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ABSTRACT 
This research proposes a Bayesian approach to 
include uncertainty that arises from modeling 
process and input values when predicting cooling 
and heating consumption in existing buildings. Our 
approach features Gaussian Process modeling. We 
present a case study of predicting energy use 
through a Gaussian Process and compare its 
accuracy with a Neural Network model. As an initial 
step of applying Gaussian Processes to uncertainty 
analysis of system operations, we evaluate the 
impact of uncertain air-handling unit (AHU) supply 
air temperature on energy consumption. We also 
explore the application of Bayesian analysis to 
building energy diagnosis and fault detection. In 
concluding remarks, we briefly discuss advantages 
of the proposed approach.  

INTRODUCTION 
Making a prediction typically involves dealing with 
uncertainties. Improving uncertainty analyses 
remains a challenge in building simulation 
(Augenbroe, 2002). Uncertainty and sensitivity 
analysis have been extensively applied in science 
and engineering. However, their applications to 
building systems are still limited.  
Uncertainty enters a model in various contexts. One 
way to categorize is to consider uncertainty that 
arises from modeling process and input values 
associated with predictions. Most uncertainty studies 
focus on uncertainty in input values for predictions. 
Monte Carlo experiment is a widely used method for 
analyzing input uncertainty (Hamby, 1995). Several 
studies use Monte Carlo method with building 
simulation to study building and system design with 
input uncertainty (de Wit & Augenbroe, 2002; 
Domínguez-Muñoz et al., 2010). We found three 
areas where could be improved in current 
uncertainty research in building simulation.  
First, uncertainty in the modeling process is seldom 
quantified. There are assumptions, simplifications 
and approximations in a model. The data used to 
build or calibrate a model might not cover the whole 
input domain and could be corrupted with sensor 
noise and measurement errors. Therefore, it is 
important to include modeling uncertainty when 
making predictions.  

Second, when building simulations are 
computationally expensive, a more efficient method 
for uncertainty analysis is desirable. Monte Carlo 
experiment requires a large number of model 
evaluations. As the dimension of input variables 
increases, the number of simulations required 
increases significantly. Techniques such as 
parameter screening and Latin hypercube sampling 
help reduce the number of model evaluations. 
However, it would be beneficial if the time cost of 
uncertainty analysis could be further reduced.  
Last, few existing studies have covered uncertainty 
related to system controls in operations. 
Measurements in system operations are usually 
corrupted by sensor noise. For example, 
measurements of temperature, humidity, air flow 
and water flow are typically noisy. Furthermore, few 
systems perform as intended. Usually there is a 
discrepancy between intended and actual 
performance.  
The main purpose of this research is to include 
uncertainty that arises from modeling process and 
input values when predicting cooling and heating 
consumption in existing buildings. We propose a 
Bayesian approach which features Gaussian Process 
modeling. This paper is an extension of previous 
work (Yan & Malkawi, 2012). In this paper, we 
explain the types of uncertainties covered by 
Gaussian Processes. In order to evaluate the 
prediction accuracy, we test a Gaussian Process with 
metered data and compare its results with another 
widely used machine learning method, Neural 
Networks. As an initial step of applying Gaussian 
Processes to uncertainty analysis of system 
operations, we present a case study of predicting 
energy use with uncertain AHU supply air 
temperature. Compared with the previous work, we 
expand the case studies in these two sections to both 
cooling and heating energy consumption predictions. 
Additionally, we explore the application of Bayesian 
analysis in building energy diagnosis and fault 
detection in this paper, which is an innovative part. 
In the concluding remarks, we briefly discuss the 
advantages of our proposed method and future 
research topics. 

MODELING METHOD 
The use of Gaussian Processes has grown 
significantly after the works of (Neal, 1995 & 
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Rasmussen, 1996) in machine learning community. 
Gaussian Process regression has been successfully 
applied to various predicting tasks. The goal is to 
find the distribution of a nonlinear function � �  to 
underlie data points, each of which is composed of 
input �  and target � . Then we can use the 
distribution of � ��  to predict the value of ��. 
We denote � input vectors ��������  by � and the set 
of corresponding target values ��������  by the vector 
�. Using Bayes’ theorem, the posterior probability 
distribution of � �  is  

 � � � ���� � � ��� � �� � � �
� ���  (1) 

In a regression problem, ��� � ��, the distribution 
of the target values given the function � �  is 
usually assumed to be Gaussian. The prior � � �  
is placed on the space of functions, without 
parameterizing � �  (MacKay, 2003). A Gaussian 
process is specified by a mean function (usually a 
zero function) and a covariance function ���� � ���. 
The choice of covariance function in this study is a 
Gaussian kernel,  

���� � ��� � ��� ��� � �� �� � ��
���� �� � ��  (2) 

Where 

 � � ���� ��������� ����  (3) 

Inputs that are judged to be close by the covariance 
function are likely to have similar outputs. A 
prediction is made by considering the covariance 
between the predictive case and all the training cases 
(Rasmussen, 1996). For a noise-free input ��, the 
predictive distribution of � ��  is Gaussian with 
mean � ��  and variance �� ��  (Rasmussen & 
Williams, 2006) 

   � �� � � �� �� ��� � �������� (4) 

�� �� � � ��� �� � � �� �� ��� � ��� ������ �� ��  (5) 

� �� ��  is the ��� vector of covariance functions 
between training inputs � and the new input ��. � is 
the ���  matrix of covariance functions between 
each pair of training inputs. ���  denotes the variance 

of Gaussian noise in training targets �. ��, �� and 
�������� are hyperparamters to be trained in a 
Gaussian Process. Figure 1 summarizes the 
procedures of using Gaussian Processes for 
predictions. A Gaussian Process is built upon 
training data, which can be sensor readings or 
metered data of a real system, or simulated data 
generated from complex models. Then the model 
takes new inputs and makes predictions with 
uncertainty.  
In Gaussian Processes, the uncertainty in modeling 
process comes from noise in the training data and 
distance between training inputs and inputs 
associated with new predictions. One source of noise 
in both training inputs and targets is measurement 
noise. For example, it is reasonable to assume that 
time is noise-free, while the measurement of flow 
rate is usually corrupted by sensor noise. Some other 
sources of uncertainty could account for the noise in 
training targets. The process might be stochastic, 
thus including random elements. The features in an 
existing model might not fully explain the variance 
in training targets. There might be some other 
important features that affect outputs. Variance in 
targets might be reduced if we could recognize some 
more related features and include them in the model. 
The variance of a prediction also depends on the 
distance between its input point and training inputs. 
Gaussian Process modeling is an interpolation 
method. If a new input point lies beyond the scope 
of the training input domain, the variance will be 
large in the prediction. 
Variance in input values associated with predictions 
leads to an extra uncertainty in predictions. In some 
cases, it is our interest to investigate the impact of 
uncertain inputs on outputs by varying inputs 
according to appropriate distributions and examining 
the corresponding distributions of outputs. To 
incorporate uncertain values of an input point 
associated with a prediction, assuming the input 
distribution is Gaussian ���������� �����, then the 
predictive mean � ��� ����  and variance 
�� ��� ����  of a prediction with noisy inputs can be 
computed according to equations (6) to (10)  
(Girard et al., 2003):

     � ��� ���� � ��� (6) 

   �� ��� ���� � � ��� ���� � �� ���� � �� � ��������� � ��� �   (7) 

with 

   � � �� � ��������    (8) 

     �� � ������ � � �
�
���� ��� � �

� ��� � �� � ��� �� �� ��� � ��  (9) 
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Figure 1 Diagram of predicting with uncertainty 

using Gaussian Process 
 
With the assumption of a Gaussian input distribution 
and using a Gaussian kernel, there is no need to run 
extra simulations to incorporate uncertain values of 
an input point. It can be simply derived from the 
analytical expressions above. This significantly 
reduces the time cost of uncertainty analysis. 
For a comprehensive introduction to Gaussian 
Process modeling, please refer to (Rasmussen & 
Williams, 2006). In this study, training inputs are 
assumed to be noise-free. In our further research, we 
will include noise in training inputs. 

EXPERIMENTS AND RESULT ANALYSIS 

Predicting Energy Use or Demand 
In this case study, we use time and weather 
information to predict chilled water and steam use 
based on historical data. This type of modeling is 
frequently applied to energy demand prediction for 
smart grid technologies and energy saving 
verification for commissioning (Heo and Zavala, 
2012). Previously, Neural Networks have been 
widely used. The reported error rates of short-term 
prediction (1h to 24h) can be as low as 1%-5%. 
Long-term prediction accuracies are also promising 
(Dodier & Henze, 2004). Gaussian Processes can 
also serve this purpose. Moreover, predictions made 
by Gaussian Processes are in the form of 
probabilistic distributions instead of fixed values. 
Therefore, the results of Gaussian Process modeling 
express the uncertainty of predictions, while the 

uncertainty could not be quantified explicitly and 
directly through Neural Networks. 
In order to evaluate the prediction accuracy, we test 
Gaussian Process modeling on metered chilled water 
and steam use and compare the results with those of 
Neural Network. 
We collected data samples from an on-campus 
laboratory building. The building is served by three 
primary air-handling units with heat recovery, along 
with radiators and variable air volume (VAV) boxes 
with hot water reheat as terminal units. The 
mechanical system is running 24 hours 7 days. Some 
lab devices in the building are also on a non-stop 
schedule.  
We aggregate 5-min-resolution metered energy use 
into hourly data. Therefore, all the data samples used 
in the model are on an hourly basis. The targets are 
� Hourly chilled water use (W/m2) 
� Hourly steam use (W/m2).  
The input features include  
� Outside air dry-bulb temperature (°C) 
� Humidity ratio (kg/kg) 
� Hour of day, represented by ��� �������

��  and 

��� �������
�� .  

It is assumed that measurements of time, 
temperature and humidity ratio are noise-free, while 
measurements of chilled water and steam use are 
noisy. The weather data is collected through a local 
weather station, within 0.5miles from the laboratory 
building. 
Figure 2 shows the 24-hour prediction of chilled 
water and steam use by a Gaussian Process 
(Equation (4) and (5)) trained by 216 hourly data 
points. The solid line indicates the predictive mean. 
The grey area is 95% confidence region, compared 
with observed values shown in red dots. Most of the 
predictive means are close to observed values. Noise 
in training targets and the distance between training 
inputs and test inputs account for the uncertainty in 
the predictions. 

 
Figure 2 24-hour prediction of chilled water and steam use
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Figure 3 Comparison of �� values of Gaussian Processes and Neural Networks 

 
In order to compare the accuracy of Gaussian 
Processes with Neural Networks, we perform ten-
fold cross-validations on three types of prediction 
tasks, which are 24-hour prediction, 72-hour 
prediction and 9-day prediction.  
The coefficient of determination is used to compare 
how well the predictions are between Gaussian 
Process and Neural Network. The coefficient of 
determination �� is 

 �� � � � �� � �� ��
�� � � ��

 (11) 

where the values �� are observed values of targets, 
the values ��  are predicted values. For Gaussian 
Processes, values �� are the predicted mean values.  
� is the mean value of the observed targets. The 
better a model predicts future outcomes, the closer 
the value of �� is to 1. A larger �� means a smaller 
sum of squared errors of prediction. 
The training of neural network is implemented 
through the Matlab (version R2011a) Neural 
Network Toolbox. In this model, there is one hidden 
layer with 15 neurons. The activation equation in the 
hidden layer is sigmoid, and linear in the output 
layer. The training algorithm is Levenberg-
Marquardt backpropagation. 
Metered chilled water and steam use for four months 
is used for this study. We conduct ten groups of ten-
fold cross-validation for 24-hour prediction, three 
groups for 72-hour prediction and one group for 9-
day prediction. The overall �� value is used for 
comparison. The results are shown in Figure 3. 
As seen in Figure 3, Gaussian Processes outperform 
Neural Networks when predicting chilled water use 
24-hour ahead. �� values of two modeling methods 
are similar for 72-hour prediction and 9-day 
prediction. It can be concluded from the cross-
validations above that the predictive accuracy of 
Gaussian Processes is close to widely used Neural 

Networks. For short-term prediction, Gaussian 
Processes even show some advantages. More careful 
design for comparative studies might be necessary in 
order to generalize the conclusion of this 
experiment. However, this experiment still enables 
us to get an idea of how well Gaussian Processes 
will perform on other datasets with similar 
characteristics, which seems very promising. 

Evaluating the Impact of Uncertain Inputs 
The input values associated with predictions can 
come from estimations or measurements corrupted 
with noise. Furthermore, input variables themselves 
can be intrinsically non-deterministic. Therefore, it 
is more reasonable to assign probability distributions 
over their domains of plausible values than to assign 
fixed single-point values. In some cases, it is desired 
to investigate the impact of uncertain inputs on 
outputs by allowing inputs to vary in their domains. 
Here is a straightforward example. In order to make 
real-time predictions for the energy demand of the 
next 24 hours, we need to use the next 24-hour 
weather forecast. Weather forecast involves 
uncertainty. There are some other random factors in 
the prediction. Human behavior is stochastic. 
System control also adds some randomness to the 
process. Gaussian Processes with uncertain inputs, 
as shown in equation (6) and (7), incorporate 
Gaussian noise of inputs into predictions.  
In this case study, we examine the impact of 
variance in AHU supply air temperature on chilled 
water use for cooling and steam use for reheating. 
The system under study is an AHU VAV system 
with terminal reheat for an office building, which 
runs 24 hours a day. One summer month of 
measured hourly AHU supply air temperature is 
available for study.  
The set-point of AHU supply air temperature is 
11.1°C (52°F). The mean value of measured hourly 
AHU supply air temperature is almost the same as 
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the set-point. However, a standard deviation of 
1.1°C is observed. The AHU supply air temperature 
varies from 9°C to 15°C. Poor PID control, or 
insufficient or excessive supply of chilled water 
might account for the deviation from set-point.  
AHU supply air temperature is a system control 
related factor. The wide range of variation in actual 
AHU supply air temperature directly affects system 
energy use. One conventional way to examine the 
extent of impact is to perform a Monte Carlo 
experiment, generating random AHU supply air 
temperatures from its probability distribution and 
running simulations over all samples. We propose a 
different method, using Gaussian Processes to build 
a surrogate model based on data points available and 
plugging the input distribution into equations (6) and 
(7) to get the predictive distribution of energy use 
directly.  
We build a Gaussian Process using time, outside 
temperature and humidity, and one-month measured 
AHU supply air temperature as input features, 
cooling and reheating as targets. The data is on an 
hourly basis for one summer month. The training 
inputs are treated as noise-free, while training targets 
as noisy. The training �� is 0.9808 for cooling and 
0.9987 for reheating. Then for each point, we use 
��������� ���  as the input distribution of AHU 
supply air temperature. The predictive distributions 
of hourly cooling and reheating are modeled 
according to equations (6) and (7). Extra uncertainty 
in predictions is introduced by variance in AHU 
supply air temperatures.  
Figure 4 shows the predictive distributions of 
cooling and reheating for 48 hours. In this time 
period, the outside air dry-bulb temperature is 
between 24°C to 32°C from 8:00 – 20:00 and 20°C 
to 26°C in the nighttime. The results are compared 
with the predictive distributions derived from noise-
free input of AHU supply air temperature, which is 
assumed to be 11.1°C all the time. With a variance 

of �� ��  in AHU supply air temperature, the 
predictive means stay almost same, while the 95% 
confidence regions expand in some time periods. 
The dark blue area is the extra uncertainty 
introduced by variance of AHU supply air 
temperature. 
We can see from Figure 4 that during working 
hours, the variation in AHU supply air temperature 
almost has no effect on cooling and reheating. In 
summer during working hours, the amount of chilled 
water needed to process the cooling load does not 
change with AHU supply air temperature. When 
cooling load is large, higher AHU supply air 
temperature results in larger supply airflow rate, and 
the amount of chilled water needed to process the air 
remains the same. And vice versa. Due to the large 
cooling load, little reheating is needed and it is 
hardly affected by AHU supply air temperature. 
During nighttime, the outside air temperature drops 
and internal load is minimal. When cooling load 
decreases, supply airflow rate is fixed at its 
minimum. Therefore, increasing AHU supply air 
temperature reduces chilled water use for cooling 
and steam use for reheating. A low AHU supply air 
temperature will increase chilled water use, and 
more reheat is necessary to compensate the 
excessive cooling. 
Around 1°C standard deviation in AHU supply air 
temperature accounts for a standard deviation as 
large as 5-8% of the predictive mean values of 
cooling and around 20-25% of reheating during 
some night hours. This information will be helpful 
for optimizing AHU supply air temperature and 
analyzing cost-effectiveness in commissioning. 
Targeting at a more precise control of AHU supply 
air temperature and increasing it in the nighttime 
when outside temperature is low will save both 
chilled water use and steam use. 

 
Figure 4 Predictive distributions of hourly chilled water use which include the uncertainty introduced by the 

variance in AHU supply air temperatures 
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The example above shows how to use Gaussian 
Processes to study the uncertainty introduced by 
uncertain inputs. With the assumption that the input 
distributions are Gaussian, the predictive distribution 
can be computed directly without Monte Carlo 
experiment. It is necessary that the training set 
should cover most of the input domain. Otherwise, 
the uncertainty introduced by the modeling process 
itself would be too large. Usually this is not an issue 
if data is generated from simulation. It might be 
challenging when building a Gaussian Process based 
on observations from actual performance. The 
example above uses measured AHU supply air 
temperature to ensure a realistic pattern, while 
energy use for cooling and reheating is simulated 
data by EnergyPlus since metered data is not 
available at this point.  

Modeling Baseline Consumption in Fault 
Diagnosis and Detection 
Many fault diagnosis and detection (FDD) tools use 
model-based method as shown in Figure 5 
(Katipamula, 2005 a&b). Observations from a real 
process are compared with the output from a 
baseline model. The magnitude and pattern of 
residuals are used to detect faults.  
 

 
Figure 5 Model-based FDD Method 

 
Inaccurate baseline predictions will cause model-
based FDD tools to malfunction. Simulation models 
based on physical principles are not ideal for fault 
detection. Such models are too expensive, as they 
require deep understanding of the investigated 
system and rich data to identify model parameters. 
Moreover, physical-principle-based models usually 
assume idealized behavior of the investigated 
systems rather than reflect actual system operations. 
Including uncertainty in baseline predictions is 
crucial to the decision making in fault detection. In 
order to decide the threshold for the faulty class, we 
need to consider fluctuations in a random process 
and modeling uncertainty. Gaussian Process seems 
to be a promising candidate for modeling baselines. 
With adequate data, Gaussian Processes are able to 
not only predict actual system performance based on 
historical data in an inexpensive way, but also 
present the uncertainty of predictions in the form of 
a Gaussian distribution. In this section, we explore 
the possibility of using Gaussian Processes as a 
baseline modeling method in FDD.  
The FDD application we discuss here is to detect 
excessive energy consumption on the whole building 

level. After building commissioning in which system 
faults are corrected, a system performs in normal 
conditions. However, some faults might occur again 
after a certain period of time and cause an increase 
in energy consumption. We can collect data during 
normal operations, for example, the next few months 
right after the commissioning. Using that data as a 
training set, we can build a Gaussian Process, which 
predicts energy consumption assuming normal 
operations. When it is no longer certain whether 
faults have occurred again, we can use the Gaussian 
Process to predict baseline consumption, and then 
compare that with measured energy consumption to 
detect excessive energy consumption. We want to 
detect the increase in energy consumption due to 
system faults, but not to send out false alarms when 
the increase in energy consumption is actually 
fluctuations in a random process or the difference 
from the baseline lies within the modeling 
uncertainty range. 
We label three classes for energy consumption, 
normal, faulty and a gray area in between. The 
probability of an observation that belongs to a class 
can be computed using Bayes’ theorem as shown in 
equation (12),  

� � � ��� � � ��� � � � � � �
� ��� � � � � � ��

���
 (12) 

where we denote the class variable as � and energy 
consumption as � . � � �� �� �  indexes the three 
classes respectively, normal, in-between and faulty.  
We use the outputs of the trained Gaussian Process 
to compute the conditional probability of observed 
energy consumption given the class label � ��� �
� . As described in the previous sections, the output 
of Gaussian Process modeling includes a mean value 
� and a standard deviation �. Here we can interpret 
it as if a system performs in the same way as it does 
during the time when the training data is collected, 
there is about 68% chance that the observed energy 
consumption falls within one standard deviation 
away from the mean value. The standard deviation 
includes uncertainty caused by interpolation as well 
as the underlying randomness in system operations. 
The parameters for the baseline distribution (the 
normal class) are, 

��� � ������������ (13) 

where �� and �  are derived from the Gaussian 
Process. We assign the mean value of the Gaussian 
distribution for the second class as one standard 
deviation larger than that of the normal class, and 
two standard deviations larger for the faulty class,  

��� � �������� � ����� (14) 

��� � �������� � ������� (15) 

Then we decide whether the current energy 
consumption is excessive by picking the class 
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assignment � with the highest posterior probability 
� � � ��� : 

� � ������
�
� � � ���  (16) 

If the prior � � � �  for three classes are equal, 
then when the observed energy consumption is 
higher than � � ����, it will be classified as faulty, 
because the posterior probability � � � ���  is the 
highest when � � �, as illustrated in Figure 6. 
 

 
Figure 6 Posterior distributions of three classes 
when their priors are equal 

A large � indicates a high uncertainty in the baseline 
prediction. The proposed FDD method will rarely 
send an alarm when there is little confidence in the 
baseline prediction. Here we propose that the mean 
value of the Gaussian distribution for the faulty class 
is two standard deviations higher than the mean 
value of the Gaussian distribution for the normal 
class, which balances between the false positive 
errors and false negative errors. One can choose the 
size of the difference between these two mean 
values based on different preference, fewer false 
positive errors (false alarms) or fewer false negative 
errors. A difference lower than two standard 
deviations between the mean values of normal and 
faulty class will raise more false alarms, while a 
difference higher than two standard deviations 
between the two classes will ignore more faulty 
conditions. Improving the accuracy of Gaussian 
Process modeling might help reduce both types of 
error. For example, increasing the training sample 
size and including important features can improve 
the accuracy of mean value predictions and reduce 
modeling uncertainty (the size of standard deviation). 
As a result, more faulty conditions will be 
recognized and some false alarms might be avoided. 
We test this FDD method on synthetic data 
generated by EnergyPlus. We simulate the energy 
consumption of a typical office building served by 
AHUs. The terminal units are VAV boxes with 
reheat. We use data for three months in normal 
operations as our training set for the Gaussian 
Process. Then we introduce a fault into the system. 
We increase the VAV turndown ratio from 0.3 to 0.6 
of three VAV terminal boxes to mimic a fault that 
can be caused by stuck dampers or faulty airflow 
sensors. This causes a 17% increase in the total 
minimum airflow rate. We gather the simulated data 
for nine months when there are faults in system 

operations. Using the equations (12) to (16), as 
shown in Table 1, 65% of hourly heating 
consumption is classified as faulty. 
 

Table 1 Percentage of class assignments 

Normal In-between Faulty 
7.9% 27.1% 65.0% 

 
It is reasonable that some data points are classified 
as normal. In this case, the fault only affects system 
operations when the faulty VAV terminal boxes 
needs reheating and causes excessive heating. This 
is most likely to occur when it is cool or cold outside, 
and/or internal load is low. Figure 7 shows the 
percentage of alarm occurrence in each outside air 
temperature interval, and Figure 8 shows the 
percentage of alarm occurrence in each hour. We 
can see that more alarms are signaled during the 
nighttime when internal load is low, and when the 
outside air temperature is low. This preliminary 
result can be used for further FDD. 

 
Figure 7 Percentage of alarm occurrence versus 

outside air temperature 

 
Figure 8 Percentage of alarm occurrence versus 

hour of day 
We also test the method on the nine-month 
simulated data of fault-free conditions. The false 
positive rate is 5.6%. 

CONCLUDING REMARKS 
This paper introduces predicting system 
performance through Gaussian Processes, which 
include uncertainty that arises from modeling 
process and input values. Instead of building a 
model based on physical principles and using 
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metered data for calibration, Gaussian Processes are 
able to directly use observed system performance to 
build a statistical model for further analysis. It 
avoids configuring numerous physical parameters, 
which are difficult to estimate. Gaussian Processes 
can serve as surrogate models for computationally 
expensive simulations. The outputs are predictive 
distributions with mean and variance. With the 
assumption that the input distributions are Gaussian, 
the uncertainty introduced by uncertain inputs can be 
computed directly without Monte Carlo 
experiments. Gaussian Process is a promising 
candidate for modeling baselines in fault detection. 
Since Gaussian Processes not only give predictive 
means, but also a measure of confidence in 
predictions, this extra information is crucial to the 
decision-making. The proposed method can be 
further extended to develop more advanced FDD 
tools. 
As an initial step of our research, we still rely on 
simulated data to explore the application of Gaussian 
Processes, in order to focus on developing the 
methodology. In the future work, it will be valuable 
to apply Gaussian Processes to measured data of 
actual system performance, especially for the 
purpose of fault detection. 
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