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ABSTRACT

This paper reports the development of a Gaussian
Process (GP) emulator to make an energy efficient
operational decision by emulating complex and
dynamic physical behavior of a building. The GP
emulator demands much less time and effort as well
as produces almost identical outputs compared to the
whole-building simulation tools such as EnergyPlus.
This study started from a request by an office-
building owner who wanted to investigate whether
EnergyPlus can be applicable for real time operation
and management of a high-rise office building. The
EnergyPlus model of the building developed by the
authors required significant computation time for
producing stochastic outputs. Under this context, the
GP emulator was developed for operation strategies
such as answering what-if scenarios in real time. This
paper reports construction process and performance
of the GP emulator. It is shown in this paper that the
GP emulator is good enough to be used for real time
optimal operation.

INTRODUCTION

High rise office buildings consum significant cooling
energy due to high internal heat gain and trasnparent
envelopes. It is highly required to provide energy
efficient operation strategy (e.g. optimal chilled
water temperature, water tempeature of cooling tower,
etc.) in real time for better buildng energy
management.

The whole building simulation tools (e.g. EnergyPlus,
ESP-r, TRNSYS, etc.) have been widely used to
answer such what-if scenarios. The whole building
simulation tools can provide stochastic prediction
using Monte Carlo simulation. However, it takes
significant time and efforts to develop a building
energy model using the whole building simulation
tools. In addition, computation time of the tools is not
negligible. In other words, building operation
managers or building owners cannot derive stochastic
prediction results considering the uncertainty of the
building in real time.

The Gaussian Process (GP) emulator has recently
received much attention due to its remarkable post-
processing capabilities in building simulation. The
GP emulator, based on Bayesian approach, is a

surrogate model, which can mimic complex and
dynamic physical behaviors of a building (systems)
while being computationally cheap to run (Fricker et
al, 2011). Brown et al (2012) proposed a kernel
regression technique for emulating a building energy
model. Heo & Zavala (2012) showed an applicability
of her GP model for Measurement and Verification
(M&V) practices. Eisenhower et al. (2012) suggested
that the GP emulator be used to perform a stochastic
optimal design of building systems. In general, it has
been reported that the GP emulator produces reliable
stochastic prediction without demanding significant
time and efforts compared to the whole-building
simulation tools (Kennedy & O’Hagan, 2001; Oakley
& O’Hagan, 2004; Goldstein & Rougier, 20006;
Rasmussen & Williams, 2006; Liu & West, 2009;
Brown et al, 2012; Heo & Zavala, 2012; Eisenhower
etal, 2012).

This paper addresses the following: development of
the GP emulator for a large-scale office building,
search for optimal operation strategies to reduce
electricity consumption of chilled water systems. The
GP emulator provides very fast stochastic results for
building operation and energy management. The
results from the GP emulator is approximately
identical to those of dynamic simulation tools.

BUILDING DESCRIPTION

The client asked the authors to develop a simulation
model to investigate applicability of EnergyPlus in
their daily operation and management of a real high
rise office building. The client wanted to know
whether EnergyPlus could be a right choice for the
aforementioned purposes. One of the request by the
client is to develop the EnergyPlus simulation model
to be as close to the reality as possible. The authors
had to report the client our assumptions and
professional judgment during the modeling process.

The building is a telecommunication company’s
headquarter building in Seoul, Korea (Figure 1). The
building has 33 stories above ground and 6
underground levels, and the total floor area is 91,898
m’. The main exterior materials are low-e double
pane glazing, and the window-wall ratio is
approximately 70%.
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Primary system components include three steam
boilers, one centrifugal turbo chiller for AHU, and
two centrifugal chillers for an ice storage system, two
absorption chillers for backup, and seven heat
exchangers. Secondary system components placed
between heating and cooling plants and each zone of
the building are composed of Constant Air Volume
(CAV) for lobby, Variable Air Volume (VAV) for
office spaces, Fan Power Unit (FPU), and Fan Coil
Unit (FCU) for extreme control zones for high level
of comfort condition. The distribution systems of the
HVAC include variable or constant fans and pumps.
In particular, the Building Energy Management
System (BEMS) includes 1,692 on-line sensor points.

Figure 1 Target building

Firstly, the authors developed an EnergyPlus model
as shown in Figure 2. The size of the Input Data File
(IDF) is 25MB and the number of the classes in the
IDF is 125. The number of the zones is 785 and the
number of the surfaces is 3,802. It took almost two
hours to run one month simulation. (used PC: Intel
17-870 (2.93 GHz) CPU and 6 GB of memory).

As inferred from the simulation runtime, the
EnergyPlus simulation model was not qualified for
real time decision making and energy management.
The following section will describe the development
of the GP emulator based on the EnergyPlus
simulation model of the building.

Figure 2 EnergyPlus simulation model

GP EMULATOR

In general, the construction of the GP emulator takes
four steps as follows: (1) selection of training dataset,
(2) construction of Gaussian regression model, (3)
Bayesian approach, and (4) uncertainty or sensitivity
analysis (Figure 3).

Select unknown inputs,
perform sampling method
(e.g. LHS)

Formulate
) training data set

1

Construct
Gaussian Process
regression model

!

Calculate
Bayesian approach
(e.g. MAP, MCMC)

Perform uncertainty &
sensitivity analysis

Figure 3 Development of GP emulator

The training dataset is composed of unknown inputs
and simulation outputs. To generate the dataset, Latin
Hypercube Sampling (LHS) method has been widely
used to generate simulation cases based on
probability distribution (min, base, max) of unknown
inputs. The training dataset propagated by LHS
method is used to construct a linear regression model
with Gaussian noise. The GP is based on Gaussian
probability distribution and can give a very general
treatment of a GP regression function (O’Hagan,
1978). However, it should be noted that the GP
regression function has three unknown parameters
such as scaling parameter, length-scale, and variance
of Gaussian noise, and the posterior distribution of
unknown parameters needs to be estimated according
to Bayesian approach (Busby, 2009; Vanhatalo et al,
2011).

The Bayesian approach has been widely used by
specifying the individual belief (or prior knowledge)
into probability distribution, and minimizing the
unintended subjective effect. In general, a maximum
a posterior (MAP) and Markov Chain Monte Carlo
(MCMC) estimate can be used for determining the
posterior distribution of those.

Chilled water system of the study

For this study, three chilled water systems were
chosen: two chillers for the ice thermal storage
system and one turbo chiller for cooling. The ice
thermal storage system is used for cooling of the
entire building while one turbo chiller is used for 24
hours continuous cooling of an IT center located in
22F in the building.
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As mentioned above, the GP emulator was developed
to find optimal operation strategies in real time
decision making. The scenarios of our interests are to
find optimum T pys and Ty

® T .. chilled water temperature of supply-side
in the chilled water loop

® T cooling water temperature of supply-
side in the cooling tower loop

Figure 4 shows a schematic diagram of the given
chilled water system. The system consumes
significant electricity to generate the chilled water. In
such large office facilities, one of the dominant
energy consumers is cooling energy. Therefore, it is
important to optimally control the chilled water
system based on the accurate simulation model (in
this study, a meta-model or the GP emulator) that
predicts the system’s characteristics (Monfet &
Zmeureanu, 2011).
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Figure 4 Chilled water system of the study

The chilled water system has two identically-sized
ice thermal storage chillers and one trubo chiller.
Two absorption chillers were excluded from the GP
emulator since they are installed as backup and rarely
used. The two ice thermal storage chillers have a
rated capacity and COP of 1,531 (kW) and 4.31
(W/W). The two cooling towers for the chillers have a
rated capacity, fan power and water flow of 879 (kW),
7.46 (kW), and 0.42 (m’/min) respectively. The turbo
chiller has a rated capacity and COP of 704 (kW) and

3.35 (W/W). The cooling tower for the turbo chiller
has a rated capacity, fan power and water flow of 879
(kW), 7.46 (kW) and 0.42 (m’/min).

Simple feasibility test of energy saving by
EnergyPlus

As mentioned above, the given problem is to find
optimal T, and T.ys as control variables. If we
increase Tuus (ranging from 5.0°C to 13.0°C) and
Tewws (ranging from 28.0°C to 32.0°C) with increment
of 0.1°C, the possible number of combination
becomes 3,321 (81 x 41 =3,321).

Rather than attempting to simulate all possible
combination by EnergyPlus, the authors firstly tested
the following three cases to investigate importance of
finding optimal T pys and Ty

® Case 1: Tyyys of 5.0°C (minimum Ty,) (Lee
& Cheng, 2012)

® Case 2: Ty of 7.22°C (default Ty in
EnergyPlus)

® Case 3: Tyys of 13.0°C (maximum T in
EnergyPlus) (Lee & Cheng, 2012)

For the three cases, T, was set to 29.4 °C or a
default value of T, in EnergyPlus.

As shown in Figure 5, the pump and fan electricity
consumptions are proportional to T (Figure 5(a),
5(b)) and the cooling electricity consumption is
inversely proportional to Tu..s (Figure 5(c)). The
total energy saving per day by using optimal T,y is
10.1%, which is significant (Table 1).
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(a) Pump electricity consumption

Table 1 Electricity energy consumptions for 1°* August

Temws | FLECTRICITY CONSUMPTION (KWH) SAVING RATE (%)
CCl | puMP | SAFAN | COOLING | TOTAL | PUMP | SAFAN | COOLING | TOTAL
5.0 627 53 18,446 | 19,126 - ; - -
7.22 655 54 17,173 | 17,882 45 1.9 6.9 6.5
13.0 695 59 15322 | 16,076 6.1 93 10.8 10.1
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Figure 5 Three sample cases on 1" August

Generation of training set

Table 2 shows five unknown inputs which are
assumed to have a normal distribution. The normal
distribution maximizes the information entropy
among all distributions with a known mean (x) and
standard deviation (o) (Simlab, 2011). For
uncertainty propagation, LHS method was employed.
LHS method provides good coverage of the input
space with relatively few samples compared to the
standard brute force random sampling (Saltelli et al.,
2004). A total of simulation runs was set to 70. The
number of generated samples was well above the
value of 10 x k (where, k is five unknown inputs as
shown in Table 3) (MUCM, 2013). The confidence
interval was set to 95%.

Table 2
Unknown inputs for uncertainty propagation

As shown in Table 3 and Figure 6, cooling electricity
consumption has greater variance than pump and fan
electricity consumption. In other words, the cooling
electricity consumption is more sensitive to the
probability ranges of the selected unknown inputs
than the others do.

With regard to computation time, the simulation runs
(70 cases) took about 2 days for one month
simulation (from 1** August to 31™ August 2012).

Table 3
Uncertainty results of pump, fan, cooling, and total
electricity consumption (kWh/m’)

STANDARD
UNKNOWN INPUTS | MEAN DEVIATION
Ice thermal
. COP 431 0.862
storage chillerl
Ice thermal
. COP 431 0.862
storage chiller2
Turbo chiller COP 3.35 0.670
Temperature Tehws 7.22 0.361
set-points(°C) | T, 29.4 1.470

ELECT- CONFIDENCE
RICITY INTERVAL
MEAN | STANDARD NTERV
CONSUMP- DEVIATION
TION 25% 97.5%
Pump 1.27 0.0047 1.26 1.28
Fan 0.91 0.0028 0.91 0.92
Cooling 4.42 0.2189 3.99 4.85
Total 6.60 0.2172 6.18 7.03
8,
S
=6
£
g5
&3
o
0 I’u;np Fan Cooling Total

Figure 6 Uncertainty results using boxplot

Formulation of GP emulator

The GP emulator was constructed using GPstuff
software. GPstuff is in-house M-scripts coded in
MATLAB developed by Vanhatalo et al (2011). The
GPstuff is a collection of MATLAB functions to
build and analyse Bayesian models built over
Gaussian Processes. Three unknown parameters
(scaling parameter, length-scale, and variance of
Gaussian noise) of the GP regression function were
calculated using MAP estimate, which it is relatively
easy and fast to evaluate (Vanhatalo et al, 2011).

Validation of GP emulator

To verify the GP emulator, the exhaustive method
was adopted. The exhaustive method is to test fall
possible cases. In this study, another set of 70
simulation cases were newly made for validation
purpose and cross-compared to each other
(EnergyPlus and GP emulator).
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Table 4 shows comparison results. The differences in
mean values of pump, fan, cooling and total energy
between EnergyPlus and the GP emulator are 0.00,
0.01, 0.02, and 0.01, respectively, which is
significantly close to each other. The GP emulator
developed in this study can be used as a surrogate
model of EnergyPlus.

Figure 7 shows total electricity consumption using
Cumulative Distribution Function (CDF). The
developed GP emulator accurately mimics dynamic
simulation.

Table 4
Comparison of stochastic prediction results between
EnergyPlus and GP emulator

Pareto solutions are Ty of 5.0°C and are
independent of Ty Since pumps in the chilled
water system is a variable speed, the mass flow rate
through the pump is reduced when T has lower
termpature.

In terms of cooling electricity consumption, the non-
dominated Pareto solution is Ty, of 13.0°C
(maximum Ts) and Teyws of 28.0°C (minimum

Tctws) .

The non-dominated Pareto solution in terms of the
total electricity consumption is equal to that of
cooling electricity consumption. In other words, the
cooling electricity consumption is dominant in total
energy consumption. The optimal solution of the
pump and fan electricity consumptions have lower

STOCHASTIC MEAN | STANDARD
RESULTS DEVIATION

Pump EnergyPlus 1.26 0.0043
(kWh/m?) | GP emulator 1.26 0.0046
Fan EnergyPlus 0.90 0.0010
(kWh/m®) | GP emulator 0.89 0.0023
Cooling EnergyPlus 4.65 0.2301
(kWh/m?) | GP emulator 4.67 0.0023
Total EnergyPlus 6.81 0.2302
(kWh/m) | GP emulator 6.82 02731

0.8

0.6

I
o]
o
0.4+ ‘— EnergyPlus H
Confidence bounds (EncergyPlus)
—GP emulator
0.2k Confidence bounds (GP emulator)
¢ - 1 |
6.6 6.8 7 T2 7.4 1.6 78 8
Total electricity consumption (kthmz)
Figure 7 Uncertainty results of total electricity
consumption

For the search of optimal Tgs and T.ys, a Pareto
dominance criterion was used. The Pareto dominance
criterion, which is one of the principles of mean-
standard deviation, identifies alternatives having both
low mean and low standard deviation values. The
remaining alternatives, which are not dominated by
any other alternatives, are called “Pareto optimal set”
or “efficient frontier” (Charnes et al, 1985). The GP
emulator generated uncertainty results for 3,321
cases. It took about 10 minutes.

Table 5 shows non-dominated Pareto solutions in
terms of energy consumption. In terms of pump and
fan electricity consumption, the non-dominated

variance than that of the cooling -electricity
consumption.
Table 5
Non-dominated Pareto solutions
ELETRICITY
OPTI- W A’glgllilélg(%DTEM CONSUMPTION
MAL (kWhim?)
SOLU-
TION T ehws T ctws STANDARD
(&) °C) MEAN | b EVIATION
Pump 50| 28.0~32.0 1.2609 0.0045
Fan 5.0 | 28.0~32.0 0.893 0.0022
Cooling 13.0 28.0 3.989 0.1565
Total 13.0 28.0 6.217 0.1548

Figure 8 shows a non-dominated Pareto solution in
terms of the total electricity consumption. The
chosen Pareto optimal solution has the least mean
and standard deviation.

0.3 T T

0.241

021

Standard deviation

o 3,320 domimated Pareto solutions
+ 1 non-dominated Pareto solution

018

. . . . |
63 6.4 6.5 6.6 6.7 6.8 6.9 7
Mean

015

Figure 8 Results of Pareto dominance (non-
dominated vs. dominated solution)

To validate the non-dominated Pareto solution, the
authors compared the optimal solution in terms of the
total electricity consumption with randomly chosen
eight dominated Pareto solutions (Table 6). The non-
dominated Pareto solution 1is superior to the
dominated Pareto solutions.
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Table 6
Validation of Pareto optimal solution
TOTAL
CHILLED WATER ELETRICITY
SYSTEM CONSUMPTION
DESIGN (KWhim?)
T Termes STANDARD
(°C) (°C) MEAN DEVIATION
Non-
dominated 1—3 0 2_8'0 6.217 0.1548
Pominated 5.0 280 | 6.777 0.2736
Pominated 7.0 280 | 6.577 0.2440
Don;i;lated 9.0 28.0 | 6.417 0.2141
Pominated 11.0 28.0 | 6.296 0.1842
Pominated 13.0 29.0 | 6.241 0.1591
Pominated 13.0 30.0 | 6265 0.1633
Pominated 13.0 31.0 | 6.289 0.1676
Pominated 13.0 320 | 6.313 0.1718

CONCLUSIONS AND FUTURE WORK

In this study, the GP emulator was developed to
replace the EnergyPlus simulation model for real
time optimal decision making in building energy
management. The GP emulator deveoped in this
study is accurate enough compared to the whole
building simulation tool (e.g. EnergyPlus) and is very
fast for energy prediction.

The GP emulator was used for stochastic simulation
to determine optimal chilled water temperatures from
the chillers and cooling tower. The GP emulator
could successfully find a Pareto-optimal solution set.
The GP emulator may replace the use of the whole
building simulation tools for real time energy
management and optimal decision making. Future
study may include embedding the GP emulator to
real Building Energy Management System with
sensor network. The online self-calibration of the
model may be of need in near future for prediction
accuracy and easy application.
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