
PLUMES: TOWARDS A UNIFIED APPROACH TO BUILDING PHYSICAL
MODELING

Sylvain Robert1, Benoît Delinchant2, Bruno Hilaire3, and Yann Tanguy1
1 CEA, LIST, 91191 Gif sur Yvette, France

2 Grenoble University, G2ELab, 38402 St Martin d'Hères, France
3CSTB, TIDS/MOD-EVE, Sophia Antipolis, France

ABSTRACT
In this paper, we give an overview of an on-going
research work aiming at assessing the benefits that
could be drawn from applying advanced software
engineering techniques – namely model-driven
architecture, component-based approaches and
model-based system engineering – to support
building life cycle tasks (especially design ones)
which entail making use of digital models.

INTRODUCTION
The construction industry is rapidly evolving,
propelled forward by growing ecological concerns,
increased competition, globalized markets, and
always more ambitious and stringent regulatory
frameworks. This has a strong impact, both on
workflows and on tools. Practices focus – more than
ever – on efficiency, flexibility and integration, while
buildings life cycle stakeholders tend to make use of
more advanced tools, especially of those relying
extensively on Information and Communication
Technology (ICT) (Rezgui et al, 2011). For instance,
it is now common practice to rely on ICT-intensive
Building Management Systems (BMS) to support
operation phase activities – e.g. relating to energy
monitoring and management or to facilitate
maintenance tasks. The same way, building design
tasks heavily rely on software tools – e.g. Computer-
Aided Design (CAD) tools and physical modeling
and simulation tools – to properly define, predict and
optimize building behavior in all its dimensions
(structural, energy, etc).
From this steady and strong (r)evolution, new needs
and requirements have emerged, which call for cross-
expertise in the considered business domain (the
construction / building sector) and in cutting-edge
software-intensive systems engineering approaches.
Actually, the rush towards ICT/software support has
led to a significant but somehow disordered growth
of the related tools offer. As an illustration, a
repository from the US Department of Energy (DoE)
includes 393 software tools (as of January 2013)
(DoE, 2013) dedicated to evaluating energy
efficiency, renewable energy and sustainability in
buildings. The issue there is that this massive offer
comes with what could be termed colloquially a
massive mess: from one tool to another, not only
functionalities vary but also provider status and
license kind, openness, physical domains targeted,
software architectures, underlying languages and
frameworks, mathematical modeling paradigms, data

formats, etc. On the other hand, buildings are way
more complex than they used to be: highly multi-
physical systems - sometimes even coined cybernetic
given the importance of ICT in nowadays buildings
(Wetter, 2011), requiring accounting for various and
intermixed physical phenomena (lighting, airflow,
energy, mechanical, control-command,…) in an
integrated way. The challenge is therefore to enable
exhaustive and integrated buildings simulations,
while relying on disparate and somehow natively
incompatible tool: a challenge which is the research
focus of the PLUMES project, funded by the French
National Research Agency.
The intent of this paper is to give an overview of the
objectives of this research project and to share its
first outcomes. The project is ongoing (one year to
go) and a lot of work is required to implement and
assess the first results. Still, it is our belief that the
research issues dealt with and the paths taken to
address them are worth sharing with the Building
Simulation research community.
The paper is structured as follows: section 2 gives an
overview of the project’s research scope and
highlights our motivation. Section 3 and 4 introduce
two major research topic addressed in PLUMES,
respectively model-driven architecture applied to
building simulation, and a (still prospective) research
thread aiming at devising an approach for model-
driven engineering of executable buildings modeling
components. At last, section 5 gives some
conclusions and perspectives.

AN OVERVIEW OF THE PLUMES
PROJECT
When it comes to “integrate the incompatible” (see
the introduction), the keyword is usually
interoperability, i.e. “the ability of two or more
systems or components to exchange information and
to use the information that has been exchanged”
(IEEE, 1990). Indeed, the main issue in PLUMES is
to devise an approach that could enable, in a
systematic and reproducible way, information
exchange between most (if not all) buildings
modeling and simulation tools. In fact, in a broader
sense, the aim is to contribute to improve building
modeling and simulation support along the following
dimensions: reusability, modularity, evolutivity,
portability and, sustainability. These keywords are
quite well-known in the software engineering area,
where they are part of the motivation for several
long-term research trends: software design and

Proceedings of BS2013:
13th Conference of International Building Performance Simulation Association, Chambéry, France, August 26-28

- 2830 -

development paradigms - e.g. component-based
approaches (Szyperski, 2002) or model-based
engineering (Schmidt, 2006), execution platforms -
e.g. for distributed computing (OMG, 2012),
methodological guidelines and design practices,
standardization - e.g. of data and interfaces, or
modeling language (OMG, 2011). Hence the base
assumption of PLUMES, which is that, related to the
aforementioned objective, consequent benefits can be
gained by applying some key assets from the
software engineering area to the one of building
modeling and simulation. By the way, this is already
somehow true: a quick tour of practices and ongoing
research in the field of ICT for building design show
that, like Mr Jourdain had been talking prose and
never known it1, this community tackles well-known
software engineering research challenges without
explicitly naming them (and sometimes without fully
benefiting from the rich state of the art pertaining to
them).
The interoperability issue quoted at the beginning of
the section, is actually twofold - see (Howie et al,
1997) for instance: (i) data-focused interoperability
is related to how data may be exchanged between
several systems / components; (ii) execution-focused
interoperability concerns combined execution of two
or more executable pieces of software, each
potentially relying on different and non-
straightforwardly compatible technologies. The
feedback we got in the scope of the project from field
interviews shows that the current support for these
two kinds of interoperability in the buildings
modeling domain is still poor - this is also shown by
the literature, see e.g. (Steel et al, 2012), (Radosevic
et al, 2005), (Plume et al, 2007). This requires the
stakeholders to implement ad-hoc strategies –
dedicated data translators, one-to-one tools coupling
– which tend to be effort and time-consuming, error-
prone, and which by no way end up in the long-term,
scalable approaches and tools that are needed.
When it comes to data-focused interoperability, one
main issue is the connection between the so-called
Building Information model (BIM) and the buildings
physical modeling / simulation tools. The BIM
covers an extensive range of assets (Succar, 2009),
among which technological ones are prevailing – the
main being the (still theoretical) possibility to rely on
a single logical, consistent source for all information
associated with the building (Howell, 2005): the BIM
is basically the repository of all digital information
pertaining to the building. It is now widely
recognized as a cornerstone of future tools and
practices in the construction industry, and many
works aim at improving combined support for BIM-
based collaborative design work and building energy
optimization (Crosbie, 2011). Here, combining
actually means connecting: the intent is to be able to
use the data contained in the BIM (building 3D

1 Le bourgeois gentilhomme, Molière, 1670

geometry, physical parameters like e.g. walls thermal
characteristics) to seamlessly feed downstream
simulation tools. As shown in the subsequent section,
the issue is not as straightforward as it seems and
model-driven architectures (MDA)-like approaches
(OMG, 2003) could be an elegant solution to deal
with it.
As mentioned in the introduction, properly modeling
the breadth of physical phenomena that occur within
the building usually requires relying on several tools.
The issue here is therefore the one of execution-
focused interoperability, which may be tackled in
two main ways. The first (and most widely
implemented) is the runtime coupling one: two or
more environments interact at runtime and exchange
data in order to simulate jointly various physical
phenomena (e.g. combined air flows and energy
simulation). Different coupling strategies may be
differentiated (e.g. strong vs weak) (Trčka et al,
2010), and some implementations make use of a
dedicated coupling middleware (Wetter et al, 2008).
The second approach is the inter-environments
porting one: the aim here is to enable reusing
executable modeling components issued from one
environment in another (non natively compatible)
environment. In this matter, the state of the art
focuses on simulation tasks and still lacks a
generalist approach that would be enable not only to
model the intermix of physical phenomena, but also
to reuse and capitalize in a systematic and generic
way modeling components across different
application domains. As shown subsequently,
PLUMES proposes a novel approach to the issue,
relying on the component-based software paradigm
(Szyperski, 2002). Combined with principles and
tools stemming from Model-Based System
Engineering (MBSE), this approach clears the path
for an intensive use of physical modeling
components in the whole building life cycle.

A MDA APPROACH TO BUILDING
SIMULATION
From a theoretical point of view, using the BIM to
perform energy simulation is not a high-end research
challenge, since it eventually boils down to mere data
processing (data-focused interoperability). However,
the vitality of the related research area tends on the
contrary to show that the issue is far from being
straightforward and remains open (Hitchcock et al,
2011).
In order to combine BIM and simulation, one can
distinguish two possible approaches. The first
advocates full integration of tools and data models,
and is mainly implemented by software vendors
which tools span a large part of building design
phases (and even life cycle). The aim is to rely on a
single building data model (BIM), used as a sole
reference in all design tasks, including simulation.
BIM authoring and simulation tools are fully
integrated at the data level, but often also at the user

Proceedings of BS2013:
13th Conference of International Building Performance Simulation Association, Chambéry, France, August 26-28

- 2831 -

interface level. This approach therefore treats
simulation tools as BIM-aware tools, using the
terminology introduced by A. Watson in (Watson,
2011). This strategy lacks openness and is
demanding: lacks openness, because only the
simulation tool(s) already embedded may be used;
demanding, because any extension, e.g. to add
simulation capabilities, requires a significant
implementation effort. The second approach to
BIM/simulation interoperability advocates “light”
integration and, relies on data translation in order to
generate the building model required by the
simulation tool from a building model conforming to
a given BIM data model. This approach is the most
frequent and several works have already attempted -
and to some extent, managed – to perform such
connections (Cormier, 2011) (Bazjanac, 2011).
Implementing such a linkage basically requires the
three following assets: (i) a base data format, in
which architectural building models will be
expressed; (ii) software tools to process the
architectural model data format and to generate
corresponding input files for simulation; (iii) a
simulation tool.
The choice of the data format to be used for
architectural models (i) has already been discussed
extensively. Most authors tend to prefer relying on an
open, standard, public format than to rely on
proprietary formats, and the Industry Foundation
Classes (IFC) (Building Smart, 2007) appears clearly
as a reference. The reason for fending off proprietary
formats is quite obvious and stems from the necessity
to ensure interoperability between tools from several
– if not all – software vendors. The IFC is currently
the only format implemented (as export / import
functionalities) in most of the CAD tools, and the
only open generalist format standardized by an
international consortium. For more details about the
IFC and its place in the BIM interoperability
landscape, the reader may refer to the study
performed by J. Steel and al in (Steel et al, 2012).

Figure 1 Usual IFC to energy simulation process

At this point, several difficulties arise. If we have a
look at the usual BIM to simulation process sketched
in Figure 1, we see that it starts with generating an
IFC file from a BIM authoring tool (Design tool).
This IFC file generally contains all information
pertaining to the building geometry. However, the
first issue is that this geometry requires some pre-
processing to be performed. This pre-processing
consists first in a model-checking phase to identify
errors and inaccuracies in modeling – e.g. meeting
and intersection of objects – and to enrich building
geometry with so-called upper levels space
boundaries (Bazjanac, 2010) (those are necessary to
obtain a valid geometry before translation to the
simulation tool and, IFC-compliant BIM authoring
tools do not generate them). The result of pre-
processing is a clean (containing no errors or
inaccuracies) and complete (with an enriched
geometry) IFC architectural file. This file has then to
be enriched with additional properties pertaining to
the building, that are required for energy simulation
(e.g. wall thermal properties). After enrichment, the
IFC file is translated to the input format of the
simulation tool, and this is the point at which another
difficulty is encountered: the file that is obtained
from the IFC processing chain only includes
information pertaining to the building, but not to the
energy systems to be deployed (Heating Ventilation
and Air Conditioning, HVAC). Actually, this stems
from limitations of the IFC itself, since the data
format does not include – at least in its current
version - the necessary modeling elements, and from
the poor IFC export capabilities of the CAD tools as
well (Robert, 2012). This therefore requires these
systems to be described in a dedicated separate
format – generally the one of the targeted simulation
tool.
Now, what about Model-Driven Architecture?
Well, looking at Figure 1, a reader familiar with
MDE (Model-Driven Engineering) would probably
have had the feeling that it reminds of a standard
MDA (Model-Driven Architecture)-process (OMG,
2003): several modeling steps, together with an
iterative enrichment, and in between automated data
translation. The process actually starts with what
could be called an application-independent IFC
model that is transformed and enriched to become an
energy-simulation-focused IFC model, and then
again enriched and transformed to the targeted
simulation tool data format. And indeed it is the
assumption of the authors that such a process is an
MDA-one or at least, could be one provided some
improvements are achieved: upgrading the IFC, in
order to enable all information (building and HVAC
systems) to be contained in IFC files, improving
CAD tools export facilities, implementing the
required data / model transformation support tools
and, providing the adequate methodological
guidelines. The resulting process we are aiming at is
the one described in Figure 2: the information flow is

Proceedings of BS2013:
13th Conference of International Building Performance Simulation Association, Chambéry, France, August 26-28

- 2832 -

entirely based on IFC models that are iteratively
refined: a first step is to generate the IFC (both
building geometry & HVAC systems) from CAD
tools – with, as in the usual way, a pre-processing
phase for the geometrical part; then, the IFC model
undergoes a two-step enrichment: first, to issue an
energy-simulation-focused IFC file (dedicated to
energy simulation but independent from any specific
tool); then, to issue a tool-specific IFC file that is
then translated to the targeted tool input data format.
The interest here is to capitalize the information
contained in the simulation-focused IFC file that may
potentially be reused to target other energy-
simulation tool than the one initially targeted (note
also that such a process may be generalized to target
any kind of simulation).

Figure 2 MDA IFC to energy simulation process

As a first step to put this vision into practice, our
work - detailed in (Robert, 2012) - first entailed
evaluating the capabilities and assessing the
limitations of IFC with respect to HVAC systems
description and of CAD tools with respect to IFC
export. As far as IFC is concerned, the second step
was to issue some propositions of extension of the
standard. The rationale of the study was not to target
completeness, but more to follow an iterative
process: (i) choosing a set of widely used energy
simulation languages and environments (namely
Modelica (Fritzson, 1998), TRNSYS and
EnergyPlus); (ii) select a set of building energy
systems to model (in our case: ventilation system,
water heater, central heating system and electricity
production); (iii) model those systems in the targeted
environments; (iv) model those systems with IFC; (v)
confront the models and analyze the outcomes; (vi) at
last, when required, issue propositions of IFC
enhancements.
A first conclusion that can be drawn is that the
current support, whether it concerns IFC or CAD
tools IFC export facilities, is poor. Regarding the first
point, we have defined a set of extensions to the IFC
that enable modeling the classes of energy systems
we have analyzed. These extensions are expressed as

IFC property sets. These are native IFC mechanisms
that allow adding properties to existing IFC meta-
elements. These mechanisms are not as powerful as
those of MDA languages, like the UML (Unified
Modeling Language) profiling technique (OMG,
2011), but this is the easiest and most flexible way to
extend the IFC specification. As far as the latter point
is concerned, our observation is that IFC export
capabilities are highly variable: in particular, some
tools are more powerful for geometry aspects, while
others show more compliance to the IFC standard for
energy systems IFC export. Our prototyping plans
therefore entail relying on different CAD tools,
depending on the aspect being considered. The main
aim of this prototyping phase (to be achieved by mid-
2013) is to be able to reify the process described in
Figure 2, and to demonstrate the relevance of a clear
and formalized separation of concerns between
platform-independent models and platform-specific
ones. This process will be assessed with two building
models, one comprising only an energy system, the
other a basic building coupled to an energy system.
Two main energy simulation platforms will be used:
TRNSYS and EnergyPlus, with the aim to
demonstrate that the same energy-simulation focused
IFC model may be used to target both tools.

MODEL-BASED ENGINEERING OF
EXECUTABLE MODELING
COMPONENTS IN THE BUILDING
DOMAIN
A wide range of activities performed within building
life cycle makes use of modeling software
components. These are mainly used to simulate and
predict resulting building behavior to assess design
choice but there is a steady tendency to enlarge their
scope of use - e.g. at operation time (Pang, 2012). It
is foreseeable that these will be somehow pervasive
to the whole building life cycle in a near future. One
issue is however that – as mentioned in the
introduction – the breadth of physical modeling
environments and languages translates into a massive
but highly heterogeneous offer. Related to this
concern, one objective in PLUMES is to devise
innovative ways to engineer executable modeling
components, while making the most of legacy ones.
We therefore advocates an engineering process that
rely on both following approaches (Delinchant,
2004): (i) the “white-box” approach, which consists
in explicitly defining the intended behavior of the
components thanks to a dedicated language (e.g.
Modelica); (ii) The “black-box” approach, which
advocates relying on legacy executable components.
The components’ behavior is not explicit, only their
interfaces are.
The main added value of our work lies in the
definition of a software component specification
(MUSE) allowing to making the most of MBSE
advantages, independently from any target
application and able to tackle heterogeneous

Proceedings of BS2013:
13th Conference of International Building Performance Simulation Association, Chambéry, France, August 26-28

- 2833 -

environments. As shown thereafter, in this approach,
a component can be viewed as a physical component,
owning physical port, independently from the
targeted application. More over, to facilitate model
reuse, these components may be expressed as
descriptive (white-box) model and / or as executable
legacy (black-box) models.

Figure 3: Structural view of a multi-facets MUSE

component

MUSE framework
The MUSE2 framework includes both conceptual and
software assets. From the conceptual point of view,
MUSE is a specification of a multi-application
modeling component standard for the building
domain. In the scope of the PLUMES projects, two
reports have clarified this specification, which may
be summed up as follows: (i) a MUSE component is
a technology and application-agnostic software
component which features a set of well-defined
interfaces; (ii) To ensure a better separation of
concerns, MUSE components feature layered
interfaces (Figure 3). MUSE components own
physical ports (the ports related to the actual physical
inputs / outputs of the actual system/equipment
represented by the component, e.g. a flow) and
general-purpose interfaces, e.g. to query components’
metadata. Then, a MUSE component may also own a
set of independent, application-specific (e.g.
dedicated to simulation) interfaces; (iii) in the latter
case, the interface is called a facet. A facet gathers a
consistent set of services (methods) dedicated to one
particular application. A MUSE component may own
several facets at the same time, and in its current
state, three kinds of application have been defined:
simulation, optimal sizing, and optimal control
(PLUMES, 2012). By way of illustration, Figure 4
shows the methods offered by the ODE dynamic
simulation facet. These methods enable managing the
underlying model in the scope of a simulation
(notifying incoming events, asking for state variables
derivatives to be computed, etc); (iv) MUSE supports
several underlying mathematical modeling
paradigms, including continuous, discrete and hybrid
systems, ordinary differential equations (ODE),

2 MUSE is the French acronym for « building energy
systems unified models »

differential algebraic equations (DAE); (v) MUSE
components may be atomic or composite. In the latter
case, the capabilities (available facets) of the
composite component depend on those of the internal
components.
The MUSE framework also includes a set of software
modules dedicated to support MUSE components
generation and import, in order to cope with the
multiplicity of existing tools. MUSE plug-ins are
add-ons to existing environments (e.g. TRNSYS)
enabling importing MUSE components, while MUSE
plug-outs are add-ons dedicated to import and
execution of MUSE components within the
considered environment.
To date, the MUSE approach has been assessed in
the following frames: (i) To couple physical models
from different simulation tools: a MUSE component
was generated from an energy simulation
environment (COMFIE Pleiades3) and then reused in
other simulation environments (the Modelica
environment Dymola and Matlab/Simulink) (Gaaloul
et al, 2011); (ii) To reuse MUSE components
generated from a simulation tool (Modelica/Dymola)
in an optimal sizing tool (Verdière et al, 2012).

Figure 4: MUSE facet for dynamic simulation

In the scope of the PLUMES project, this tool
support is being further enlarged and enriched,
notably by providing a MUSE plug-out for the
TRNSYS simulation tool and a MUSE plug-in for an
energy management tool.
There are several inherent benefits to rely on a
framework like MUSE. One of the main is that it
enforces a clear separation of concerns between the
functional view of the components (i.e. its physical
ports) and the various non-functional views (the
application-specific facets). Therefore, it allows to
model and define compositions iteratively: at first, at
the physical level without taking care about target
applications, and in a second time, taking care of any
needed application-specific assembly. Also, as
emphasized in the second section, the ability to reuse
modeling components across applications (e.g. from
simulation to optimal sizing) is very beneficial.
Actually, provided the framework is assessed and
adopted, it could encourage the development of novel
usages of modeling components as well as novel

3 http://www.izuba.fr/logiciel/pleiadescomfie

Facet1

resources

API

Files

M
et
a-
da
ta

XML

P
or
ts

P
or
ts

Facet2
APIP

or
ts

Proceedings of BS2013:
13th Conference of International Building Performance Simulation Association, Chambéry, France, August 26-28

- 2834 -

business models. This is actually what is intended in
PLUMES: a large-scale modeling components
market, including large components web libraries and
a breadth of software tools supporting components
customizing and assembling. This latter point, related
to the tool support for components customization and
assembly, is addressed in the scope of the project as a
complement to the MBSE approach, as described in
the next section.

Towards a model-driven executable modeling
component factory
While MBSE (Model-Based System Engineering) is
widely applied in several industrial areas (for
instance in the aerospace or automotive industry)4, it
still has not – surprisingly enough – made its
breakthrough in the building domain and, even the
research literature includes few references. We may
quote the work of P. Geyer in (Geyer, 2011), which
focuses on applying the SysML5 (a general-purpose
modeling language dedicated to systems modeling,
based on the UML, which includes nine diagrams
covering three design concerns: requirements,
structure and behavior) to building design for design
optimization purposes and which shows quite nicely
the resulting benefits of such an approach.. Also
relevant to the considered issue, some works aim at
combining the SysML with various simulation
environments and languages, like e.g. Modelica
(Paredis, 2010). Modelica is a widely used and
renowned physical modeling language, which
features object-oriented acausal systems description.
It complements well SysML, by providing the
necessary modeling constructs for behavioral
physical systems modeling, where SysML is used to
describe the structural aspects. Therefore, our choice
in PLUMES is to heavily rely on these assets for all
purposes related to “white-box” modeling (see the
introduction of this section).
More precisely, we propose to implement an
approach similar to the one described by Kerzhner
and al in (Kerzhner, 2011) but tailored for the
building domain. The rationale is to define a two-step
modeling process, which entails (manually) defining
SysML design models, and then to generate SysML
models specifically dedicated to some kind of
analysis. The automated translation is configured
thanks to a (manually defined) model which
describes how design-level components and
interfaces map to analysis-level ones. We plan to
target SysML/Modelica models at the analysis level.
A specificity of our application scope is that it will
require to define a specific library of SysML
components and interfaces for the building domain,

4 A sceptical reader may simply try an internet search
engine query to check this assertion.
5 OMG Systems Modeling Language, Object
Management Group, http://www.omgsysml.org/,
(accessed July 2012)

to be used at the design level (this work is on-going).
As far as the modeling tool support is concerned, we
rely on the Papyrus UML tool6.
But the main novelty of this research work is that we
combine this white-box SysML / Modelica Model-
driven approach along with black-box executable
components assembly facilities based on the MUSE
framework. The aim is basically to be able to define
and express MUSE component assemblies in SysML,
whether they include only white-box Modelica
components, black-box executable components, or a
mix of both. The (idealized) process that is to be
implemented is the following: having to model a
complex building system (a combination of various
energy systems and building components), the user
first sketches a first model of the assembly relying on
the dedicated design-level SysML library. Then,
depending on applicable requirements, the user may
switch to the SysML/Modelica analysis-level view to
define from scratch the components and their
behavior relying on the Modelica language. The user
may also queries MUSE component databases and
check for the availability of off-the-shelves
components that could fit his needs. If so, the
characteristics of the selected MUSE components are
exhibited in the SysML modeling tool. The user is
then able to connect the components, regardless from
their origin, provided they offer the required facets.
The resulting component assembly may then be used
to generate a new, composite MUSE component.
Note that this assembly process will be, in an analogy
to the layered MUSE architecture, an iterative one:
assemblies will be performed first at the physical,
application-independent, level. Then, each specific
application (simulation, optimal sizing,…) targeted
will be dealt with in a separate assembly. This is
particularly relevant in the scope of MBSE, which
generally advocates multi-view / multi-level
modeling to ensure a clear separation of concerns.

CONCLUSION
In this paper, we have described some on-going
research work performed in the scope of the
PLUMES French collaborative research project. This
work aims at applying several advanced approaches
stemming from the software engineering area to the
building area. The first outcomes suggest that some
limitations of the available tool support in the
building domain could be overcome this way. The
paper illustrates this by showing how MDA can be
the base of novel and more effective connections
between the Building Information Model and
simulation tools, and how model-driven engineering
and component-based approaches combined could
contribute to the emergence of novel usages of
executable modeling components. The short-term
perspectives of the project are mainly related to

6 http://www.eclipse.org/modeling/mdt/papyrus/
(accessed July 2012)

Proceedings of BS2013:
13th Conference of International Building Performance Simulation Association, Chambéry, France, August 26-28

- 2835 -

implementation and assessment of the solutions, with
an end of 2013 horizon.

ACKNOWLEDGEMENT
This work presented in this paper is performed in the
scope of the PLUMES project, funded by the French
National Research Agency.

REFERENCES
Rezgui Y. and Miles J., 2011. Harvesting and
managing knowledge in construction: From
Theoretical Foundations to Business Applications,
Spon Press, ISBN 978-0-415-54596-9.
US Department of Energy, 2013. Building Energy
Software Tools Directory,
http://apps1.eere.energy.gov/buildings/tools_director
y/, accessed January 2013.
Wetter M., 2011. A view on future building system
modeling and simulation, in "Building Performance
Simulation for Design and Operation", 2011, Jan L.
M. Hensen and Roberto Lamberts, Routledge, UK,
ISBN: 978-0-415-47414-6
IEEE, 1990. IEEE Standard Computer Dictionary: A
Compilation of IEEE Standard Computer Glossaries,
New York, NY.
Szyperski C., 2002. Component Software: Beyond
Object-Oriented Programming, 2nd ed., Addison-
Wesley Professional, Boston ISBN 0-201-74572-0.
Schmidt, D.C., 2006. Model-Driven Engineering,
February 2006, IEEE Computer 39 (2).
OMG, 2012. Common Object Request Broker
Architecture (CORBA) 3.3, Object Management
Consortium, http://www.corba.org/, accessed January
2013.
Howie C. T., Kunz J., and Law K. H., 1997. Software
Interoperability, CIFE Technical report#117.
Steel J., Drogemuller R., Toth B., 2012. Model
interoperability in building information modelling,
Software System Modelling 11:99–109
Radosevic M., Hensen J., and Wijsman A., 2005.
Implementation strategies for distributed modeling
and simulation of building systems, 9th International
IBPSA conference, Montréal, Canada.
Plume J., Mitchell J., 2007. Collaborative design
using shared IFC building model - learning from
experience, Automation in construction 16, 28-36.
Succar B. 2009. Building information modelling
framework: A research and delivery foundation for
industry stakeholders, Automation in Construction 18
357–375, Elsevier.
Howell I. and Batcheler B., 2005. Building
Information Modeling Two Years Later –Huge
Potential, Some Success and Several Limitations,
www.laiserin.com/features/bim/newforma_bim.pdf,
accessed January 2013.
Crosbie T., Dawood N., Dawood S., 2011. Improving
the energy performance of the built environment: The

potential of virtual collaborative life cycle tools,
Automation in Construction 20 205–216.
Trčka M., Hensen J. L. M., and Wetter M., 2010. Co-
simulation for performance prediction of integrated
building and HVAC systems - an analysis of solution
characteristics using a two-body system, Simulation
Modelling Practice and Theory, Volume 18, Issue 7,
p.957-970.
Wetter M. and Haves P., 2008. A modular building
controls virtual test bed for the integration of
heterogeneous systems, in proceedings of the 3rd
National Conference of IBPSA-USA, Berkeley,
California.
OMG, 2012. MDA Guide Version 1.0.1, Object
Management Group, http://www.omg.org/cgi-
bin/doc?omg/03-06-01 (accessed July 2012)
OMG, 2011. Unified Modelling Language (UML),
Object Management Group, http://www.uml.org/,
accessed January 2013.
Hitchcock R. J. and Wong J., 2011. Transforming
IFC architectural view BIMS for energy simulation,
Proceedings of Building Simulation 2011.
Watson A., 2011. Digital buildings - Challenges and
opportunity, Advanced engineering informatics 25
573-581.
Cormier A., Robert S., Roger P., 2011. Towards a
BIM-based service oriented platform: application to
building energy performance simulation, Building
Simulation 2011, Sydney, Australia.
Bazjanac V., Maile T., O’Donnell J. T., C. M. Rose
M., Mrazovic N., 2011. Data environments and
processing in semi-automated simulation with
energyPlus, CIB W078-W102, Sophia Antipolis,
France.
Building Smart, 2007. IFC2x Edition 3 Technical
Corrigendum 1, Building Smart International
Alliance for Interoperability.
Bazjanac, V., 2010. Space boundary requirements for
modeling of building geometry for energy and other
performance simulation, Proceedings of CIB W078
conference, Cairo (Egypt).
Robert S., Hilaire B., Sette P. and Soubra S., 2012.
Paving the way for exhaustive and seamless BIM-
based building energy simulation, proceedings of
CIB W078 conference, Beirut, Lebanon.
Fritzson P. and Engelson V, 1998. Modelica - A
unified object-oriented language for system modeling
and simulation, in proceedings of European
Conference on Object-Oriented Programming
(ECOOP).
Pang X., Wetter M., Bhattacharya P., Haves P., 2012.
A framework for simulation-based real-time whole
building performance, Building and Environment 54
100-108
Delinchant B., Wurtz F., Magot D. and Gerbaud L.,
2004. A component-based framework for the
composition of simulation software modeling

Proceedings of BS2013:
13th Conference of International Building Performance Simulation Association, Chambéry, France, August 26-28

- 2836 -

electrical systems, Journal of Simulation, Society for
Modeling and Simulation International, Special
Issue: Component-Based Modeling and Simulation.
Jul 2004; vol. 80: pp 347 – 356
PLUMES 2012. Interfaces du composant MUSE,
internal PLUMES project’s report, June 2012.
Gaaloul S., Delinchant B., Wurtz F. and Verdière F.,
2011. Software components for dynamic building
simulation, Proceedings of Building Simulation 2011
conference.
Verdière F. and al, 2012. Modelica models
translation into java components for optimization and
DAE solving using automatic differentiation, ,
Computer Modelling and Simulation (UKSim).
Geyer P., 2011. Systems modeling for building
design: a method based on the Systems Modeling
Language, Proceedings of the 2011 eg-ice Workshop,
University of Twente, The Netherlands.
Paredis C. J. J., Bernard Y., Burckhart R. M., De
Koning H.P., Fridenthal S., Fritzson P., Rouquette N.
F., Schamai W., 2010. An overview of the SysML-
Modelica Transformation Specification, in
Proceedings of the 2010 INCOSE International
Symposium, Chicago, IL.
Kerzhner AA, Jobe JM, Paredis CJJ, 2011. A formal
framework for capturing knowledge to transform
structural models into analysis models, Journal of
Simulation 5, 202-216.

Proceedings of BS2013:
13th Conference of International Building Performance Simulation Association, Chambéry, France, August 26-28

- 2837 -

