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ABSTRACT 
This paper presents a method to analyse the impact of 
current refurbishment settings. Performance 
indicators are computed through multiple physical 
simulations. In the study case, the thermal comfort 
conditions and needs are analysed to infer 
relationships between them and the inputs. To reach 
this goal, the frequency analysis method RBD-FAST 
is used. For each output, a total influence ranking is 
produced and discussed. This study aims to help 
building designers take advantage of current 
computing power. Indeed, they could visualize the 
impact of each input modification and choose the 
best solution set. 

INTRODUCTION 
Refurbishment has become a major issue in the effort 
to decrease energy consumption in France. Indeed, 
the thermal regulations for new residential buildings 
have become more restrictive. However, the slow 
turnover of the building stock, about 1%, does not 
allow for significant improvements in energy 
performance, and therefore attention must be paid to 
the existing stock. 
The refurbishment choices of house owners are often 
driven by return on investment. However, these 
improvements should focus not only on gains in 
energy performance but also on thermal comfort. 
General comfort must be improved or at least 
maintained, taking into account visual, acoustic and 
olfactory aspects.  
Moreover, the old building stock is very 
heterogeneous and a single refurbishment solution is 
not feasible. Therefore, a refurbishment methodology 
must be developed that offers  a comprehensive 
optimization approach to help designers. 
This methodology should take into account the initial 
physical characteristics of the building as well as the 
influence of the weather and the occupants. 
Moreover, the constraints of the building project 
must also be considered: the site, the implementation 
and the performance and lifespan of the components 
in place. All these factors determine the performance 
guarantee for a sufficient period to justify the 
refurbishment, either financially or environmentally. 

The building is a high-dimension system and requires 
a multi-physics evaluation. Thus, the problem is 
complex and cannot be evaluated by a single output. 
Therefore, dynamic thermal simulation must be used. 
This powerful design tool has now become 
indispensable when validating solutions sets and 
studying summer comfort. Modern computing 
capabilities allow entire building models to be 
explored. Usually, the optimal solutions of an 
optimization problem may be found if the proper 
assessment variable is defined. However, this creates 
a single evaluation variable, which requires the 
aggregation of different kinds of temporal outputs. In 
order to keep the multi-criteria aspect, it is necessary 
to develop indicators to measure the studied 
phenomena. Classification methods such as 
ELECTRE (Ben Mena, 2000; Hatami-Marbini & 
Tavana, 2011) can solve this problem. Nevertheless, 
with these methods, the effect of a slight change in 
the inputs is hardly known. What happens to 
optimization if, in practice, a change occurs during 
the implementation? 

This article aims at providing a better understanding 
of the model, keeping the multi-physical aspect. The 
impact of the variation of nine inputs on three 
performance indicators is studied during summer and 
winter. An evaluation of the initial state of the 
existing dwelling and the performance guarantee are 
not addressed in this paper. 

DEFINITION OF INDICATORS FOR 
REFURBISHMENT 
Assessing the quality of a building is the first step in 
the search for improvement solutions. Thus, 
weaknesses are evaluated and different solutions can 
be compared. 
The dynamic thermal building software includes 
many innovative simulation capabilities. Building 
behaviour can be explored in detail with hourly time 
steps or less, and almost all variables are available in 
outputs. This leads to an advanced analysis of 
building components, such as the wall and window 
types, orientations, systems, etc. 
To study physical phenomena related to the habitat, 
indicators must have a direct and understandable link 
to these phenomena. The method will be introduced 
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only with regard to energy aspects without systems, 
for more understandable results. Thus, the study 
deals only with indicators related to heating, cooling 
and thermal comfort during the warm and cold 
seasons. However, this methodology is expandable to 
all other indicators such as system performance, 
detailed gains and losses, air quality, brightness, 
humidity, etc. 

Energy Consumption 
The regulatory approach (ASHRAE 90.1, EN 15217) 
to the calculation of energy consumption requires an 
annual sum. However, this information is not  
accurate enough for sizing. Indeed, one should be 
careful with the definition of scalars because 
aggregation induces a loss of information. 
Computing indicators in short periods rather than in 
years provides a better understanding of the building 
behaviour. Nevertheless, this behaviour changes 
during the year and indicators must be evaluated over 
several periods. We will see later that the influence 
of the inputs changes depending on the season. 
Figure 1 shows the outdoor and indoor temperature 
progression during an annual simulation of the study 
case. The green line corresponds to the solicitation 
(outdoor temperature) and the blue line is the 
response of the tested case (indoor temperature). 
Three main periods can be highlighted: 

• Winter: An important amount of energy is 
needed to maintain a minimum interior 
temperature. 

• Summer: The outside temperature is high 
enough to stop all the heating systems. The 
building temperature is strongly coupled to 
the outside temperature (free evolution). 

• Offseason: The weather is unstable, the 
needs are intermittent and the two previous 
scenarios may occur. 

 

Based on these rules, the need for heating or cooling 
was evaluated for two periods in a month. In Figure 
1, the two shaded areas correspond to the months of 
January and July. 

 
Figure 1: Annual simulation of the study case 

 

Thermal Comfort 
Assessment of comfort is a delicate task, and many 
methods have been developed for this. A review of 
the available methods is presented elsewhere 
Carlucci & Pagliano (2012). 

The adaptive comfort theory was chosen so as not to 
impose occupant clothing and activity to the analysis. 
In practice and more particularly in residential 
buildings, these two values are uncertain and affect 
the assessment of comfort. Figure 2 presents the 90% 
acceptability range of adaptive comfort in 
prEN15251. This theory, used in regulations for 
summer, has also been defined for winter 
temperatures (Nicol & Humphreys, 2002). Indeed, 
correlations with user comfort are more adapted to 
summer but are still suitable in winter. This choice of 
indicator provides consistency for different seasons 
and maintains a clear link with the indoor 
temperature. 
 

 
Figure 2: EN15251 optimal operative temperature 

from (Sourbron & Helsen, 2011) 
 

The scalar representation of comfort will be given for 
each period according to the intensity of thermal 
discomfort (ITD) (Sicurella et al., 2011). This 
indicator represents the time integral of the difference 
between the current operative temperature and the 
limit of comfort expressed in [°C.day] (Figure 3). 
The comfort zone taken into account is defined as a 
Class A limit, equivalent to a satisfaction rate of 90% 
(DRAFT prEN 15251, 2005). 
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Figure 3: Definition of intensity of thermal 

discomfort (ITD) from (Sicurella et al., 2011). 
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Indicators Used in the Study Case 
According to the location of the study case, a TMY2 
weather file of Le-Bourget-du-Lac is used. There is a 
cool climate (Figure 1), thus the comfort indicator 
"ITDover" is not displayed and has no influencing 
parameters. This indicator is null in winter, obviously 
because of the low temperature outside. In summer, 
the maximum observable indoor temperature stays in 
the comfort zone. Furthermore, this temperature peak 
occurs in the most unfavourable configurations. 
Subsequently, cooling implementation does not seem 
to be necessary. 
Another consequence of this climate is the influence 
of the heating setpoint on consumption in summer. 
The nights are cool enough for the internal 
temperature to reach the heating setpoint regularly, 
inducing heating needs. The power required is weak, 
we assume that temperature is acceptable and we 
disable all heaters in summer. 
The same conclusions can be made with the 
statistical results of variance (not displayed in tables). 
A low value indicates a weak interaction between the 
inputs and the observed indicator. In that case it is 
useless to study this indicator. 
Eventually, the house is conditioned in winter and is 
free running in summer. The observed indicators are 
“ITDunder” summer, “ITDunder” winter and winter 
heating. 

IMPACT ASSESSMENT BY 
SENSITIVITY ANALYSIS 
The specified set of indicators allows one to define 
the model as a function from mℜ  to kℜ . Where m is 
the number of inputs and k the number of outputs. 
 ( )1 2, , , k

mx x x= ∈ℜY F …   (3) 

To introduce the method, each of the six output 
indicators will be studied independently. 
 ( )1 2, , , mY F x x x= …   (4) 

In this case, there are nine independent and 
uncorrelated input variables that facilitate using 
sensitivity analysis methods based on the analysis of 
variance (ANOVA-based method). I.M. Sobol has 
proven that any square integrable mathematical 
function can be decomposed as follows (Mara & 
Tarantola, 2008): 
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It can be shown that the variance of F can be 
decomposed into a sum of fractional variances. 
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i iS D D= is the first-order sensitivity index that 
measures the amount of the response variance 
explained by ix  alone. To define all contributions of 

ix , the total sensitivity index is evaluated by: 
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,
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This last index is analysed according to the RBD-
FAST method. The random balance design (RBD) 
technique was originally introduced by Satterthwaite 
(1959) for the design of experiments. The Fourier 
amplitude sensitivity test (FAST) method was 
introduced by Cukier et al. (1973). RBD-FAST is an 
extension of the RBD technique to the FAST 
technique developed by (Tarantola et al., 2006). T.A. 
Mara (Mara, 2009) improved this method to analyse 
effects with very low simulation costs. 
According to the FAST method, inputs are sampled 
using different frequencies to allow an analysis of the 
output by Fourier transforms.  

 ( )( )sin .i i ix G sω=   (8) 

The choice of the frequency is then very important in 
identifying the effects and interactions between 
parameters in the response spectrum. With RBD, 
entered variables are sampled periodically and then 
permuted randomly and independently. The choice of 
the input frequency no longer has an influence and 
the pulse can be set to 1. 
For a set of N simulation: 

 ( )( ) [ ]sin . 1,k
i

k
i ix G s k N

σ
ω= ∈  , (9) 

with 
s  a uniform crescent sampling of N values in [ ];π π− , 

iσ  a random permutation of the sequence 1:N, 

iG  a transformation function according to the input. 

It is then possible to see the total effect of a 
parameter by reorganizing the sampling according to 
the permutation of its sequence iσ . The other 
parameters are always randomized because each 
sequence is independent. 
The spectral analysis of the reorganized output shows 
the effect of a parameter in low frequencies and the 
effects of other inputs as a noise spread over all 
frequencies. 
The sensitivity index of ix  is then evaluated by 
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with: 

i
cσ  Fourier factor of reorganized output, 
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2kN Mω=  limit of low frequencies. 

The total variance t̂otV  is the sum of all Fourier 
coefficients. The variance îV , induced by ix , is 
evaluated by the kN  first coefficients. M is the 
number of harmonics considered for the response. 
According to the literature, the six first harmonics are 
usually sufficient for identifying precisely the effect 
of the studied input parameter on each output. 
 

To obtain an accurate representation of the index, 
enough simulations have to be carried out. According 
to the sampling theorem of Nyquist-Shannon, the 
number of simulation must be at least: 
 ( )2N M L= ⋅ + ,  (11) 

with L, an arbitrary positive value (  ~ 100L ). 
 

Since the variance of unordered parameters is spread 
over all frequencies, it influences each Fourier 
coefficient, even the first ones. Therefore, the value 
of îV  is slightly overestimated. Tissot and Prieur 
(Tissot & Prieur, 2012) reduce this bias by adding a 
corrective term. 
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The RBD-FAST method is a frequency analysis, and 
thus the effects should always have positive values. 
However, bias correction can lead to negative values, 
especially for the smallest effects. If there is no 
interaction on the studied output, the sum of all its 
indices must be close to 1. A value that is 
significantly different demonstrates the presence of 
interactions. A high index indicates a strong 
relationship between the variation of the input and 
the output. A low index represents a uniform noise or 
a constant value for the output. 
To represent the behaviour of high indexes, Figures 5 
to 8 show the relationship between inputs and 
outputs. The simulation results are organized 
according to the variation of a single parameter. As 
the glazing input is discrete, we present the results 
with three types of points corresponding to three 
glazing types. This visual analysis is qualitative. It 
allows one to visualize the trend and to identify a 
good choice following value changes. 

BUILDING DESIGN & IMPROVEMENT 
SETTINGS 
All simulations were performed on the EnergyPlus 
simulation software. A MatLab program was 
developed to automate the serial-simulation and 
perform various sensitivity analyses. 
The building model analysed has the same geometry 
as the INCAS houses. It has been validated elsewhere 
(Spitz et al., 2012). These houses are located on the 
site of the National Institute of Solar Energy (INES) 

at Bourget-du-Lac (FRANCE). The experimental 
platform was designed to validate thermal dynamic 
simulation models by comparison with 
measurements. These passive buildings and their 
environment are well defined. Although the geometry 
of these buildings is kept, the thermal characteristics 
are degraded to allow comparisons with a housing 
renovation. The heated surface is 111 m². Usage and 
occupancy scenarios are based on French regulations 
(RT2005). 
 

 
Figure 4: INCAS houses from www.ines-solaire.org 

 

The degraded thermal characteristics are: 
• concrete blocks and glass wool, 
• ideal convective heating, 
• constant air exhaust. 

 

To test the possible impact of different solutions, the 
following variables are analysed:  

• Glazing [single, double, triple] 
• Insulation of walls [0; 40 cm] 
• Insulation of crawl space [0, 40 cm] 
• Insulation of attic [0; 40 cm]  
• Renewal of fresh air (airtightness / 

ventilation) [0, 3 vol / h] 
• Thickness of slab (for inertia) [0; 20 cm] 
• Renewal of crawl space and attic [0, 8 vol / 

h] 
• Setpoint of heating [15, 25 ° C] 
• Setpoint of cooling [25, 35 ° C] 

All samplings were generated uniformly according to 
the analysis method presented below. A wide range 
of variation was chosen so as to identify the 
efficiency ranges. The minimum and maximum 
values of previous input parameters correspond to 
critical cases such as old housing or recent over-
insulated housing. 
The first four parameters are common variables in 
building renovation. Other parameters were added to 
check the influence of secondary phenomena: 
ventilation of unheated spaces, interior inertia 
through the slab and setpoints. 
The setpoints are not design parameters. Still, they 
are considered as a variable in this study, because of 
their significant differences in practice, regulation 
and thermal comfort. 
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First, all variables are analysed. Then, the most 
influent parameters are fixed to investigate the 
impact of less influential variables. In the last 
section, all results are summarized in a table and 
discussed. 

General Variable Impact Analysis 
According to the RBD-FAST theory, indexes of all 
inputs are displayed in percentage (Table 1). The last 
row contains the sum of all effects for each of the 
three outputs. In this sum, the interactions are taken 
into account more than once. According to Equation 
(7), if these interactions appear in the model, this sum 
is not equal to 1. However, a 10% margin of error is 
commonly accepted for the accuracy of each sum of 
indexes. Charts 1, 2 and 3 of Figure 5 present each 
output according to the input with the maximum 
index. 
 

Table 1: RBD-FAST results with all inputs 
ITDunder 
Summer 

ITDunder 
Winter 

Heating 
Winter 

Glazing 7% -4% 0% 

Walls Ins. 3% -1% 11% 
Crawl Ins. 0% 0% 2% 

Attic Ins. 3% -3% 1% 

Air Renewal 80% (1) 4% 60% (3) 
Inertia -1% 0% 4% 

Renewal A.&C. 2% -1% 2% 

Heating Setpoint -1% 97% (2) 26% 
Sum 93% 93% 108% 

 

The first set of results (Table 1) shows a significant 
difference between the effects of input parameters.  
The behaviour of the housing in summer is 
dominated by air renewal (80%), which fits well with 
the condition of free evolution. This result justifies 
the use of overnight ventilation: the cooling increases 
with the flow (Figure 5: chart 1). The establishment 
of a system could be studied by entering an on/off 
schedule as input parameter. 
In winter, comfort assessment depends mostly on the 
heating setpoint (97%). Chart 2 shows that 
discomfort exists with temperatures up to 21°C. 
Since the discomfort zone was defined with a high 
satisfaction value (90%), a margin is acceptable. 
In the third column (heating), the percentage is less 
important (60%). Thus, results in chart 3 are 
scattered owing to the setpoints (26%) and wall 
insulation (11%). 
Even if occupant comfort is important to guarantee a 
minimum performance, ventilation prevails in the 
internal temperature. The influence of insulation 
thickness comes in third position.  
 

 

 

 
Figure 5: Results organized according to significant 

inputs in Table 1 
 

It is already possible to conclude that, in the study 
case, only a good management of fresh air flow will 
allow energy losses to be cut. Upgrading of 
ventilation rates is a problem in refurbishment. 
Moreover, one should pay attention to the windows 
(most easily replaceable elements) because during 
their implementation they affect the airtightness of 
the building. For instance, a poor seal between the 
frame and the wall made during an opening 
refurbishment leads to a significant increase in 
heating consumption. 
Here, parameters have highly variable effects. The 
next subsection presents the results of other 
simulations, fixing alternatively the most influential 
inputs.  

(1) 

(2) 

(3) 
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Impact of Less Influential Variables 
To analyse the other parameters accurately, three 
more sets of simulations are realized. Two types of 
conditions are added. Influential parameters are fixed 
for the model to correspond to a degraded building:  
 

• A : Fresh air ren. : 2 vol./h, 
• B : Heating setpoint 21 °C. 

Table 2 to Table 4 present the results of, respectively, 
condition A, B and A+B. Each indicator according to 
the most influential parameter, indicated by (*), is 
displayed in Figure 6 to Figure 8, respectively. 

 
 

Table 2: RBD-FAST results with A condition 

A- Fresh air ren. :  
2 vol./h 

ITDunder 
Summer 

ITDunder 
Winter 

Heating 
Winter 

Glazing 52% (*) 0% 5% 

Walls Insulation 8% 2% 28% 

Crawl Insulation 7% -2% 0% 

Attic Insulation 18% 0% -1% 

Inertia 4% 0% 0% 

Renewal A.&C. 3% -1% 0% 

Heating Setpoint 0% 97% 60% 

Sum 92% 96% 92% 

 
Table 3: RBD-FAST results with B condition 

B- Heating setpoint: 
21°C 

ITDunder 
Summer 

ITDunder 
Winter 

Heating 
Winter 

Glazing 8% 2% -2% 

Walls Insulation 8% 71% (*) 8% 

Crawl Insulation 0% 0% 0% 

Attic Insulation 4% 9% 6% 

Air Ren. 79% 1% 76% 

Inertia 2% -2% 0% 

Renewal A.&C. 3% -2% 1% 

Sum 103% 103% 88% 

 
Table 4: RBD-FAST results with A&B conditions 

A+B ITDunder 
Summer 

ITDunder 
Winter 

Heating 
Winter 

Glazing 48% 7% 7% 

Walls Insulation 11% 71% 70% (*) 

Crawl Insulation 5% 0% 0% 

Attic Insulation 16% 16% 16% 

Inertia 0% 0% 0% 

Renewal A.&C. 7% -2% -2% 

Sum 86% 91% 92% 

 

 
Figure 6: ‘ITDunder Summer’ according to glazing type 

(with fresh air ren. 2 vol./h) 
 

 
Figure 7: ‘ITDunder Winter’ according to wall insulation 

(with heating setpoint 21 °C) 
 

 
Figure 8: ‘Heating Winter’ according to wall 

insulation (with heating setpoint 21 °C and fresh air 
ren. 2 vol./h) 
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These new tests raise a few comments on the method. 
Between tests A and A+B, the addition of condition 
B (on the heating setpoint) should not have an 
influence on "ITDunder summer". It should be noted that 
the results are not exactly the same. This difference is 
due to the variability of the other inputs. In practice, 
the analysis is made several times so as to obtain an 
average effect. However, because of modelling 
uncertainties, we focus only on the order of 
magnitude of the indexes. The computing time gains 
will be used to perform other tests instead. 
The influence of the glazing type is presented in 
Figure 6. The graphical representation is different 
because of the discrete form of this input. Boxplots 
were used to display each glazing influence. The five 
horizontal lines represent the scattering of the data: 
the smallest observation, lower quartile, median, 
upper quartile, and largest observation. With this 
plotting, no prior assumption of the statistical 
distribution is needed. The result shows a better 
“ITDunder summer” for the double-glazing. 
Except for the type of glazing, which is a discrete 
input, the newly introduced curves are exponential 
(Figure 7 and 8). The outputs thus have a significant 
slope at the start and stabilize with increasing values. 
The computed effect of indexes is different if the 
insulation thickness is limited to low or high values. 
According to Figure 7 and 8, there is no interest in 
changing the existing insulation if the pre-existing 
insulation is more than 5–10 cm thick or if there is no 
major disorder (humidity). On the contrary, adding 
insulation to non-insulated housing greatly changes 
its behaviour. In this case, hydrothermal phenomena 
must be analysed in depth. Likewise, a large 
insulation thickness does not provide significant 
advantage. Here, more than 20-cm insulation does 
not improve the performance or comfort. The same 
limit is found for the other wall insulation: attic and 
crawl space. This maximum value obviously depends 
on the type of construction and the climate. 
In conclusion, when the most influential parameters 
are fixed, the remaining heat scattering is low. For 
instance: the heating scattering needs changed from 
10–80 to 50–60 kWh/month while fixing ventilation, 
setpoint, window and wall insulation. The 
optimization is then quasi-complete, keeping in mind 
that the present case is simplified. The remaining 
inputs are studied in the next section. 

Impact of Inputs: Summary 
For each table presented before, it is possible to 
distinguish a single influencing parameter according 
to output. In the following, outputs are re-
investigated independently, setting the most 
influential parameter each time and noting its effect.  
The values of fixed inputs are shown in Table 5. 
Table 6 is presented column by column from top to 
bottom. Each cell comes from a set of tests in which 
all the entries listed above the cell are fixed. A 

significant percentage shows that the variable is 
highly more influential than the other inputs listed 
under the cell. 
 

Table 5: Values of fixed input 

INPUT VALUE 

Glazing Double 

Walls Ins. 15 cm 

Crawl Ins. 10 cm 

Attic Ins. 10 cm 

Screed Thickness 8 cm 

Ren. A.&C. 4 vol./h 

Air Ren. 2 vol./h 

Heating Setpoint 21 °C 
 

Table 6 : List of parameters according to influence 

ITDunder Summer ITDunder Winter Heating Winter 

Air Ren. (80%) Setpoint (97%) Air Ren. (60%) 

Glazing (52%) Walls Ins. (71%) Setpoint (60%) 

Attic Ins. (40%) Attic Ins. (36%) Walls Ins. (70%) 

Walls Ins. (32%) Glazing (51%) Attic Ins. (36%) 

Crawl Ins. (49%) Crawl Ins. (86%) Glazing (53%) 

Inertia (64%) Inertia (59%) Crawl Ins. (88%) 

Ren. A.&C. Ren. A.&C. Ren. A.&C. (69%) 

Setpoint Air Ren. Inertia 
 

Optimization methods are generally based on heating 
needs to assess the quality of a solution. When air 
renewal and the heating setpoint are fixed, heating 
and comfort are affected by the same inputs with the 
same effects (Table 6). Therefore, optimizing the 
heating should lead to an optimization of comfort. 
Indeed, the two phenomena are related and so are 
their indexes. 
The flow of fresh air due to airtightness and 
ventilation is difficult to measure and is highly 
influential. An error in the airtightness evaluation 
results in a poor assessment of the needs. According 
to the comfort model used in this study, the 
uncertainty generated by these parameters is 
significant but does not affect the occupants in 
winter. 
The problem of the heating setpoint is different. This 
parameter greatly influences comfort and heating. A 
value that is too low leads to o discomfort for the 
occupants, who would then increase the temperature 
setpoint. In that case, the simulation achieved would 
no longer be representative. It is thus very important 
to pay attention to this value to guarantee 
performance. 
In summer, the issue of over-heating is not a problem 
in this building. This may be because of the 
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optimized solar shading of the building. The ranking 
of influential parameters differs completely from that 
in winter. Solar gains drive the building behaviour, 
and glazing type and attic insulation are key 
elements. 
In summary, the percentages listed in Table 6 are 
rather high. In other words, there is a significant 
difference between each input influence. 
Subsequently, all the effects related to inertia or the 
ventilation of non-living spaces are low. However, 
these parameters should not be overlooked. Indeed, 
they may interact with more influential parameters 
and indirectly affect the result. 
According to this method, the sum of all the effects 
presented in the previous tables gives an estimation 
of the existing interactions. Usually, its value is close 
to 1 with a margin of error up to 10%. Lower values, 
such as 0.8, indicate the presence of weak 
interactions. The complete study of interactions could 
be achieved with many additional simulations, but 
another type of analysis should then be implemented. 

CONCLUSION 
The methodology presented in this paper is based on 
the choice of indicators. Using sensitivity analysis, 
indicators allow us to analyse the impacts of inputs 
on the behaviours of the chosen buildings. Optimal 
solutions could then be defined by representing the 
outputs with respect to influential parameters. These 
solutions would take into account the characteristics 
of the studied building. Finally, one could choose and 
validate one of them, fulfilling some of the given 
criteria. 
The results presented in this paper highlight the fact 
that the most influential parameters are usually badly 
controlled during refurbishment. For instance, if the 
regulatory temperature is taken as a reference, 
comfort conditions may not be fulfilled. 
Consequently, objectives could be missed by 
increasing consumption and return on investment 
time. 
Moreover, this paper shows that the input ranking 
strongly depends on the season. Therefore, to study 
each parameter, the correlations with the seasons 
must be clearly understood. For example, it is an 
obvious problem in passive buildings where heating 
needs are strongly reduced. This often leads to 
summer over-heating. The refurbishment designer 
should choose among the influential parameters, the 
ones that reduce heating expenses without decreasing 
thermal comfort. 
The next step of this study is the analysis of complete 
automation. Indeed, given that each parameter has a 
very different effect, the analysis had to be repeated, 
fixing influential parameters one by one. Since the 
computing of the analysis takes about 6 hours, 
generalization to the other outputs is not possible. 
Therefore, a reduced model will be computed using 
polynomial chaos (Sudret, 2008). This would yield 

the relationships between each variable and allow a 
quick estimation to be made of the solution sets. 
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