools. MUSE plug-ins are 
add-ons to existing environments (e.g. TRNSYS) 
enabling importing MUSE components, while MUSE 
plug-outs are add-ons dedicated to import and 
execution of MUSE components within the 
considered environment. 
To date, the MUSE approach has been assessed in 
the following frames: (i) To couple physical models 
from different simulation tools: a MUSE component 
was generated from an energy simulation 
environment (COMFIE Pleiades3) and then reused in 
other simulation environments (the Modelica 
environment Dymola and Matlab/Simulink) (Gaaloul 
et al, 2011); (ii) To reuse MUSE components 
generated from a simulation tool (Modelica/Dymola) 
in an optimal sizing tool (Verdière et al, 2012). 
 

 
Figure 4: MUSE facet for dynamic simulation 

 
In the scope of the PLUMES project, this tool 
support is being further enlarged and enriched, 
notably by providing a MUSE plug-out for the 
TRNSYS simulation tool and a MUSE plug-in for an 
energy management tool. 
There are several inherent benefits to rely on a 
framework like MUSE. One of the main is that it 
enforces a clear separation of concerns between the 
functional view of the components (i.e. its physical 
ports) and the various non-functional views (the 
application-specific facets). Therefore, it allows to 
model and define compositions iteratively: at first, at 
the physical level without taking care about target 
applications, and in a second time, taking care of any 
needed application-specific assembly. Also, as 
emphasized in the second section, the ability to reuse 
modeling components across applications (e.g. from 
simulation to optimal sizing) is very beneficial. 
Actually, provided the framework is assessed and 
adopted, it could encourage the development of novel 
usages of modeling components as well as novel 
                                                             
3 http://www.izuba.fr/logiciel/pleiadescomfie 
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business models. This is actually what is intended in 
PLUMES: a large-scale modeling components 
market, including large components web libraries and 
a breadth of software tools supporting components 
customizing and assembling. This latter point, related 
to the tool support for components customization and 
assembly, is addressed in the scope of the project as a 
complement to the MBSE approach, as described in 
the next section. 

Towards a model-driven executable modeling 
component factory 
While MBSE (Model-Based System Engineering) is 
widely applied in several industrial areas (for 
instance in the aerospace or automotive industry)4, it 
still has not – surprisingly enough – made its 
breakthrough in the building domain and, even the 
research literature includes few references. We may 
quote the work of P. Geyer in (Geyer, 2011), which 
focuses on applying the SysML5 (a general-purpose 
modeling language dedicated to systems modeling, 
based on the UML, which includes nine diagrams 
covering three design concerns: requirements, 
structure and behavior) to building design for design 
optimization purposes and which shows quite nicely 
the resulting benefits of such an approach.. Also 
relevant to the considered issue, some works aim at 
combining the SysML with various simulation 
environments and languages, like e.g. Modelica 
(Paredis, 2010). Modelica is a widely used and 
renowned physical modeling language, which 
features object-oriented acausal systems description. 
It complements well SysML, by providing the 
necessary modeling constructs for behavioral 
physical systems modeling, where SysML is used to 
describe the structural aspects. Therefore, our choice 
in PLUMES is to heavily rely on these assets for all 
purposes related to “white-box” modeling (see the 
introduction of this section). 
More precisely, we propose to implement an 
approach similar to the one described by Kerzhner 
and al in (Kerzhner, 2011) but tailored for the 
building domain. The rationale is to define a two-step 
modeling process, which entails (manually) defining 
SysML design models, and then to generate SysML 
models specifically dedicated to some kind of 
analysis. The automated translation is configured 
thanks to a (manually defined) model which 
describes how design-level components and 
interfaces map to analysis-level ones. We plan to 
target SysML/Modelica models at the analysis level. 
A specificity of our application scope is that it will 
require to define a specific library of SysML 
components and interfaces for the building domain, 

                                                             
4 A sceptical reader may simply try an internet search 
engine query to check this assertion. 
5 OMG Systems Modeling Language, Object 
Management Group, http://www.omgsysml.org/, 
(accessed July 2012) 

to be used at the design level (this work is on-going). 
As far as the modeling tool support is concerned, we 
rely on the Papyrus UML tool6. 
But the main novelty of this research work is that we 
combine this white-box SysML / Modelica Model-
driven approach along with black-box executable 
components assembly facilities based on the MUSE 
framework. The aim is basically to be able to define 
and express MUSE component assemblies in SysML, 
whether they include only white-box Modelica 
components, black-box executable components, or a 
mix of both. The (idealized) process that is to be 
implemented is the following: having to model a 
complex building system (a combination of various 
energy systems and building components), the user 
first sketches a first model of the assembly relying on 
the dedicated design-level SysML library. Then, 
depending on applicable requirements, the user may 
switch to the SysML/Modelica analysis-level view to 
define from scratch the components and their 
behavior relying on the Modelica language. The user 
may also queries MUSE component databases and 
check for the availability of off-the-shelves 
components that could fit his needs. If so, the 
characteristics of the selected MUSE components are 
exhibited in the SysML modeling tool. The user is 
then able to connect the components, regardless from 
their origin, provided they offer the required facets. 
The resulting component assembly may then be used 
to generate a new, composite MUSE component. 
Note that this assembly process will be, in an analogy 
to the layered MUSE architecture, an iterative one: 
assemblies will be performed first at the physical, 
application-independent, level. Then, each specific 
application (simulation, optimal sizing,…) targeted 
will be dealt with in a separate assembly. This is 
particularly relevant in the scope of MBSE, which 
generally advocates multi-view / multi-level 
modeling to ensure a clear separation of concerns. 

CONCLUSION 
In this paper, we have described some on-going 
research work performed in the scope of the 
PLUMES French collaborative research project. This 
work aims at applying several advanced approaches 
stemming from the software engineering area to the 
building area. The first outcomes suggest that some 
limitations of the available tool support in the 
building domain could be overcome this way. The 
paper illustrates this by showing how MDA can be 
the base of novel and more effective connections 
between the Building Information Model and 
simulation tools, and how model-driven engineering 
and component-based approaches combined could 
contribute to the emergence of novel usages of 
executable modeling components. The short-term 
perspectives of the project are mainly related to 

                                                             
6 http://www.eclipse.org/modeling/mdt/papyrus/ 
(accessed July 2012) 
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implementation and assessment of the solutions, with 
an end of 2013 horizon. 
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