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ABSTRACT 
Calibration of Building Energy Simulation is an 
under-determined problem. There can be several 
correct solutions. The consequences of using the 
Building Energy Simulation for retrofit design can be 
significant. In this paper, we will propose a method 
that identifies different solutions in the entire field 
that was studied. It enables one to evaluate the 
uncertainty in energy saving estimations. The method 
uses an experimental design in order to reduce 
calculation time. It uses the coefficient of variation of 
root mean square error. We applied the method on an 
old building. The same retrofit design can yield a 40 
to 60% savings in energy according to the chosen 
calibrated Building Energy Simulation. 

INTRODUCTION 
Within the framework of greenhouse gas emissions 
reduction and increasing energy costs, assessing 
energy efficiency of buildings becomes an 
increasingly critical issue. It is not only a matter of 
customer information, but also a question  of 
enhancing building energy efficiency, energy 
performance contracting and energy expenditure 
control. 
It is fully acknowledged that Building Energy 
Simulation (BES) could be very helpfull for Building 
Energy Efficiency Characterization (Bertagnolio 
2010, Coaklay  2011, ASHRAE 2002, etc.). BES 
should help understanding building behaviour versus 
measurements and calculations. But as results are 
influenced by a high number of variables, it still is 
difficult to assess an accurate representation of a 
building’s energy performance.  
In this paper, we are proposing a method for the 
validation and the uncertainty analysis of a Building 
Energy Simulation model. It is based on simplified 
BES performance modelling using an experimental 
design. The method has first of all, been applied to 
monitoring a centuries old building, and secondly, 
validated with a calculated data  for this same 
building. 
The goal of this paper is three-fold:  
• to provide a method for sucessful calibration, 
• to provide indicators to operators in order to 

evaluate the relevance of the results, 

• to provide key elements to reduce measurement 
time and the number of parameters: amount of 
data needed, confidence interval that can be 
obtained, etc. 

Goals of using Building Energy Simulation 
In metrology, measurement can be defined as the 
application of chains of traceability made in practice 
linked to reference standards. This reference depends 
on the characteristics: 
• for customer information or regulatory control, 

the reference deals with the comparison of 
performance with other buildings (Barley 2005), 

• for new building performance verification,  
performances have to be compared with the 
design intent, 

• for energy saving estimation, it should be 
compared before and after retrofitting. 

Therefore, there are 2 kinds of references:  
• standards references, e.g. that French regulation 

defines as the energy consumption of a building 
under standard meteorological conditions and 
occupancy. Occupancy is defined as internal 
gains and indoor temperature (CSTB 2006). 

• baseline references that IPMVP (2002) and 
ASHRAE (2002) define as the energy use or 
demand through a baseline period which is the 
"period of time selected as representative of 
facility operations before retrofit". 

BES are then used to put the building under reference 
conditions. BES uses 3 different kinds of input data : 
• static ones that correspond to building 

characteristics (dimensions, material used, 
systems characteristics, etc.) 

• dynamic ones (meteorological conditions, 
occupancy, indoor temperature, etc.) 

• constants that corresponds to theoretical models 
(specific air heat, Stefan Bolzmann constant, 
etc.) 

LITTERATURE REVIEW 
BES are able to calculate several output data. The 
most common ones used are heating demand or 
energy consumption. 
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Subsequently, BES calibration deals with finding the 
input data that represent the real building the most 
accurately and its energy performance in terms of the 
output data. It is a highly under-determined problem 
(Coakley 2011) that leads to several plausible 
solutions. 
Usual methods start with building model construction 
by collecting static data (audit). Then several 
methodologies are used depending on available data 
and monitoring. They are all based on an iterative 
process that tends to improve the model (making it 
the most life-like). These methodologies use 
sensitivity analysis, evidence, and calculated and 
monitored output data comparison (Bertagnolio 
2010, Raftery 2009). 

Sensitivity analysis and measurement uncertainty 
In order to be as precise as possible when modeling, 
the first question asked is what are the parameters 
that have the greatest impact on the results. The 
influence can be two-fold:  

• the parameter value is very uncertain, 
• the model is very sensitive to the 

modification of the parameter value . 
Then substantial research is conducted to reduce the 
uncertainty of input parameters. As pointed out by 
ASHRAE and IPMVP (2002), one of the keys to 
building energy efficiency verification is to control 
data measurements uncertainties as efficiently as 
possible.  
Sensitivity analysis (Westphal 2005) consists of 
varying the inputs and verifying the consequences on 
the model outputs. Complete analysis often requires 
running a great number of simulations. It can be 
automated. 

Model output and monitoring results comparison  
When available, calibration consists of comparing 
measured and calculated data to improve the model. 
This process is iterative. It consists of comparing 
model outputs to monitored data to enhance the 
building model analysis of the results. 
In order to analyse the differences between 
measurements and calculations, two different and 
complementary methods are used : graphical and 
statistical. 
Graphical calibration consists of using different 
graphical technics. It uses, for example (ASHRAE 
2002) : 

• weather day type 24 hour profile plot, 
• binned interquantile analysis, 
• three dimensional surfaces, 
• three dimensional color plot. 

The expertise of the modeler is then used to enhance 
the BES. The statistical approach consists of 
calculating mathematical indicators that evaluate  
BES matches with measurements. ASHRAE 

proposes 2 main indicators : Normalized Mean Bias 
Error (NMBE) and Coefficient of Variation of the 
Root Mean Square Error (CVRSME) 
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Where mi and si are measured and simulated values 
for each i data point, with n being the number of data 
points.  

Evidence-based methodologies 

Evidence-based methodologies are iterative methods 
that consist of improving the BES model by changing 
input parameters with regards to available evidence 
in clearly defined priorities (Coakley 2011). It can 
use both previous described tools. 

Conclusions 
ASHRAE considers that a BES model is calibrated 
when "they produce MBEs within ± 10% and 
CVRMSE within ± 30% when using hourly data or 
±- 5% to 15% with monthly data". There are 
obviously several possibilities to obtain such 
performance. But there still is not any method that 
can evaluate the relevance of the results. 

METHODOLOGY 
As calibration is an under-determined problem, it is 
often advisable to run thousands of simulations. In 
order to reduce time and their number, we are 
proposing a method using an experimental design. It 
is based on a reduced number of simulations. It is 
aimed at creating a simplified model representative 
of BES performance as a function of the input data. 
As it is simplified, we have to choose the most 
influent parameters for which the model will be 
calibrated. 
The method consists of 7 steps: 
1. audit and BES creation 
2. hourly measurements  
3. choice of the most influent parameters (based on 

literature or on a sensitivity analysis), 
4. experimental design construction and 

corresponding BES calculation, 
5. automatic identification using simplified model, 
6. evaluation of confidence interval results 
7. Calculation of BES reference conditions. 

Building audit and BES model construction 
In order to construct a BES model, input variables 
and parameters have to be set as accurately as 
possible. The first step is then to make a strong audit 
with the lowest uncertainty possible with non-
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destructive measurements. This uncertainty has to be 
evaluated.  

"The need for certainty must be carrefully balanced 
with measurement and analysis costs." (ASHRAE 
2002). As this study concerns research,  a lot of time 
has been taken for the audit. It has to be adapted for 
commercial purposes. 

For wall composition identification with a non-
destructive audit, operator expertise is important. 
Moreover, some specific tests can be employed :  

• visits and geometry measurements,  

• construction drawing, 

• surveys and interviews, 

• blower door test for air tightness evaluation,  

• infrared thermography, 

• etc. 

Uncertainty analysis of the measurement should be 
kept in mind when auditing.    

Hourly measurements  
Hourly measurements have to be carried out through 
a baseline period. ASHRAE and IPMVP recommend 
establishing a baseline period that is "representative 
of facility operations. It has to represent the range of 
conditions encountered by the affected energy using 
systems." (ASHRAE 2002). 

Parameters that must be measured have to correspond 
to dynamic input and output of the chosen BES such 
as : meteorological conditions, indoor temperature 
and heating load. An estimation of their uncertainty 
has to be assumed. Temperature measurements 
should corresponds to  BES model zoning. In our 
case the purpose is to evaluate winter energy heating 
demand.  

Choosing influent parameters 
This is one of the key steps of the method; the 
selection of only a few parameters among the 
hundreds. The most influent parameters have to be 
selected. The influence of a parameter on the result 
can be two-fold. The value of the paremeter could 
have a great uncertainty or the model used is very 
sensitive to it. So, a complete uncertainty and 
sensitivity analysis could be very helpful, but 
analysis of the litterature (Gautier 2012) shows that 
the most influent parameters are often the same : 

• indoor and outdoor temperature, 

• conductivity coefficient of walls and 
windows, 

• ventilation flows, 

• air tightness of the building, 

• internal gains, 

• efficiency of HVAC, 

• etc. 

Moreover, the audit can add greater uncertainty to 
input parameters, for exemple : 

• is there insulation behind the wall ? 

• what is the conduction coefficent of a 
material ? 

• etc. 

Once the parameters have been chosen, upper and 
lower limits have to be set. Uncertainty analysis 
provides a way to choose those limits. 

Experimental design construction and 
corresponding BES calculation 
Experimental design methods are mathematical sets 
of tools that enable one to establish and analyse the 
relationship between one or several variables and the 
parameters that make them vary. It can be used for 
optimization strategies (Vivier 2002). 

For each Pi parameter, upper (+1) and lower (-1) 
limits are set as regards to the studied field. The 
response is considered to be linear between these two 
values. 

Then the number of experiments that must be 
conducted depends upon the number of chosen 
parameters and their interactions between each other. 
Table 2 is an example of a 7-parameter experimental 
design with 15 experiments. The type of interaction 
was determined according to our modelling expertise.  

The variable we are interested in is heating load. For 
each experiment, we calculated the BES daily 
consumption Ccalc_d_k where d corresponds to the 
day's number and k the experiment number. 

The purpose is to write the equation of the calculated 
consumption for each day of calculation and for each 
experiment as a function of parameter value and 
coefficients. In our example of the experimental 
design describe in Table 2 : 

∑ ∑ ++++= 650__00_0___ ***** PPcPPbPaPacC diidiidddkdcal

   E3 

With Pl, the parameter values, Cd_0, ad_i_, bd_i and cd_xx 
are the coefficients of the equation. Let Ccal_d be the 
vector of the calculated consumption for each 
experiment on the d day, and P the matrix of the Pi 
value. It yields : 

Ccal_d(Pi) = Md.P(Pi)   E4 

where Md is the vector of coefficient (ai, bi and c). It 
is possible if P is an invertible matrix and if its  
determinant is not  null. It yields as many matrix Md 
as monitored days.  

Identification 
Monitoring provides the heating load for each day : 
Cmon_d. We use an experimental design and 
identification method to find parameter values that 
minimalize the difference beween measured data and 
simulation output data. The indicators used are Mean 
Bias Error (MBE) and Root Mean Square Error 
(RMSE). We used the Excell® solver method. 

As the problem is under-determined, several 
solutions can be achieved. It depends on the 
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parameter values with which we initialize the 
algorithm. Then in our studied field, we chose 
different start vectors (Vi) as figured in Table 3.  

Evaluation of confidence interval results 
Next, we obtain 2 sets of 5 solutions, one with MBE 
and one for RMSE. Comparison of the solutions in 
terms of the indicators will help to find an acceptable 
solution. Then for each parameter, an average value 
and its standard deviation can be calculated. It is the 
first step to evaluating the confidence interval of the 
results. Indeed, the lower the standard deviation, the 
higher the confidence interval value. 
If the solutions present values that are too different, 
further analysis can be done. The first step is to run 
BES with the different sets of solutions that have 
been chosen. Graphical observation can provide an 
initial indication. It is also necessary to evaluate the 
results using MBE and CVRMSE on BES real 
calculation to avoid experimental design errors. 

BES calculation with reference conditions 
Finally, depending upon the purpose of the audit, 
BES have to be run with standard conditions or 
projected baseline data.  
If the goal is to improve energy efficiency of a 
building, a new BES model can be constructed with 
projected improvement and the results are then 
compared with the different sets of solutions. This 
gives an initial uncertainty idea of the results. 

CASE STUDY 
The building we chose for this study is a manor 
house near the Loire Valley in Western France. It has 
2 levels above a vault and is 240 square meters. It is 
constructed with tuffeau (a limestone with about 45% 
porosity). Indeed, among the diversity of existing 
stones used for construction, limestone represents 
10% of the total sedimentary stock. It has been 
widely used for construction in many countries such 
as Canada, Belgium and France. Those buildings 
present a large potential for energy savings. It has to 
be retrofitted. 
The house presents 3 types of windows : double-
glazing windows in the living room, single-glazing in 
the kitchen and double-glazing roof windows on the 
first floor. We notice 2 periods of construction. The 
main part, corresponding to the living room was built 
in the XVI century. Its walls are 70 cm thick. The 
kitchen part was built in the XIX century with a 22 
cm wall thickness.  
As in most old houses, there is a fireplace. Occupants 
use it only for weekends. 

 

 

 
Figure 1. Picture and ground blueprint 

BES creation 
We used TRNsys v17 in order to model this house 
with Type 56. We defined 4 living zones 
corresponding to our 4 temperature measurements 
(see monitoring further on below). We added 2 zones 
for the cellar, 2 zones for the attic and 1 zone for the 
adjoined barn. 
We coupled TRNsys with Contam for air flow 
modelling. The model is made with mechanical 
ventilation (in bathroom and toilets), natural 
ventilation, infiltration and door and window 
opening. 
Infiltration rates have been measured with a blower 
door. We observed that most of the leaks occur 
around the windows, mainly the kitchen ones. So we 
distributed the infiltration leaks not only 
proportionally to wall dimensions but also taking into 
account the number and quality of windows. 
Internal gains are estimated from interviews with the 
occupants about their habits. This was corrected with 
temperature and humidity monitoring observations. 
For example, the use of the bathroom or kitchen are 
well identified connected with the increase of 
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humidity. Fireplace gains was not initially taken into 
account (because of its high uncertainty). 

Characteristics of tuffeau have been found in 
litterature (Stephan 2012) and compared with 
laboratory measurements. As tuffeau is a very porous 
material, its conductivity can double between a dry 
stone and a saturated stone.  

A strong non-destructive audit was carried out for all 
the characteristics of the house. High uncertainty still 
concerns roof insulation since as the attic was not 
visited. 

Monitoring 
Monitoring was set up in November 2011 : 

• indoor temperature and humidity (4 places), 

• meteorological data (wind speed and 
direction, temperature, humidity and global 
horizontal radiation) for 2 months, 

• heating load for 14 days in December 2011 : 
energy given by the gas boiler was 
monitored with ultrasound waterflow and 2 
water temperature measurements. 
Uncertainty of such measurement has been 
evaluated in our laboratory at 20%.  

Choosing influent parameters 
As found in the litterrature, and in terms of the audit, 
the most uncertain and/or sensitive parameters are 
indoor and outdoor temperatures, roof insulation, 
ventilation rate, infiltration rate, stone conductivity, 
internal gain, solar gain and windows conductivity. 

An initial sensitivity analysis on these parameters 
showed that the windows conductivity coefficient 
and solar gains do not have a great impact on the 
results because of the small surfaces of the windows. 

Then the choice of parameters and their upper and 
lower limits are :  

• indoor temperature (T, °C) as there are only 
4 measurement points for big spaces; there is 
a great uncertainty on the average 
temperature for the whole zone. So in the 
experimental design, we made T vary from   
-2 °C to + 2°C from its value. This variation 
was applied to the 4 temperature 
measurements at the same time.  

• roof insulation - we chose mineral wool  
with a  conduction coefficient of 0.04 
W/m.K. We made the thickness vary from 5 
cm to 20 cm. We noted that the influence of 
the thickness is not linear to consumption. 
Only the conduction coefficient is.  

• tuffeau conduction coefficient varies with 
humidity from 0.37 to 0.79 W/mK, 

• internal gains are not well known, we 
applied a multiplier coefficient of 0.5 to 2, 

• in the bath-room, it is the only place in the 
house where tuffeau does not appear. But it 
is impossible to know if there is insulation 
behind wall or not. The next parameter 
corresponds to bathroom  wall insulation 
from no insulation to 10 cm. 

• as one measurement gives about 25 m3 per 
hour, ventilation rate varies from 10 to 50 m3 
per hour. 

• infiltration rate was measured, we applied a 
coefficient of 0.5 to 2 to its value. 

Table 1 summarises the chosen parameters and their 
limits. We calculated the global influence of each 
parameter. It is the difference between upper and 
lower limit consumption divided by the lower limit 
consumption. The value of all the other parameters 
are set to 0. 

I = [C(-1) - C(+1)] / C(-1)   E5 

Table 1 
Choice of parameters and their limits 

 PARAMETERS LOWER 
LIMIT 

UPPER 
LIMIT 

INFLUENCE 

P0 temperature (°C) T - 2  T + 2 70% 

P1 roof insulation 

(cm) 

5 20 10% 

P2  tuffeau 

conduction 

coefficient 
(W/mK) 

0.37  0.79 31% 

P3 multiplier 

coefficient of 

internal gains 

*0.5   *2 7% 

P4 wall insulation 

(cm) 

0  10 4% 

P5 ventilation rate 
(m3 / h) 

10 50 3% 

P6 infiltrations, 

multiplier  
coefficient  

*0.5   *2 12% 

 

Experimental design construction  
In terms of the chosen parameters, Table 2 presents 
the experimental design we made. It is a 7-parameter 
with 15 experiments design. Interactions are : P0 and 
P1, P0 and P2, P0 and P3, P0 and P4, P0 and P5, P0 and 
P6, P5 and P6. 

Table 3 presents the choice of the starting vectors. 
The first one starts from one limit (-1) another from 
the other (+1) and one in the middle (0). The 2 others 
start from the limits that give the highest and the 
lowest consumption. 

Then, BES calculations are done on 15 days. It 
corresponds to consumption measurement. The first 
day is calculated twice in order to calibrate the model 
for the right dynamic temperature. 
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Table 2 
Experimental design 

 P0 P1 P2 P3 P4 P5 P6 
Exp 1 1 1 1 1 1 1 1 
Exp 2 -1 1 1 1 1 1 1 
Exp 3 1 -1 1 1 1 1 1 
Exp 4 1 1 -1 1 1 1 1 
Exp 5 1 1 1 -1 1 1 1 
Exp 6 1 1 1 1 -1 1 1 
Exp 7 1 1 1 1 1 -1 1 
Exp 8 1 1 1 1 1 1 -1 
Exp 9 -1 -1 1 1 1 1 1 

Exp 10 -1 1 -1 1 1 1 1 
Exp 11 -1 1 1 -1 1 1 1 
Exp 12 -1 1 1 1 -1 1 1 
Exp 13 -1 1 1 1 1 -1 1 
Exp 14 -1 1 1 1 1 1 -1 

Exp 15 -1 1 1 1 1 -1 -1 

Table 3 
identification algorithm start parameters vectors  
 P0 P1 P2 P3 P4 P5 P6 

V1 -1 -1 -1 -1 -1 -1 -1 
V2 -1 1 1 1 1 -1 -1 
V3 0 0 0 0 0 0 0 
V4 1 -1 -1 -1 -1 1 1 
V5 1 1 1 1 1 1 1 

Identification 
For identification, we worked on 11 days. Indeed, the 
fireplace was used for 2 days. Optimising with the 
MBE indicator yields results close to the starting 
vector. Table 4 presents the identification results for 
the 5 starting vectors with the CVRMSE indicator 
and the standard deviation for each parameter (SD) 

Table 4 
Identification results 

 V1 V2 V3 V4 V5 SD 
P0 1 1 1 0.93 1 0.03 
P1 -1 0.59 -0.03 -0.93 0.84 0.85 
P2 0.58 -0.10 0.53 0.99 0.43 0.39 
P3 1 0.86 0.30 0.16 0.91 0.39 
P4 -1 0.75 -0.07 -1 0.93 0.92 
P5 1 -0.91 -0.04 0.80 1 0.83 
P6 -1 -0.60 0.03 0.36 1 0.79 
CVRMSE (%) 5.34 5.96 5.77 5.59 5.84  

For all starting vectors, the CVRMSE coefficient is 
good (ASHRAE considers that a model is calibrated 
when this indicator is under 15% (for 12 monthly 
measurements). But there is a big variation in the 
value of each parameter that yields high standard 
deviations. 

Figure 2 presents the standard deviation as a function 
of the influence of the parameter. The more influent 
the parameter is, the lower the standard deviation. 
Furthermore, the more influent the parameter is, the 
more precise the identification is. 

 
Figure 2: Standard deviation as a function of the 

parameter's influence 
We can observe that the parameter which seems to 
have a different performance than the others is the 
internal gains. Indeed, identification is made only 
with the application of a coefficient. But it still 
presents great uncertainty in its hourly dynamic.  

Evaluation of the confidence interval results 
Figure 3 and 4 show that the different solutions give 
very close simulation results. 

 
Figure 3: Daily consumption of monitored and BES 

calculated data for each starting vector 

 
Figure 4: Hourly consumption of monitored and BES 

calculated data  
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The houly observed differences can come from 
internal gains that have not been monitored. 

Conclusions and reference calculation 
Our case study proposes only 12 days of heating load 
measurement with high uncertainty. Therefore, the 
proposed solution still presents high uncertainty. 
Further monitoring has been scheduled for early 2013 
with more precise heating load and electric 
consumption.  

THEORETICAL STUDY 
In order to evaluate the method, we used the same 
BES model to create data that corresponds to a 
"measured" heating load. We randomly chose 
parameters "true value" in the studied field. This 
method has often been used to validate calibration 
algorithms. Therefore hourly measurements 
correspond to 56 days of BES calculation without 
uncertainty. The selected influent parameters and the 
experimental design are the same (See Tables 1 to 3). 

Identification 
For the identification, two indicators were used. 
MBE at 56 days and CVRMSE at 14, 21, 28 and 56 
days of monitoring. The same 5 starting vectors have 
been used (table 3). 
When using MBE at 56 days, all identification results 
yield no error (MBE = 0%), regardless of the starting 
vectors. The total consumption is the same. However, 
as the parmeters varying from "-1" to "+1", the 
results give very high standard deviations (Table 5). 
According to ASHRAE recomendations, that is not 
the good indicator to calibrate a model. 

Table 5 
Standard deviation for all identified parameters for 

the MBE 56-day indicator 
 P0 P1 P2 P3 P4 P5 P6 

Standard 
deviation 

0.65 0.82 0.58 0.88 1 0.96 0.80 

The CVRMSE results obtained with identification, 
regardless of the starting vectors and the number of 
days, are under 1% for 21 days and under 0.5% for 
56 days. As seen previously, the more influent the 
parameter is, the lower the standard deviation is 
(Figure 5). It appears that standard deviation 
decreases as the number of days taken into account 
increases : the average standard deviation for the 7 
parameters is from 0.42 at 14 days to 0.31 at 56 days. 
Hence, the number of monitored days for calibration 
is linked to confidence interval results especially for 
less influent parameters. The less influent the 
parameter is, the greater the number of monitored 
days are required for evaluation to achieve good 
precision in identification (low standard deviation).  
Figure 6 presents the evolution of the identified value 
for 4 parameters with the number of days taken into 
account. For the most influent parameter 
(Temperature), a constant value is achieved from 14 

days to 56. For the other parameters, a constant value 
seems to be achieved at different times. 
 

 
Figure 5: Standard deviation as a function of the 

parameter's influence 

 
Figure 6: Evolution of identified values 

Table 6 presents the achieved parameter value for 4 
start vectors. Two vectors come from identification 
with MBE at 56 days. It corresponds to the two most 
distant values for each parameter (MBE - and MBE 
+). Then the two other vectors are the average value 
for identification with CVRMSE at 21 and 56 days 
(RMSE 21 and RMSE 56). It has been compared to 
the true values. For parameters P1 to P5, 
identification can be considered as very good. But for 
P0 (temperature) and P6 (infiltration), there still is an 
error made. Indeed, the 2 parameters influence tend 
to offset each other. 

Table 6 
Identified parameters values 

 P0 
(K) 

P1 
(CM) 

P2 
(W/MK)

P3 
- 

P4 
(CM) 

P5 
(M3/H)

P6 
- 

"true values" 0.7 8 0.58 1.3 5 28 0.86
MBE - 1 12 0.68 1.7 8 12 0.9 
MBE + -0.7 6 0.59 1.6 0 49 1.7 

RMSE 21 0.54 9 0.65 1.3 4 35 0.9 
RMSE 56 0.56 7 0.57 1.3 7 26 1 

Evaluation of the confidence interval results  
We made new BES calculations with this 4 sets of 
parameters. Table 7 presents MBE and CVRMSE for 
BES calculation.  

Proceedings of BS2013: 
13th Conference of International Building Performance Simulation Association, Chambéry, France, August 26-28

- 683 -



All solutions give good calibration results but with 

very different parameter values. 

 

Table 7 
Error made between BES calculation and re-

calculation  
 MBE - MBE + RMSE 21 RMSE 56 

MBE 1.4% 2.8% 2.5% 0.6% 

RMSE 4.2% 2.8% 2.5% 0.8% 

BES calculation with projected baseline data  
The last step is to evaluate the influence of the 

identification results as regards the goal of the BES 

use. In our case, the audit could lead to a retrofit 

project. 

Then we imagined 4 retrofit  actions that are : 

• A1 : 20 cm mineral wood roof insulation, 

• A2 : 8 cm mineral wood wall insulation, 

• A3 : new windows and improvment of air 

tighness , 

• A4 : ventilation. 

We want to evaluate 3 retrofit solutions : 

• R1 = A1 + A2 + A3 + A4, 

• R2 = A1 + A3, 

• R3 = A1 + A3 + A4. 

Then we did BES calculation for these 3 retrofit 

solutions for the 4 identified solutions. Table 8 

presents energy savings estimated using BES 

calculation. 

Table 8 
Energy savings estimation as a function of a retrofit 

solution and a calibration solution 
 MBE - MBE + RMSE 21 RMSE 56 

Retrofit 1 48% 64% 61% 64% 

Retrofit 2 5.3% 17% 14% 25% 

Retrofit 3 5.7% 14% - - 

As intended, the two identification solutions at MBE 

56 yield a high uncertainty in retrofit energy 

consumption improvement. What is more surprising 

is that even with closed identifed solutions (with 

RMSE), there is still a high uncertainty for retrofit 

Solution 2. 

CONCLUSION 

Our study confirms that the calibration problem is 

under-determined. Experimental design seemed to be 

a successfull method for calibration. It enables the 

exploration of the search space of calibration 

solutions and estimate not only the precision of the 

callibrated BES model but also the uncertainty of the 

retrofit solution that was chosen. 

It shows that the confidence interval of calibration 

improves with the number of monitored days, even if 

the root mean square indicator yields the same 

results. This indicator provide key to optimize 

measurement time. 
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