
MODELICA-ENABLED RAPID PROTOTYPING VIA TRNSYS

Atiyah Elsheikh, Edmund Widl, Peter Pensky, Florian Dubisch,
Markus Brychta, Daniele Basciotti and Wolfgang Müller

Austrian Institute of Technology, Vienna, Austria

Emails: surname.familyname@ait.ac.at

ABSTRACT
Traditional building simulation tools have achieved
considerable success in the past. They provide the
essential foundation for modeling highly sophisti-
cated tasks. Nevertheless, new challenges and cur-
rent progress in the energy domain require rapid pro-
totyping capabilities for just-in-time model-based in-
vestigation. Supporting these requirements is one of
the many advantages of employing modern univer-
sal modeling languages. This work addresses the in-
tegration of the modern modeling language Model-
ica with the traditional simulation tool TRNSYS. Us-
ing the modern standard functional mock-up interface
for tools interoperability, a straightforward way for
Modelica-enabled rapid prototyping within TRNSYS
is presented.

INTRODUCTION
Traditional simulation tools in the new era

Many existing traditional simulation tools achieved a
profound state for highly-reliable sophisticated mod-
eling applications in the buildings domain. They are
based on decades of conceptualization and progressive
developments. The practicality of such tools is indi-
cated by the corresponding large user communities
and the cooperation efforts among different working
groups. They typically provide a large set of inten-
sively tested model components out of which systems
can be assembled and simulated. Nevertheless, coping
with future-oriented concepts, new research-oriented
ideas and the ever more emerging technologies still
represent a challenging aspect and a realistic obstacle
for such traditional tools. Modelers are rather depen-
dent on the available set of components provided by
their favourite tools.

For instance, TRNSYS1 (Klein et al., 1976), a special-
ized simulation tool for modeling the thermal behavior
of buildings, can be named as an example. While it
provides low-level functionalities for developing ad-
ditional components, the implementation of further
desired complex components using classical program-
ming languages like Fortran and C++ becomes a com-
plicated task in terms of efforts for most programmers.

The rapid development within the Energy domain in

general emphasizes the importance of providing rapid
prototyping capabilities for modeling emerging tech-
nologies before they get built. In particular, build-
ing simulation applications increasingly require the in-
teractions of many components from multi physical
domains (e.g. renewable energy resources, intelligent
control strategies and communication with other units
within smart grids, etc.). The organization of such
components within hierarchies of subsystems neces-
sitates flexible descriptive capabilities and high-level
programming paradigms, e.g. hybrid systems. These
are the features that are best supported by advanced
universal modeling languages.

Modern modeling languages

An increasingly followed approach is to employ mod-
ern modeling languages such as Modelica (Elmqvist
and Mattsson, 1997). Modelica relies on powerful
modeling concepts with which complex systems can
be rapidly prototyped. Object-oriented facilities and
powerful descriptive syntax allow for model compo-
nents reuse, hierarchical system decomposition and
object inheritance (Elsheikh et al., 2012). Existing
standardized libraries, e.g. in thermodynamics, fluid
dynamics and others, provide the base for modelling
highly-specialized applications, e.g. the Building li-
brary (Wetter, 2009). According to the experiences
reported in (Wetter and Haugstetter, 2006), prototyp-
ing applications with Modelica is five to ten times
faster than with TRNSYS.

Nevertheless, while the adopted universal modeling
concepts are ideal for modeling multidisciplinary ap-
plications, the absence of domain-specific concepts
leads to some limitations of the applications scope
in comparison with traditional specialized simulation
tools. Namely, domain-specific concepts allow for
high-level implementation of detailed components that
can not be easily reproduced with Modelica.

Contribution

In this work, we combine the advantages of both types
of tools,TRNSYS and Modelica. By enabling the inte-
gration of Modelica-based types within TRNSYS, the
advantages of employing the highly specialized mod-
eling capabilities of TRNSYS are combined with the
ability of performing rapid prototyping within Mod-

1
http://sel.me.wisc.edu/trnsys/

Proceedings of BS2013:
13th Conference of International Building Performance Simulation Association, Chambéry, France, August 26-28

- 3291 -

http://sel.me.wisc.edu/trnsys/

elica. In this way, the scope of building simulation
applications can be extended. In this context, we
make use of the Functional Mock-up Interface (FMI)2

(Blochwitz et al., 2011), a modern unified model inter-
face for model exchange and tool interoperability. We
show the details and the potentials of extending the ca-
pabilities of TRNSYS with the Modelica language via
FMI. Particularly, the merging of the different under-
lying modeling approaches is addressed.

RAPID PROTOTYPING VIA MODELICA
The acausal modeling approach

The complexity of modeling a large-scale system is
practically reduced by decomposing it into, more or
less, a finite set of basic components. Each of these
components, characterized by a relatively small equa-
tion system, is implemented, tested and maintained in
a faster way. A system is assembled by connecting
these components together. For that purpose, well-
defined connection mechanisms have to be realized for
establishing a meaningful interpretation of connected
components. One of the classical approaches is the
block-diagram approach where some output variables
of a component block become the input variables of
another component block. For instance, this approach
is followed by Simulink3 and TRNSYS.

An alternative way is the acausal modeling approach,
where the causality among model components is usu-
ally absent. The key issue behind that approach re-
lies on fundamental conservation laws of Physics, e.g.
conservation of energy. Namely, the sum of all flows
of energy (or mass, momentum, etc.) at a certain point
in a closed system sums to zero (Fritzson, 2003, Sec.
14.1, P. 477), see Figure 1. Based on these funda-
mental principles, each model component provides in-
terfaces called connectors, which work as communi-
cation ports to other connected components. Such in-
terfaces are usually characterized by two types of vari-
ables:

1. Flow variables E as energy carriers, e.g. heat
transfer rate, current, flows, etc.

2. Potential variables P measuring energy levels, e.g.
temperature, voltage, pressure, etc.

The choices of connector variables depend on the
physical domain, e.g. temperature and heat transfer for
thermodynamics and voltage and current for the elec-
trical domain, respectively. A connection point be-
tween connectors represents two types of equations:

1. A sum to zero equation for flow variables

2. An equality equation for potential variables

These equations define how energy (or mass, momen-
tum, etc.) propagates among connected components.

A

External World of
Component A

B

C
Ec
Pc

Eb
Pb

Ea
Pa

Ea

Eb

Ec

Figure 1: Connection mechanism of acausal modeling

Thus, a system is not viewed any more as a set of in-
teracting components with explicit input/output rela-
tionship. Models are assembled in a way that look
very similar to the conceptual reality. Modification,
insertion and deletion of model components become
much easier to realize as they do not lead to signifi-
cant changes in the structure of the assembled model.

Modelica background, features and current state
The acausal modeling approach pioneered by
(Elmqvist, 1978) had a revolutionary impact on the
modeling community. Many simulation tools had
been implemented upon, e.g. VHDL-AMS (Ashen-
den et al., 2003) and gPROMS4. Nevertheless, the
variety of existing tools had negative aspects. While
each of these tools had its own features and strength, it
was not possible to exchange models among different
tools. Moreover, a lot of conventional efforts had been
multiply realized by each tool (Åström et al., 1998).
To overcome these drawbacks, the development of the
Modelica language specification was initiated for uni-
fying this splintered landscape of modeling languages
(Mattsson and Elmqvist, 1997). Through intensive
discussions among many involved participants from
academia and industry, the following main features
were adopted within Modelica:

• an open-source model-exchange specification
that can describe small pieces of complex sys-
tems and their interrelationship

• a causal modeling approach as well as other rel-
evant modeling paradigms and promising fea-
tures (e.g. object-oriented facilities) provided by
existing modeling languages

• domain-neutral concepts adequate for multidis-
ciplinary applications

• an equation-based syntax
A distinguished feature of Modelica is the employ-
ment of equation-based syntax. This adds another di-
mension of non-causality. In contrast to typical assign-
ments which express a clear relation between an output
and a set of inputs, equations express relations among
variables that need to be fulfilled concurrently. Equa-
tions can be written in an implicit way and there is no

2
www.functional-mockup-interface.org

3
www.mathworks.com

4
http://www.psenterprise.com/gproms/index.html

Proceedings of BS2013:
13th Conference of International Building Performance Simulation Association, Chambéry, France, August 26-28

- 3292 -

www.functional-mockup-interface.org
www.mathworks.com
http://www.psenterprise.com/gproms/index.html

need to place them in a specific order. Another signif-
icant potential advantage of Modelica is the presence
of a large set of free and commercial libraries in many
physical domains within an ever growing Modelica
Standard Library (MSL) maintained by the Modelica
Association (MA)5. These libraries can be the basis for
highly sophisticated applications. The MA is also re-
sponsible for further development and maintenance of
the open-source specification of Modelica. A periodi-
cal international conference on Modelica is organized
with ever growing participation from academia and in-
dustry.

Compiling and simulating Modelica models
While many models can be easily described using
Modelica high-level syntax, it is the responsibility
of common Modelica compilers, e.g. OpenModelica
(Fritzson et al., 2006), Dymola (Brück et al., 2002)
and JModelica (Åkesson et al., 2010), to translate such
models into simulation code. The acausal modeling
approach results in typically large-scale equation sys-
tems even for relatively small models. Consequently,
motivated by the evolve of modeling languages, many
tools and algorithms based on graph theory have been
developed for representing, manipulating and simpli-
fying such systems (Cellier, 1991; Maffezzoni et al.,
1996). Typical tasks that are performed by a Modelica
compiler include but are not limited to:
1. index reduction of Differential Algebraic Equa-

tions (DAEs) (Pantelides, 1988)
2. providing reliable algorithms capable of comput-

ing consistent initial conditions of state variables
(Bachmann et al., 2006)

3. computing accurate sparse Jacobians using algo-
rithmic differentiation techniques for performing
stable numerical integration by state of the art nu-
merical solvers (Braun et al., 2011)

All these efforts allow the modeler to focus more on
the modelling task without paying attention at low-
level mathematical details.

Example
Figure 2 demonstrates a network of pipes model
taken from the examples subpackage within the
Modelica.Fluid standard library (Franke et al.,
2009). A medium is supposed to flow from the source
to the sink regulated by the valves. The diameter and
the length of each pipe is parametrized in the model.
Branching and Junction of fluid flows can be effi-
ciently handled by Modelica. The concepts behind the
connection points guarantee the conservation of en-
ergy, mass and momentum of the fluids flow. Issues
like reverse flow and connection of pipes with differ-
ent diameters can be efficiently treated. The model
facilitates the capabilities of Modelica for performing

one-to-one mapping of real large-scale systems into a
set of connected components. The model is assem-
bled by just copying, dragging and connecting icons
together. It is principally straightforward to modify the
architecture of such multi-way connections for achiev-
ing optimal design. More insights into some elements
and language constructs of the Modelica language can
be consulted in (Elsheikh et al., 2012)

Figure 2: A multiway connections of pipes from a
source (the circle in the left) to a sink. The flow of a
medium is regulated by a set of valves. The valves are
opened and closed according to explicitly given times.

THE FMI
Background

FMI is a standardized unified model interface for co-
simulation and data exchange of model components
between simulation programs. It is a result of the
MODELISAR project6 and it is further maintained
and improved by the MA. A variety of software al-
ready supports FMI7, e.g. (Pazold et al., 2012). An
FMI model component exported by a simulation tool
is referred to as a Functional Mockup Unit (FMU). An
FMU is a zip file containing:

1. The description of the model, e.g. inputs, outputs
and parameters in XML format

2. An implementation of the model according to a
specific C-API provided either in binary or open-
source format

3. Additional optional data and documentation

FMUs can be simulated as standalone applications or
a co-simulation slave imported within other simulation
tools as model-components, see Figure 3.

5
www.modelica.org

6
www.modelisar.com

7
http://www.fmi-standard.org/tools/

Proceedings of BS2013:
13th Conference of International Building Performance Simulation Association, Chambéry, France, August 26-28

- 3293 -

www.modelica.org
www.modelisar.com
http://www.fmi-standard.org/tools/

Tool A Tool B

Master−Slave Co−Simulation

FMU B

ex
po

rtimport

Tool A Tool B

Stand−alone Co−Simulation

FMU B
ex

po
rt

FMU A

ex
po

rt

Figure 3: Typical cosimulation scenarios with FMUs.
The white area corresponds to the information ex-
change during co-simualtion.

For the implementation of many FMI-based tools,
many open-source existing tools can be used for assist-
ing the implementation, validation and simulation of
FMUs, e.g. parsing the XML description file, uncom-
pressing the zip file and accessing its contents. Exam-
ples of these tools are FMI library8, FMI SDK devel-
opment kit9, FMU compilance checker10, PySimulator
(Pfeiffer et al., 2012) and JModelica (Andersson et al.,
2011). We also provide a high-level C++ library that
will be available soon as an open-source for handling
FMUs (Widl et al., 2013).

Basic operations
An FMU describes a mathematical model correspond-
ing to a hybrid ordinary differential equation with both
continuous and discrete variables as shown in Figure 4
(Elsheikh et al., 2013).

t time

p parameters

x continuous state variables

m discrete state variables

u input variables

v internal variables

y output variables

z event indicators

t 0 v (t i)

F (ẋ , x ,u , v , y ,m , z , p , t)=0 , x (t
0
)=x

0
(p)

ẋ (t i) x (t i)t i

u (ti) y (ti)

2. fmiGetTime

6. fmiSetTime

3. fmiGetDerivative

m(t i)

3. fmiGetReal/

 Integer

z (t i)

5. fmiGet

EventIndicator

3. fmiGetReal

4. fmiSetReal

6. fmiGetReal2. fmiSetReal

p , x0,m0,u0

1. fmiSetTime 1. FmiSetReal/Integer 6. fmiGetReal/Integer

Figure 4: Block diagram of an FMU. Contents of
the FMUs are retrieved and updated by FMI function
calls. Numerical integration is typically done accord-
ing to the enumerated FMI operations.

As illustrated in this figure, the numerical integration
of an FMU is typically done by the following steps:
1. Initialization step: Setting up start time t0, model

parameters p, start values x(t0) and z(t0) and in-
put variables u(t0).

Then at each time step tk, the following operations are
performed:
2. Preprocessing: Setting the input variables u(tk)

3. Processing: Getting the state variables x(tk) and
the derivative ẋ(tk) and discrete variables m(tk)

4. Integration: Computing x(tk+1) from ẋ(tk) using
numerical solvers

5. Event handling: Handling the event adequately if
an event indicator zj(t) changes its domain from
zj > 0 to zj 0 or vice versa

6. Computing outputs y(tk+1) and optionally other
intermediate variables v(tk+1)

Finally, after the last time step is reached:

7. Finalize: Deallocating the memory and process
the results

FMI comes in two flavours, FMI for Cosimulation
(FMI-CO) and FMI for Model Exchange (FMI-ME).
In the former case, the exported FMU includes an in-
tegrator, while in the latter case, the developer needs to
perform the mentioned steps explicitly. In this work,
we make use of FMI-ME and the numerical integra-
tion of the FMU is processed by TRNSYS.

THE TRNSYS TOOL
Overview
TRNSYS is a highly-specialized simulation tool capa-
ble of modeling and simulating the thermal behaviour
of buildings. A graphical editor with high-level func-
tionalities is provided for specifying architectural de-
tails and multi-zone structuring. Moreover, a large set
of extensively validated model components (TYPEs)
like PVs, solar systems, heat pumps and controllers
among many others are available. Using the Simula-
tion Studio (SS), the modeler can edit and assemble
meaningful models using the provided TYPEs.

Type1
.tmf

Type2
.tmf

Type9999
.tmf

TRNSYS
Simulation Studio

The model
*.dck

TRNSYS
Simulation Kernel

Type1
.DLL

Type2.
DLL

Type9999
.DLL

Simulation
Outputs
& Logs

Figure 5: Block diagram of the modeling and simula-
tion process with TRNSYS

TRNSYS provides a modular extensible software ar-
chitecture for TYPEs implementation and simulation.
Each TYPE has a numbered ID. A TYPE implements
the physics of a component while its simulation is per-
formed by the simulation engine (the Kernel), see Fig-
ure 5. Each TYPE is characterized by an interface and
an implementation. The interface specified by the file
Type{k}.tmf for TYPE number k specifies several
quantities: parameters p 2 R

n
p with default values,

inputs u(t) 2 R

n
u , derivatives ẋ(t) 2 R

n
x with de-

fault start values x(t0) and outputs y(t) 2 R

n
y . The

modeler can modify the parameter p and start values
x(t0) with the SS. The implementation corresponds to

8
http://www.jmodelica.org/FMILibrary/

9
http://www.qtronic.de/en/fmusdk.html

10
http://www.fmi-standard.org/downloads/

Proceedings of BS2013:
13th Conference of International Building Performance Simulation Association, Chambéry, France, August 26-28

- 3294 -

http://www.jmodelica.org/FMILibrary/
http://www.qtronic.de/en/fmusdk.html
http://www.fmi-standard.org/downloads/

an equation system in the form:

ẋ(tk) = fm(x(tk), u(tk), tk, p)
y(tk) = gm(x(tk), u(tk), tk, p)

(1)

where fm : R

n
x

+n
u

+n
p

+1 ! R

n
x and gm :

R

n
x

+n
u

+n
p

+1 ! R

n
y . A TRNSYS model is assem-

bled by connecting instances of TYPEs together based
on the block-diagram approach. In this case, the out-
puts yi(tk) of a TYPE number i become the inputs
uj(tk) of other TYPE(s) j. This kind of assignments
must be consistent. This is ensured by checking that
the physical units of the assigned variables are identi-
cal. Out of the assembled model, the Simulation Stu-
dio generates a specification input file called the Deck,
see Figure 5. The Deck is then processed by the Kernel
which extracts the following information:

• The parameters p and start values x(t0)
• The present TYPEs and their interrelationships

Then, the Kernel performs the numerical integration.

Implementation of TYPES
All TYPEs are provided as dynamically linked li-
braries (DLLs) implementing a specific API. Present
TYPEs in the Deck are dynamically loaded by the Ker-
nel at run-time. The Kernel communicates with the
DLLs and performs the steps shown in Figure 6.

Figure 6: The interaction between the simulation Ker-
nel and a TYPE

The integration steps are summarized as follows:
1. Initialization step: Initializing basic administrative

information
2. First call of simulation step: Setting up the param-

eters p and the start values x(t0) among other pos-
sible operations

Additionally, the Kernel proceeds with the simulation
with a given fixed step size �t. The following opera-
tion is performed at each time step tk:
3. Processing step: computing the derivatives ẋ(tk)

(if any) and/or the outputs y(tk) via the TYPE
implementation of Equation (1) using the values
x(tk) and u(tk) given by the Kernel

Using the computed ẋ(tk), the Kernel performs the nu-
merical integration. In the presence of algebraic loops
among components, step 3 is iteratively performed for
all TYPEs until some convergence criteria are fulfilled.
Afterwards, the following step is performed:

4. Postprocessing step: signalling the convergence
of the iterations and performing desired post-
processing operations, e.g. storage of intermediate
results, etc.

Finally, after reaching the end of the simulation, a final
step is performed:

5. Last call of simulation step: deallocating memory
and calling other relevant finalization routines

A TPYE does not need to get numerically integrated
by the Kernel. An alternative is to let the TYPE per-
form the numerical integration itself with its own cho-
sen numerical methods.

FMU-BASED TRNSYS TYPES
The modular architecture of TRNSYS allows insert-
ing self-developed TYPEs implemented in Fortran or
C++11 (Riederer et al., 2009). The implementation
should follow a strict template supporting the men-
tioned operations required by the Kernel. This fea-
ture is exploited for providing FMU-based TYPEs for
TRNSYS. Adjusting an FMU to a TRNSYS TYPE is
straightforward as shown in Figure 7. One of the rea-
sons is that FMI-ME is properly designed for coupling
with numerical integrators. The Kernel can be also
viewed as a numerical solver of equation systems de-
scribed by TRNSYS .

FMU
TYPEn.cpp

function TypeN(inputs: tk, p, uk, xk

 outputs: xk, xdotk, yk)

1. First call

of Simulation
fmu = fmiInstantiate(*)

2. First

Simulation

Step

fmiSetTime(t0)

fmiSetReal(u0, p)

fmiSetContinuousStates(x0)

fmiInitialize(fmu)

fmiGetContinuous(xk)

fmiSetTime(tk)

fmiSetReal(uk,*)

fmiSetContinuousStates(xk,*)

fmiCompletedIntegStep(*)

FmiEventUpdate(*)

fmiGetDerivatives(xdotk)

fmiGetContinuousState(xk,*)

fmiGetReal(yk)

3. Processing

4. Postprocessing

Event handling

fmiTerminate(fmu)

fmiFreeModelInstance(fmu)
5. finalization

Figure 7: A general pseudo implementation of a tem-
plate file for importing FMUs into TRNSYS

Following the pseudo implementation in Figure 7, a
general C++-template for integrating arbitrary FMUs
as TRNSYS TYPEs has been implemented.

11theoretically other languages are also possible

Proceedings of BS2013:
13th Conference of International Building Performance Simulation Association, Chambéry, France, August 26-28

- 3295 -

TRNSYS-conform FMUs
For enabling such straightforward integration of
FMUs, the implementation assumes that the given
FMU is TRNSYS-conform satisfying the following
conditions:

1. The input-, output- and state variables are explic-
itly declared within the XML description file

2. Only start values of state variables explicitly de-
clared as model parameters can be modified by a
TRNSYS user

Any Modelica model (say MyModel) can be easily
transformed to a TRNSYS-conform FMU as follows:

Listing 1: Preparing a Modelica model for TRNSYS.
Only required entities are present in the public part
while the rest of the model is hidden
model Type277

import Modelica.SIunits.

*

;

public

parameter Length p = 0.5;

parameter Real x2_0 = 1.0;

...

input Real u1;

...

output Volume y1;

...

protected

MyModel obj(comp1.p = p,

comp2.x(start=x0));

equation

u1 = obj.comp3.u;

y1 = obj.comp4.y;

...

end Type277;

In Listing 1, only identities of interest that should
be interfaced within TRNSYS are declared within the
public part. The reasons for such a transformation are
explained as follows:

• Typical FMUs are dimensionally large with so
many variables and parameters. Usually, only a
smaller subset of parameters and variables are
the identities of interest for a TRNSYS user.

• The causality of variables within a Modelica
model is not necessarily explicitly declared. In
contrary, a TRNSYS TYPE explicitly differenti-
ates between inputs, outputs and state variables,
u, y and x, respectively.

• A large number of state variables x would re-
quire a lot of efforts from a TRNSYS user for
initialization with suitable start values. There-
fore, default start values present in an FMU are
considered except for start values declared as
parameters e.g. x2 0 in Listing 1.

Note that all these efforts are made only once. Once
a TYPE is specified within a *.tmf file and the corre-
sponding *.DLL is successfully compiled, it is avail-
able as a TRNSYS type. Moreover, a user does not
distinguish between an FMU-based TYPE and normal
ones.

EXAMPLE

As a proof of concept, extensive testing has been per-
formed with many Modelica models both from the
MSL and self developed abstract ones. The template
file was accordingly subject to further improvement
on an incremental basis. For any TRNSYS-conform
FMU, little manual modification of the C++-template
is required for creating an FMU-based TYPE (cur-
rently about 4 lines of codes). Nevertheless, a com-
pletely automatic process is achievable by employing
our high-level FMI++ library (Widl et al., 2013). The
FMUs supporting FMI-ME were generated by the Dy-
mola simulation environment. The DLLs were com-
piled with the gcc 4.7.0 compiler using the MinGW
Linux-like environment for Windows. The simulation
trajectories are easily comparable with the correspond-
ing simulations with Dymola. So far, no serious dif-
ferences have been observed at least with the middle-
sized tested FMUs.

Figure 8: Three tanks positioned at different hight lev-
els connected via pipes with equal diameters

Figure 8 shows a standard model from the
Modelica.Fluid library for simulating the liq-
uid flow within three tanks. The tanks are placed at
different hights and connected with pipes. The com-
pilation of the model results in an equation system
with 246 equations. There are 6 state variables and
36 event indicators. Within the corresponding TRN-
SYS TYPE, the length and diameters of the pipes, the
starting hight of the liquids and the hight position of
the tanks are parametrized and they can be modified
with the SS. Output variables are the dynamics of the
liquid volumes and the pressure at the communica-
tion ports. Figure 9 shows a corresponding simulation
within TRNSYS.

Proceedings of BS2013:
13th Conference of International Building Performance Simulation Association, Chambéry, France, August 26-28

- 3296 -

Figure 9: The curves in the upper figure describe the
dynamics of the liquid volumes in the three tanks. The
left y-axis corresponds to liquid volume. The right y-
axis is meaningless.
The curves in the lower figure describe the pressure at
the ports of the tanks. The right y-axis corresponds to
the pressure while the left y-axis is meaningless.

CONCLUSION AND OUTLOOK
The presented work demonstrates the coupling TRN-
SYS with Modelica implemented components by pro-
viding import functionalities of FMUs within TRN-
SYS. The imported FMUs are considered as “normal”
TRNSYS components and TRNSYS is functioning
as the co-simulation master. The presented framework
represents a basis for integrating Modelica rapid proto-
typing capabilities into TRNSYS. Model components
implemented with Modelica can be effectively pro-
totyped within a shorter time. Moreover, these com-
ponents can be easily tested and improved in shorter
time. This is particularly interesting for investigating
new phenomena and technologies. This is effectively
a much faster alternative than low-level implemen-
tation of model components with typical procedural
languages.

Currently, the presence of multiple FMU instances are
not supported by Dymola. Therefore, we aim at in-
tegrating FMUs generated with OpenModelica which
allows multiple FMUs to be simulated simultaneously.
The presented tools are planned to be effectively em-
ployed for real life applications joining the advantages
of Modelica and TRNSYS. The TRNSYS capabilities
for multi-zone modelling will be combined with mod-
ified and advanced control strategies implemented in
Modelica for energy-efficient buildings design.

REFERENCES
Åkesson, J., Årzén, K.-E., Gäfvert, M., Bergdahl,

T., and Tummescheit, H. 2010. Modeling and

optimization with Optimica and JModelica.org—
languages and tools for solving large-scale dynamic
optimization problem. Computers and Chemical
Engineering, 34(11):1737–1749.

Andersson, C., Åkesson, J., Führera, C., and Gäfvert,
M. 2011. Import and export of functional mock-up
units in JModelica.org,. In Modelica’2011: The 8th
International Modelica Conference, Dresden, Ger-
many.

Ashenden, P. J., Peterson, G. D., and Teegarden, D. A.
2003. The system designers guide to VHDL-AMS.
Morgan Kaufmann.

Åström, K. J., Elmqvist, H., and Mattsson, S. E. 1998.
Evolution of continuous-time modeling and simu-
lation. In ESM’1998: The 12th European Simu-
lation Multiconference - Simulation - Past, Present
and Future, Manchester, United Kingdom.

Bachmann, B., Aronsson, P., and Fritzson, P. 2006.
Robust initialization of differential algebraic equa-
tions. In Modelica’2006: The 5th International
Modelica Conference, Vienna, Austria.

Blochwitz, T., Otter, M., Arnold, M., Bausch, C.,
Clauß, C., Elmqvist, H., Junghanns, A., Mauss, J.,
Monteiro, M., Neidhold, T., Neumerkel, D., Olsson,
H., Peetz, J.-V., and Wolf, S. 2011. The functional
mockup interface for tool independent exchange of
simulation models. In Modelica’2011: The 8th
International Modelica Conference, Dresden, Ger-
many.

Braun, W., Ochel, L., and Bachmann, B. 2011. Sym-
bolically derived Jacobians using automatic differ-
entiation - enhancement of the OpenModelica com-
piler. In Modelica’2011: The 8th International
Modelica Conference, Dresden, Germany.

Brück, D., Elmqvist, H., Olsson, H., and Mattsson,
S. E. 2002. Dymola for multi-engineering modeling
and simulation. In Modelica’2002: The 2nd Inter-
national Modelica Conference, Munich, Germany.

Cellier, F. E. 1991. Continuous System Modeling.
Springer Verlag.

Elmqvist, H. 1978. A structured model language for
large continuous systems. PhD thesis, Lund Insti-
tute of Technology, Lund, Sweden.

Elmqvist, H. and Mattsson, S. E. 1997. Modelica -
the next generation modeling language: An interna-
tional design effort. In ESS97: The 9th European
Simulation Symposium, Passau, Germany.

Elsheikh, A., Awais, M. U., Widl, E., and Palensky, P.
2013. Modelica-enabled rapid prototyping of cyber-
physical energy systems via the functional mockup
interface. In The IEEE Workshop on Modeling
and Simulation of Cyber-Physical Systems, Berke-
ley, USA.

Proceedings of BS2013:
13th Conference of International Building Performance Simulation Association, Chambéry, France, August 26-28

- 3297 -

Elsheikh, A., Widl, E., and Palensky, P. 2012. Simulat-
ing complex energy systems with Modelica: A pri-
mary evaluation. In DEST’2012: The 6th IEEE In-
ternational Conference on Digital Ecosystems and
Technologies, Campione d’Italia, Italy.

Franke, R., amd M. Sielemann, F. C., Proelss, K., Ot-
ter, M., and Wetter, M. 2009. Standardization of
themo-fluid modeling in Modelica.Fluid. In Model-
ica’2009: The 7th International Modelica Confer-
ence, Como, Italy.

Fritzson, P. 2003. Principles of Object-Oriented Mod-
eling and Simulation with Modelica. Wiley-IEEE
Computer Society Pr.

Fritzson, P., Pop, A. D. I., Lundvall, H., Aronsson,
P., Nyström, K., Saldamli, L., Broman, D., and
Sandholm, A. 2006. OpenModelica - A free open-
source environment for system modeling, simula-
tion, and teaching. In Proceeding of the IEEE In-
ternational Symposium on Computer-Aided Control
Systems Design, Munich, Germany.

Klein, S. A., Duffie, J. A., and Beckman, W. A.
1976. TRNSYS: A transient simulation program.
ASHRAE Transactions, 82:623 – 633.

Maffezzoni, C., Girelli, R., and Lluka, P. 1996.
Generating efficient computational procedures from
declarative models. Simulation Practice and The-
ory.

Mattsson, S. E. and Elmqvist, H. 1997. Modelica -
an international effort to design the next genera-
tion modeling language. In CACSD’97: The 7th
IFAC Symposium on Computer Aided Control Sys-
tems Design, Gent, Belgium.

Pantelides, C. C. 1988. The consistent initialization
of differential-algebraic systems. SIAM Journal on
Scientific and Statistical Computing, 9(2):213–231.

Pazold, M., Burhenne, S., Radon, J., and amd
F. Antretter, S. H. 2012. Integration of modelica
models into an existing simulation software using
fmi for co-simulation. In Modelica’2012: The 9th
International Modelica Conference, Munich, Ger-
many.

Pfeiffer, A., Hellerer, M., Hartweg, S., Otter, M., and
Reiner, M. 2012. PySimulator – A simulation and
analysis environment in Python with plugin infras-
tructure. In Modelica’2012: The 9th International
Modelica Conference, Munich, Germany.

Riederer, P., Keilholz, W., and Ducreux, V. 2009. Cou-
pling of TRNSYS with Simulink – A method to au-
tomatically export and use TRNSYS models within
Simulink and vice versa. In Building Simulation
2009, The 11th international IBPSA Conference,
Glasgow, Scotland.

Wetter, M. 2009. Modelica-based modelling and simu-
lation to support research and development in build-
ing energy and control systems. Journal of Building
Performance Simulation, 2:143 – 161.

Wetter, M. and Haugstetter, C. 2006. Modelica versus
trnsys – a comparison between an equation-based
and a procedural modeling language for building
energy simulation. In The 2nd SimBuild Confer-
ence, Cambridge, MA, USA.

Widl, E., Müller, W., Elsheikh, A., Hörtenhuber, M.,
and Palensky, P. 2013. The FMI++ library: A high-
level utility package for FMI for model exchange. In
The IEEE Workshop on Modeling and Simulation of
Cyber-Physical Energy Systems, Berkeley, USA.

Proceedings of BS2013:
13th Conference of International Building Performance Simulation Association, Chambéry, France, August 26-28

- 3298 -

