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ABSTRACT

The paper aims to demonstrate the potential
performance bounds of model predictive control
strategies (MPC) for buildings with mixed-mode
cooling, exposed thermal mass and high solar gains.
A transient multi-zone energy prediction model with
a coupled thermal and airflow network has been
developed in MATLAB and it is used within an

offline MPC framework with GenOpt as an optimizer.

Simulation results show that mixed-mode cooling
strategies (window opening and fan assist schedule)
decided by the MPC optimizer can significantly
reduce the cooling requirement compared to baseline
night set back and simple heuristic control with the
operative temperature maintained within acceptable
limits for occupant thermal comfort. Results also
show that additional energy savings can be achieved
with shading control coordinated with anticipatory
control strategies for mixed-mode cooling.

INTRODUCTION

Mixed-mode cooling refers to a hybrid approach for
space conditioning, employing a combination of
natural ventilation, where the flow is driven by wind
or thermal buoyancy forces sometimes assisted by a
fan, and mechanical systems, along with smart
switching between systems to minimize building
energy use and maintain occupant thermal comfort
(Brager et al., 2007). Existing control strategies for
mixed-mode buildings are heuristic and may lead to
increased operating costs or occupant discomfort
since they are not optimized for the local climate and
particular building features such as thermal mass,
facade orientation, building construction, etc. These
problems can be avoided by employing model
predictive control (MPC) strategies (Spindler and
Norford, 2009b; Coftey, 2011; May-Ostendorp et al.,
2011). Based on weather forecasts and cooling load
anticipation, the MPC optimizer seeks optimal
control sequences to balance operating costs and
occupant comfort in future time frame.

Spindler and Norford (2009b) applied a real-time or
“online” predictive strategy for a multi-zone mixed-
mode building to find the optimal ventilation mode,
based on an energy prediction model that was trained
from extensive measurement data. May-Ostendorp
(2011) developed an “offline” MPC framework for a
mixed-mode building (not optimized for natural
ventilation use) through combining an optimization
toolbox in MATLAB with EnergyPlus to generate

optimal window opening schedules. The generated
optimal results were further used to create a
generalized linear model to extract near-optimal
heuristics.

The present study, extends previous work by
examining mixed-mode strategies such as window
opening and fan assist in a multi-zone high
performance building with exposed thermal mass, an
atrium and coordinated shading control. It also
establishes a detailed (physical) prediction model
integrating thermal and airflow simulation that will
be used for parameter identification in simplified
models that can facilitate MPC implementation in
real buildings.

MODEL DEVELOPMENT AND
METHODOLOGY

This study was inspired by the work done in Karava
et al. (2012). The study conducted -extensive
measurements in an institutional building (located in
Montreal, Canada) with motorized fagade openings
integrated with an atrium for hybrid ventilation. The
mixed-mode cooling strategy used in the building
allowed natural ventilation when the outdoor air
temperature was between 15 °C and 25 °C and the
relative humidity less than 70%. The building has
high levels of thermal mass in the form of exposed
concrete floor slabs at the corridors which are located
adjacent to the inlet grilles on the southeast and
northwest ends and extended all the way to the
atrium. The study demonstrated significant potential
for cooling load reduction and suggested that a
predictive control strategy would be necessary for
maximizing the benefits of natural ventilation
without comprising thermal comfort.

Thermal model

For simplicity, the present study focuses on a
generic section of the mixed-mode building
described above with an atrium connected to six
corridors as shown in Figure 1. The total floor area of
the atrium is 108 m* with a height of 11.6 m and the
curtain wall fagade faces southwest. Each corridor
has one exterior fagade where the inlet grilles are
installed. The corridors have dimensions of 30 m x
1.8 m X 3 m and act as long air “duct” for delivery of
outside air into the atrium zone.

Thermal dynamics of the interior building zones are
predicted by applying the heat balance method which
explicitly models the heat transfer rate to the interior
and exterior surfaces and to the zone air. The thermal
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Figure 1: Mixed-mode cooling concept

network for the atrium and the corridor zone are
shown in Figure 2. The radiation heat transfers
between internal surfaces are not shown in respect of
simplicity but were included in the simulations. Due
to the corridor’s large dimension (30 m long) a
significant temperature difference is anticipated in
the slab surface, thus, the surfaces are divided into 4
sections but are connected with the same corridor air
node. The thermal model for the corridor zones has
been verified using data from an experimental study
(Karava et al., 2012; Hu and Karava, 2012). The
atrium is modeled with three zones to account for the
temperature stratification (Karava et al., 2012).
Therefore, the thermal model includes three atrium
zones plus six corridor zones (three in southeast and
northwest orientation).

Airflow model

A multi-zone airflow network model (Figure 3) has
been developed in MATLAB using the Newton-
Raphson method to solve the non-linear airflow
problem by iteration of solutions of linear equations.
The airflow through each opening is given by

o = CoA (222" M

where, C, is the discharge coefficient, set to be 0.65
as the study assumed that the openings were “large”,
A is the effective opening area, p is the air density
that depends on the flow direction, 4P;; is the
pressure difference between zones:

APj; =P — P, +Ps+Py )

where, P; and P; are total pressure in zone j and i, P
is the pressure difference due to the stack effect and
Py is the wind-effect pressure.

The “Multiple Opening Model” (Stuart et al., 1997)
was used to model the air exchange between zones
connected with large openings. The model divides
the large opening (W x H) into multiple thin strip
openings (WxA4h) so that the flow rate through each
strip could be calculated separately (Figure 3).

An assisting exhaust fan is located on the roof of the
atrium that operates in case of insufficient natural
ventilation. The airflow network model was
compared with CONTAM and the predicted
differences of both flow rates and pressure drops
were less than 5%.

For building with mixed-mode cooling, natural
ventilation is an essential feature where airflow is
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Figure 2: Thermal network for the atrium (left) and the corridor zone (right)
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Figure 3: Schematic of the airflow network (left) and Multiple Opening Model (right)
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mainly driven by wind and buoyancy forces, i.e.
involving strong coupling between heat and air flow.
In the present study, the “onion” coupling method
(Hensen, 1999) in which thermal and flow simulation
iterate on each time step was implemented.

MPC FRAMEWORK

With regards to the use of MPC for building energy
management, the sequence for building climate
control (e.g. air temperature set-point, natural
ventilation) is formulated at a given point in time for
a future planning horizon, based on the prediction of
upcoming weather conditions. The “offline”
deterministic MPC framework for buildings with
mixed-mode cooling that was implemented in the
present study is illustrated in Figure 4. This method
is based on the assumption that future predictions are
exact (Oldewurtel et al., 2012).

Prediction model Control disturbance

and system | Weather Internal heat

constraints | forecast gain
Optimizer

T Measurement

1
Energy use
Perfqrmjance Sequence .of future Building
criteria control inputs Comfort
Figure 4: Framework of model predictive control for
mixed-mode cooling

Cost function and constraints

The goal of MPC for mixed-mode buildings is to
optimize the switching between natural and
mechanical cooling. In the present study, the decision
space is the operating schedule of the motorized
openings and the objective is to minimize energy use
with comfort constraints. The problem can be
mathematically formulated as:
Minimize:](l_at) =E 3)
Subject to: 10, = {0, 1};

Wipeed<1.5 m/8; T\, < 13.5 °C;

Tpe €[23 °C, 27.6 °C] during occupancy hours;

Tsepoint € [21 °C, 24 °C] during occupancy hours;
where, E is the energy cost (mechanical cooling and
mechanical fan) determined through energy
simulation, F)} is the vector of binary (open/close)
decisions for the motorized openings.

Optimal decisions are also constrained by a
maximum wind speed W, (i.e. 7.5 m/s)
(Aggerholm, 2002). In order to avoid excessive
moisture accumulation into the building, the outside
dew point temperature 7,,, is limited to 13.5 °C — the
same value applied in air economizer for high-limit
shutoff control (ASHRAE, 2010). During occupied
hours (8:00 am — 6:00 pm), the set point temperature
Tiepoint 15 allowed to fluctuate between 21 °C to 24 °C
(ASHRAE, 2010). A typical nighttime setback
control strategy is applied with a set point
temperature range from 13 °C to 30 °C. The

operative temperature 7,,. during the occupied period
is maintained between 23 °C and 27.6 °C,
(corresponding to 80% occupant satisfaction,
ASHRAE, 2010). The operative temperature
constraint is not applied when the building is not
occupied.

Optimization environment

The nature of the optimization problem does not
allow the use of traditional gradient or pattern search
techniques to find minima as the decision space
contains discontinuities, i.e. the open/close (1 or 0)
position of the motorized openings. Thus, the meta-
heuristic ~ search  technique  particle swarm
optimization (PSO) is used to search the decision
space for optimal solutions (Kennedy et al., 2001).
PSO has already been embedded in GenOpt (Wetter,
2011) — an optimization module for the minimization
of a cost function that is evaluated by an external
simulation program. Figure 5 shows the optimization
environment and the general solution approach. In
one generation, potential operation schedules (“seed”)
of envelope openings are generated by the PSO
algorithm and the schedules are evaluated in
MATLAB where the building energy prediction
model is used to evaluate the cost function. Results
are read back into GenOpt and the PSO algorithm
decides how to proceed to the next generation of
potential schedules. The iteration continues until the
desired criteria are reached. However, PSO requires
careful adjusting of parameters such as neighborhood
topology, decision space discretization, and seeding
to achieve converged results. The approach suggested
by Kennedy and Eberhart (2001) was applied for the
settings. Based on the analysis performed, the von
Neumann neighborhood topology method and a
population size of 30 with 1000 generations worked
well for the optimization problem in this study.
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Figure 5: Optimization environment
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Figure 6: Optimization horizon

For the cases under consideration, one optimal
control sequence which is the hourly operation
schedule of the motorized openings is formulated
over a 24-h planning horizon beginning from 20:00
at night to 19:00 in following day (Figure 6). The
thermal history of the building is preserved by
running the simulations for a historical horizon.
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Based on initial analysis, a period of seven days was
found to be sufficient for capturing the thermal
memory of the building.

SIMULATION RESULTS

Simulations were performed using Montreal TMY3
data for six consecutive days (Figure 7) during
summer to demonstrate the potential performance
bounds of MPC strategies through its comparison
with (a) baseline simulations (mechanical cooling
with night set back); (b) standard heuristic rules used
in current practice (Tom, € [15°C, 25°C], Tyew < 13.5 °C,
Wipeed < 7.5 m/s). The main assumptions are outlined
below:

e Mean velocity and turbulence intensity were
not used in the thermal comfort evaluation;

e Local controllers were ideal such that all
feedback controllers follow set-points
exactly;

e Internal heat gains (occupancy, lighting)
were not considered;

e An idealized mechanical cooling system
with a COP value of 3.5 was modeled.

The analysis presented in this paper is limited to
southwest orientation (atrium zone) due to the higher
risk of overcooling during morning hours. Results for
the operation schedule are presented in Table 1 with
the daily energy consumption and mean operative
temperature deviation from the desired shown in
Figure 8. The mean operative temperature deviation
is obtained by

v _ Zoccupied(ATolpe'ATi)

ATOpe - Zoccupied(ATi) (4)
where 4T,,. is the operative temperature deviation, at
each time step, 4z

Generally, compared with the baseline case, the
mixed-mode cooling strategy effectively reduces
building cooling energy by 83% for the heuristic case
and 75% for the MPC case (Figure 8). However, the
heuristic strategy can lead to mean operative
temperature deviation up to 0.7 °C, which may
decrease the comfort acceptability from 80% to 60%
(Olesen, 2006). This problem was avoided by the
MPC optimizer with fewer cooling hours at night or
early morning (Day 1, 4, and 5). In summary, Figure
8 shows that better thermal comfort is achieved with
the MPC optimizer though there were possibilities of
less cooling load reduction (i.e. Day 1 and 5).

Furthermore, the trade-off between thermal comfort
and cooling energy reduction resulted in natural
ventilation during hours with lower temperatures
with the MPC optimizer, which were excluded by the
heuristic strategy, but with less total opening hours
(Day 5).

Impact of shading control

Besides local weather conditions, high performance
features such as shading control, thermal mass, and
exhaust fan assist affects the optimal control
sequence for buildings with mixed-mode cooling.
Simulations were performed with shading devices
(roller shades with total transmittance of 6.4% and
total absorptance of 47.1%) and the following
heuristic control rule: the facade would be fully
shaded when the transmitted solar irradiance is
higher than 400 W/m?, otherwise, the facade would
not be shaded. Table 2 lists the operation schedule
for the cases with and without shading while Fig. 9

shows results for the daily cooling energy
consumption and mean operative temperature
deviation.

Different schedules are observed during days with
high solar heat gain. The MPC optimizer did not
allow warm air drawn into the building by natural
ventilation (15:00 ~ 17:00 for Day 1, 14:00 ~ 16:00
for Day 5) to avoid increase of the operative
temperature beyond the upper bound.

With shading control, there is more direct cooling
during the day, significantly reducing the cooling
requirement, and less natural ventilation hours at
night which further eliminates the need for
overcooling in the morning. Furthermore, decrease of
solar heat gains with shading control leads to less
heat storage in building mass and shorter free cooling
time is needed in the following night (i.e. Day 5 and
Day 6).

Impact of thermal mass

Model predictive control strategies typically show
good performance for dynamic systems whose
response time is large. This section looks into the
impact of thermal mass on optimal decisions by
having different floor capacitance: 38 Wh/°C-m” and
64 Wh/°C-m’, representing a light and heavy floor
respectively. Results indicate significant differences
in the night ventilation schedules obtained with
the predictive strategy compared to those based on
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Figure 7: Weather conditions used for the simulation study
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Table 1: Operation schedule using heuristic and MPC strategies (hours during which windows are open are
illustrated by cells with dark background)

Time 20:00 21:00 22:00 23:00 24:00 1:00 2:00 3:00 4:00 5:00 6:00 7:00 8:00 9:00 10:00 11:00 12:00 13:00 14:00 15:00 16:00 17:00 18:00 19:00

Day 1 Heuristic
(8/18) mpc

| Il .

Day 2 Heuristic - - -
(8/19) mpc - - -

Day 3 Heuristic
(8/20) mpc

(8/21) mpc ---

|

/22 we I O O
Day 6 Heuristic 1 | ] | ]
/23 wrc —
| M Baseline Heuristic [ MPC | M Baseline Heuristic [1MPC |
(S)
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Figure 8: Cooling energy consumption (left) and mean operative temperature deviation (right)

Table 2: Operation schedule using heuristic and MPC strategies with shading control (hours during which
windows are open are illustrated by cells with dark background).

Time 20:00 21:00 22:00 23:00 24:00 1:00 2:00 3:00 4:00 5:00 6:00 7:00 8:00 9:00 10:00 11:00 12:00 13:00 14:00 15:00 16:00 17:00 18:00 19:00

Heuristic

Day1 ppc (o) [ ]

(8/18)
MPC (Yes) -
Heuristic - - -

Day 2
(8/19) MPE(No) [ ]

[ |
MPC (Yes) - -

Heuristic
MPC (No)
MPC (Yes)

|

Heuristic

Day4
it e vo) [ B

MPC (Yes)

Heuristic

éé

221 e (o I I
MPC (Yes)
Heuristic
o > MPC(No) B | ] |
(8/23)
MPC (Yes) - -
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Figure 9: Simulation results for the impact of shading control: cooling energy consumption (left) and mean
operative temperature deviation (right)

heuristics. With heavier mass, the MPC optimizer
scheduled either longer night cooling hours or
cooling during hours with low outdoor air
temperatures as heavier thermal mass stores more
heat. Although there is no significant difference in
the overall energy consumption (Figure 11), the
predictive control strategy results in 5% peak load
reduction in Day 1 and 5 for the case with higher
thermal mass (Figure 12).

Impact of exhaust fan

This section investigates the influence of exhaust fan
on optimal control strategies for mixed-mode cooling.
In this case, the MPC optimizer seeks the operation
schedule for motorized openings and the flow rate for
the exhaust fan. The cost function also includes the
exhaust fan energy consumption:

Minimize: ] (I_5t) =E + Efgn “4)

The operation of the exhaust fan was restricted to
unoccupied hours when the motorized openings were
open. The comparison between cases with and
without the exhaust fan is restricted to unoccupied
hours (planning horizon: 20:00 — 07:00). Table 3 lists
the optimal decisions for the two cases and shows
that less cooling hours are required with the exhaust
fan. Results for the flow rate and pressure drop
through the openings show that the exhaust fan
strengthens the airflow into building (Figure 13).

| | o7:00 |

| 20:00 | | 21:00 | | 22:00 | |

@ @ Find optimal natural/mech.
ventilation schedule

Figure 10: Optimization horizon for the case with
exhaust fan assist

CONCLUSIONS

The paper presents an MPC framework and
demonstrates optimal control sequences for mixed-
mode cooling (window opening, fan assist, and night
cooling) coordinated with the operation of shading
devices for the control of solar gains, in a multi-zone

building optimally designed for natural ventilation,
with high levels of exposed thermal mass and a
highly glazed atrium facade that assists buoyancy-
driven flows. A simulation study of the building
operation over a period of six consecutive summer
days was conducted using Montreal TMW3 data and
the following conclusions can be drawn:

1. For the simulation period considered in the
present  study, mixed-mode cooling
strategies  effectively reduced building
energy consumption by 83% when decisions
were made based on heuristics and 75% for
anticipatory control. However, the heuristic
strategy can lead to a mean operative
temperature deviation up to 0.7 °C, which
may decrease the comfort acceptability from
80% to 60%. On the other hand, the
predictive control strategy maintained the
operative temperature in desired range.

2. The coordinated use of predictive control for
mixed-mode cooling and shading devices in
building zones with high solar gains
significantly affects the natural ventilation
schedules and results in higher energy
savings.

3. For the weather conditions considered in
this study, the predictive control strategy
results in 5% peak load reduction for the
case with higher thermal mass.

The optimal control sequences presented in this paper
although limited to a short period of time
demonstrate intelligent mode switchings with
superior overall performance that are significantly
different than those based on heuristics and could not
have been developed without the use of an
optimization algorithm and a careful tuned building
model that captures the relevant thermal and airflow
dynamics (convective heat transport from massive
floor slabs, air exchange between zones, natural
ventilation flow rates) in multi-zone buildings with
mixed-mode cooling. Although this approach
is computationally expensive, it allows simulation of
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Figure 11: Simulation results for the impact of thermal mass: cooling energy consumption (left) and mean
operative temperature deviation (right)
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Table 3: Motorized openings and exhaust fan operation schedule based on the MPC optimizer

Time

20:00 21:00 22:00 23:00 24:00 1:00 2:00 3:00 4:00 5:00 6:00 7:00 8:00 9:00 10:00 11:00 12:00 13:00 14:00 15:00 16:00 17:00 18:00 19:00|
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Figure 13: Mass flow rate and pressure difference across top level openings (SE and NW orientation: with and
without exhaust fan)

optimal control sequences in consideration of both
energy optimization and comfort maintenance and
provides insight into the relevance of different design
and control parameters. Current research efforts are
focused on the development of simplified models in
compact and flexible form (such as those based on
state-space representation) which are necessary for
real-time application of anticipatory control strategies
in buildings. These models can be easily extended to
incorporate uncertainty due to weather forecast and
facilitate the development of robust control strategies.

However, these simplifications would not be possible
without the detailed model and the MPC framework
developed in the present study, as model complexity
is not known a priori.
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