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ABSTRACT
The paper focuses on parameter estimation processes
for physically meaningful models tuned online and de-
fine a process to determine whether a model is rele-
vant or not for GMBA-BEMS tuning purpose. The
proposed approach relies on the data coming from
the PREDIS/MHI platform. The first step is to cal-
culate realistic parameters with possible intervals be-
cause nonlinear optimization, required for physically
explicit models, implies initial parameters. The next
step is to find the best reduced order model structure
using an iterative nonlinear optimization approach us-
ing recorded data that leads to parameter estimation.
It is based on randomize initial values for parameters
to measure the convexity of the search space in study-
ing the convergence. Finally, the last step consists in
enhancing the time zones where reduced order model
does not fit well with the available data. It points
out some non-modeled phenomena. It is based on a
weighted iterative estimation method where weights
depend on the estimation errors obtain at the previous
step.

INTRODUCTION
The energy issue is one of the major challenges of
the 21st century. Building related energy consump-
tion accounts for a large part of the total energy bill.
Researchers are therefore developing continuous per-
formance monitoring, automatic diagnoses and home
energy management systems to improve building con-
sumption. Nevertheless, all these upcoming applica-
tions require reduced order models of the building en-
velop that can be tuned online. Many models are pro-
posed in literature but models are related to specific
goals, with specific time scales. Consequently, assess-
ing the relevance of a reduced order model for a spe-
cific goal is a key issue. This paper proposes an ap-
proach making it possible to determine whether a re-
duced order model fits a specific goal or not. The paper
focuses on models for Global Model Based Anticipa-
tive - Building Energy Management System (GMBA-
BEMS) such as G-homeTech (Ha et al., 2012) but re-
sults can be extended to any usage that requires pa-
rameter estimation procedure for physical models by
contrast with black box model not directly related to
physics.

STATE OF THE ART
When interacting with a system, knowledge about how
its variables are related, is needed. With a broad defi-
nition, these relationships among observed signals re-

lated to a system is called a model of the system
(Ljung, 1999). However a model has to be useful i.e.
to fit a specific goals. For instance, very detailed mod-
els are not useful for a GMBA-BEMS because they
contain too much parameters that cannot be properly
estimated with a parameter estimation approach. Data
are indeed not sufficient and, when using a 1 hour sam-
pling time, it is not meaningful to represent fast dy-
namics.
The paper focuses on parameter estimation processes
for physically meaningful models tuned online and de-
fine a process to determine when a model is relevant
or not for GMBA-BEMS tuning purpose. Roughly
speaking, the simpler the model is, the more impre-
cise it could becomes and the more complex it is, the
more difficult it is to get physically meaning param-
eters. The target is to find a criterion that points out
when a model structure is suitable taking into account
physical insights of the system plus identifiability of
the dedicated parameters.
Many models have been proposed in scientific liter-
ature to represent the thermal behavior of the build-
ings. Linear regressive models such as ARX (Auto
Regressive model with exogenous inputs) have been
compared with time scaled identification methods
(Malisani et al., 2010) and ARMA (Auto Regressive
Moving Average) models for fault detection purposes
(Chowdhury and Carrier, 2000). The structures of
these models are very general and take into account
neither the actual physical relations between variables,
nor the existing links between parameters. It makes it
difficult to extrapolate to other contexts: for instance,
finding a ARX model representing the thermal be-
havior of a thermal zone is easy when the ventilation
flow is constant but extrapolating this model to other
levels of ventilation is not possible because physical
parameters are distributed into several ARX parame-
ters. These kinds of models may be used in real-time
for a given context, using no other information than
input-output data, considering the system as a black
box. Based on all previous claims, using black box
approaches is relevant for GMBA-BEMS purpose.
A physical analogy of thermic with electric circuits has
been widely used in literature (G. G. J. Achterbosch,
1985; Hudson and Underwood, 1999; N. Mendes,
2001; G. Fraisse, 2002; M. M. Gouda, 2002; S. Wang,
2006). Most of these building models are based on
a heat balance equation. By means of this equation,
building thermal parameters such as thermal resistance
and thermal capacitance plus indoor/outdoor and ad-
jacent zones temperatures, metabolic heat of occu-
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pancies and electric appliances can be adapted to the
electric circuit components such as resistor, capacitor,
voltage and current source. These models may be used
to estimate the internal temperature and the heating/-
cooling energy demand of buildings (Park et al., 2011;
Deng et al., 2010).
The work of M. M. Gouda (2002) proved that a sec-
ond order RC network with 3 resistors and 2 capaci-
tors (3R2C) is sufficient to capture the fine conductive
dynamic interaction between two spaces connected
through a single wall (Deng et al., 2010) for simula-
tion purpose. Deng et al. (2010) suggested a 1R1C
lumped parameter circuit which presents a building
thermal model using thermal-electric analogy. In or-
der to avoid opinions about model structures and to
get tangible conclusions dependent of model usage, a
modeling process is going to be defined.

PROBLEM STATEMENT
The PREDIS/MHI (Monitoring et Habitat Intelligent)
platform, located at the ENSE3 school of Grenoble
Institute of Technology, is used as reference build-
ing in this paper. This platform is a tertiary low en-
ergy building that is highly instrumented where most
of the energy flows are measured using different sen-
sor technologies. The studied thermal zone is a class-
room surrounded by 5 adjacent thermal zones (one ad-
jacent thermal zone has been neglected because of its
small impact). The classroom is equipped with a CMV
(controlled mechanical ventilation) with a static air/air
heat exchanger. This CMV may provide heat through
air/water exchanger thanks to a fuel boiler. Data set
and model quality assessment methodology are pro-
posed in this paper to assess the obtained reduced or-
der model.
The proposed approach relies on the data coming from
the PREDIS/MHI platform. The first step is to cal-
culate realistic parameters with possible intervals be-
cause nonlinear optimization, required for physically
explicit models, implies initial parameters. The next
step is to find the best reduced order model structure
using an iterative nonlinear optimization approach us-
ing recorded data that leads to parameter estimation.
It is based on randomize initial values for parameters
to measure the convexity of the search space in study-
ing the convergence. Finally, the last step consists in
enhancing the time zones where reduced order model
does not fit well with the available data. It points
out some non-modeled phenomena. It is based on a
weighted iterative estimation method where weights
depend on the estimation errors obtain at the previous
step.

THE PREDIS/MHI PLATFORM
A 3D representation of the PREDIS/MHI platform is
given by figure 1. PREDIS/MHI platform is a low
consumption building inside another building, which
is a kind of warehouse. The typical year consump-
tion are given by(regarding electricity, primary energy

is obtained by multiplying by 2.58 the electric kWh,
according to French standards):

• ventilation: 43kWhpe/m2/year (pe=primary en-
ergy)

• hot water/air exchanger: 16kWhep/m2/year
• lighting: 35kWhep/m2/year
• other usage of electricity (computers):

56kWhep/m2/year

In this paper, we focus on the thermal zone named
classroom. It is surrounded by the following thermal
zones:

• a space over the ceiling but also on one side of
classroom, at temperature T

space

• a corridor at temperature T

corridor

• a downstair thermal zone at temperature T

down

• a adjacent thermal zone corresponding to an
open space with offices at temperature T

offices

• a technical area named control panels in figure
1, which is not considered in the thermal mod-
eling because the temperature inside this area is
almost the same that in classroom but also be-
cause the exchange interface (a wall) is small.

The HVAC system is composed of:

• a double flux ventilation system with a rotative
heat exchanger, whose measured efficiency is
50%. It renews air of both zones classroom and
offices. 61% of the injected air is going to class-
room and 39% is going to offices.

• 2 hot water/air heat exchanger, one for each
zone of the PREDIS/MHI platform. Hot water
is produced by a site fuel oil boiler.
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Figure 1: 3D overview of PREDIS/MHI platform

The relation between the rotation speed of a ventila-
tion drive and the electric power consumption has been
measured; results are given by figure 2.

3URFHHGLQJV�RI�%6������
��WK�&RQIHUHQFH�RI�,QWHUQDWLRQDO�%XLOGLQJ�3HUIRUPDQFH�6LPXODWLRQ�$VVRFLDWLRQ��&KDPEpU\��)UDQFH��$XJXVW������

��������



Figure 2: Characteristics of the air treatment unit

Because there are two drives for ventilation, the re-
lation between consumed electric power P

elec

and
air flow Q

tot

air

has been interpolated using a quadratic
function:

P

elec

= 1.728 10

�4
(⌦� 500)

2
+ 65 (1)

Q

tot

air

= 0.56⌦ (2)

where ⌦ stands for the speed of the two drives.
PREDIS/MHI platform is much more than a low con-
sumption building: it is a tool for research. Indeed,
it contains lots of sensors to measure all the energy
flows, including energy transported by air and hot wa-
ter. It contains different technologies of sensors: all
the measurements can be accessed thanks to a unique
RESTful web service connected to many different sen-
sor protocols such as OPC for sensors/actuators con-
trolled by a SCADA, Zigbee, X10, Oregon Scientific
protocol, 8-20mA analogic protocol,...

CALCULATION OF PARAMETERS
Calculation of parameters based on physical con-
siderations
In order to calculate parameter values based on
physics, 4 interfaces have been defined, each interface
is decomposed of parts. Thermal conduction, convec-
tion and radiation have been taken into account for
each layer of a part within an interface but thermal
bridges have been neglected. Because of the uncer-
tainties about the materials and some dimensions, in-
stead of searching average values, surrounding values
have also been searched taking into account the min-
imum and maximum possible values for dimensions
and physical characteristics of materials:

1. the equivalent thermal resistor for the class-
room/offices interface
R

classroom

offices

= 7.12 10

�3
K/W 2

[2.79 10

�3
, 14 10

�3
]

(a) wall part with pvc layer, air layer and pvc
layer

(b) glass part with glass layer, air layer and glass
layer

2. the equivalent thermal resistor for the classroom/-
corridor interface
R

classroom

corridor

= 23.2 10

�3
K/W 2

[7.91 10

�3
, 52.7 10

�3
]

(a) wall part with plaster sheet layer, rock-wool
layer and wood layer

(b) glass part with glass layer, air layer and glass
layer

(c) door part with wood layer, air layer and
wood layer

3. the equivalent thermal resistor for the classroom/s-
pace interface
R

classroom

space

= 7.12 10

�3
K/W 2

[2.79 10

�3
, 14 10

�3
]

(a) wall part with plaster sheet layer, rock-wool
layer and wood layer

(b) glass part with glass layer, air layer and glass
layer

(c) ceiling part with plaster sheet layer and rock-
wool layer

4. the equivalent thermal resistor for the classroom/-
down interface
R

classroom

down

= 5.66 10

�3
K/W 2

[1.91 10

�3
, 22 10

�3
]

(a) floor part with concrete layer, air layer and
plastic layer

In order to evaluate the capacity, a cross correlation be-
tween the air temperature of the classroom T

classroom

and the outdoor temperature T
out

has been done using
a 18 days dataset. Figure 3 points out a time lag com-
prised between 1h and 2h. This result will be used to
determined the equivalent capacity in the next section.

Figure 3: Cross correlation between T

classroom

and
T

out

Obviously, all these values are approximation and
should be adjusted in order to fit measurements.

Tuning of the calculated parameters
Adjusting parameters by identification requires a
model. Because our aim is to configure a GMBA-
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BEMS whose sampling time is 1 hour, dynamics lower
than one hour would not appear. The model repre-
sented in figure 4 has been selected but this choice will
be discussed in the next section. Reduced order phys-
ically explicit model is given by:

d

dt

T

classroom

wall

= A(t)T

classroom

wall

+B(t)u(t)

T

classroom

= C(t)T

classroom

wall

+D(t)u(t)

with:

A(t) = �

1
R

classroom

down

+

1
R

classroom

office

+ . . .

1
R

classroom

space

+

1
R

classroom

corridor

+ . . .

1
R

classroom

wall

+R

classroom

out

(t)

C

classroom

B(t) =

2

666666664

1
R

classroom

down

1
R

classroom

office

1
R

classroom

space

1
R

classroom

corridor

1
R

classroom

wall

+R

classroom

out

(t)

1

3

777777775

T

C

classroom

C(t) =

R

classroom

out

(t)

R

classroom

wall

+R

classroom

out

(t)

D(t) =

2

66666664

0

0

0

0

R

classroom

out

(t)
R

classroom

wall

+R

classroom

out

(t)

0

3

77777775

T

u(t) =


T

down

T

offices

T

space

. . .

. . . T

corridor

T

out

�

classroom

�
T

and:
• T

classroom

wall

, the average temperature of the
classroom walls

• T

down

, the temperature of the ’down’ zone
• T

offices

, the temperature of the ’offices’ zone
• T

space

, the temperature of the ’space’ zone
• T

corridor

, the temperature of the ’corridor’ zone
• �

classroom

, the heat injected into the ’class-
room’ zone

• Q

air

, the air flow provided by the CMV
• Q

leaks

, the leakage constant air flow

• R

classroom

out

, the equivalent thermal resistor rep-
resenting the air flow exchanged with outide

The discrete time model for T
s

= 3600s, is then given
by:

T

classroom

wall

= e

A(t)T
s

T

classroom

wall

+ . . .

(e

A(t)T
s � 1)A(t)

�1
Bu(t)

                    Tout

                    Tcorridor

                    Tspace

                    Tdown

                    Toffices

                    Twall/classroom

                    ϕclassroom

                    Tclassroom

                    Rclassroom
out

                    Rclassroom
corridor

                    Rclassroom
space

                    Rclassroom
down

                    Rclassroom
offices

                    Rclassroom
wall

                    Cclassroom

Figure 4: Selected model for PREDIS/MHI classroom

Nevertheless, calculated parameters cannot be directly
used in the selected model. The transformation illus-
trated by figure 5 has been used to obtain model pa-
rameters. This transformation relies on the idea that
heat fluxes have to remain identical if T

int

and T

out

are identical.
                    Rwall1

                    Rwall2

                    Cwall

                    Tout1

                    Tout2

                    Tin

                    Twall

0

                    Tin
                    Twall

                    Cwall

0

                    Tout1

                    Tout2

                    Rwall          −           Rwall1 Rwall

          −           Rwall2 Rwall

                    φ1

                    φ1

                    φ2

                    φ2

Figure 5: Model transformation used to adapt calcu-
lated parameter values

Consequently, the resistor R
wall

has to be determined.
Assuming symmetricity, we used:

R

wall

=

1

2
R

corridor

+

2
R

space

+

2
R

down

+

2
R

offices

= 1.23 10

�3
K/W

It yields:

R

classroom

corridor

= 22 10

�3
K/W 2 [6.7 10

�3
, 51.5 10

�3
]

R

classroom

space

= 5.89 10

�3
K/W 2 [1.5 10

�3
, 12.8 10

�3
]

R

classroom

down

= 4.4 10

�3
K/W 2 [0.7 10

�3
, 20.8 10

�3
]

R

classroom

offices

= 20.1 10

�3
K/W 2 [5.2 10

�3
, 137 10

�3
]

The resistor R

classroom

out

has actually a time varying
value because it depends on the ventilation air flow.
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Because the air flow is known, this resistance can eas-
ily be calculated thanks to physics. It yields:

R

classroom

out

=

1

0.61(1� ⇣)c

air

⇢

air

(Q

air

+Q

leaks

)

with

⇣ = 0.5, efficiency of the heat exchanger
c

air

= 1006J/kg.K

⇢

air

= 1.204kg/m

3

Q

leaks

= 10.03m

3
/s

Q

air

in m

3
/S

In the previous section, a time lag of 1 to 2 hours has
been observed between T

classroom

and T

out

. In or-
der to estimate the value of the equivalent capacity,
let’s study the theoretical time lag �. Considering the
first harmonic whose period in 24h, the delay between
curves can be calculated because the model is 1st or-
der. It yields:

� =

tan

�1
�
2⇡⌧
T

�

360

T

where T = 24h and:

⌧ =

C

classroom

1
R

classroom

down

+

1
R

classroom

office

+

1
R

classroom

space

. . .

+

1
R

classroom

corridor

+

1
R

classroom

wall

+R

classroom

out

(t)

It can be reformulated as:

C

classroom

=

T ⇥ tan

�
360�
T

�

2⇡

⇥ . . .

0

BBBBBB@

1
R

classroom

down

+ . . .

1
R

classroom

office

. . .

+

1
R

classroom

space

+ . . .

1
R

classroom

corridor

+ . . .

1
R

classroom

wall

+R

classroom

out

(t)

1

CCCCCCA

It leads to C = 7.1 10

6
[3 10

6
, 17.8 10

6
].

Using a 18 days dataset, a interior point optimization
algorithm has then been used to adjust the parameters
according to their respective intervals. However it ap-
pears that the results where very sensitive to the pro-
posed initial parameters. Moreover, most of the time,
results are not physically meaningful. The phenomena
is due to the fact that some parameters are not identifi-
able because of the dataset. It can be understood with
a sensitivity analysis.
The measurements of a typical winter day have been
used and the energy needs in kWh have been estimated
according to different simulations when changing in-
dependently each parameter to its minimum and max-
imum values (average value is 14.2kWh):

parameter min max variation
R

classroom

corridor

12.8 18.3 39%
R

classroom

space

14.2 38 168%
R

classroom

down

8 193 1302%
R

classroom

offices

12.7 18 37%
R

classroom

wall

14.2 39 175%
C

classroom 12.9 18.6 40%
It appears that the impact of Rclassroom

corridor

, Rclassroom

offices

and C

classroom is little and that these parameter val-
ues will be more difficult to identify. Therefore, to
avoid weird values, the following optimization crite-
rion has been used because norm 1 does not give more
importance to larger error:

J =

X

i

|Tmeasured

classroom,i

� Tclassroom, i

model|+ . . .

· · ·+ ⇠|✓
calculated

� ✓|

where sample time is one hour.

Figure 6: measured and simulated temperature for
Tclassroom

Thanks to this objective, the optimization will modify
a parameter value only if it reduces the optimization
error. Consequently, if a parameter is not identifiable,
it will be kept at its calculated value.
Based on the measurements for 18 days, the optimiza-
tion process led to the following values:

R

classroom

corridor

= 22 10

�3
K/W ! 22 10

�3
K/W

R

classroom

space

= 5.89 10

�3
K/W ! 6.4 10

�3
K/W

R

classroom

down

= 4.4 10

�3
K/W ! 4.4 10

�3
K/W

R

classroom

offices

= 20.1 10

�3
K/W ! 20.1 10

�3
K/W

R

classroom

wall

= 1.23 10

�3
K/W ! 1.2 10

�3

C

classroom

= 7.1 10

6
K/W ! 15.3 10

6
K/W

The error between the measured temperature for
T

classroom

and the one deduced from the model with
optimal parameters is given by figure 6.

ASSESSMENT OF THE MODEL
Before assessing whether a model is suitable or not for
a given goal, the quality of a model has to be defined:
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• a good model has to explain relations between
observed phenomena according to expected pre-
cision i.e. estimation error has to be small
enough, especially during the validation process

• for BEMS, a good model has links with physics
in order to be able extrapolate behaviors like
modification of the ventilation

• the parameters of a good model has to be iden-
tifiable

The first point is easy to check but the second point is
much more difficult. Sensitivity analysis may be used
but the link is not direct with identifiability of physical
models. In this section, a process is proposed to assess
the quality of a model.

The second point leads to the approach that has been
followed in this paper regarding the physics based
modeling.

Regarding the third point, the basic idea is to check
whether identification processes are ergodic. There-
fore, the proposed process is to draw randomly initial
parameters within their possible value set and check
whether identification process leads to the same best
parameters.

The curve of figure 7 is the main indicator to assess
the quality of a model. It has to be as little as possible
to yield good explanation capacity but also as flat as
possible to guarantee ergodicity. In the PREDIS/MHI
model, same value of criterion is obtained for 60% of
the optimizations. It increases a lot for 30% of the op-
timizations.

Figure 8 points out how the parameters are distributed.
If the model is good and if the dataset used for pa-
rameter estimation is rich enough, identified param-
eters should be gathered around a single best value.
If the variance is important, it means that the pa-
rameter cannot be found either because the model
contains to many parameters or because the data set
is too poor. Regarding PREDIS/MHI, the parame-
ters are from top to bottom: R

classroom

wall

, C
classroom

,
R

classroom

down

, R

classroom

space

, R

classroom

offices

, R

classroom

corridor

, ⇣

and T

classroom

(0). Figure 8 stresses that parameters
C

classroom

and R

classroom

space

are difficult to identify.
Sensitivity analysis already pointed out that response
is very insensitive to the value of C

classroom

. Nev-
ertheless, the result concerning R

classroom

space

points out
that sensitivity analysis is not relevant to evaluate the
quality of a model.

Figure 7: Ascendent values of obtained criteria for 20
optimizations

Figure 8: Distribution of parameters for 20 optimiza-
tions

CONSIDERING UNKNOWN PHENOMENA
In practical situations, adjusting parameters of a model
in order to fit measurements is difficult because of
the presence of unknown phenomena. Indeed, in the
available data for PREDIS/MHI, there is no informa-
tion about occupancy, neither about the solar gain or
about the position of doors. It means that in practical
situations, we have to cope with unknown phenomena.
The problem to be solved is to give more important to
period where there is not much unknown phenomena.
It amounts to enhance the time periods where reduced
order model does not fit well with the available data.
This mismatch points out some non-modeled phe-
nomena. An algorithm based on a weighted iterative
estimation method where weights depend on the esti-
mation errors obtain at the previous step is introduced.
This weighting function is supposed to magnify the
importance of well-matched intervals and minimize
the importance of poor-matched intervals during op-
timization process of parameter estimation. If the
estimation error becomes high, it means that there are
some phenomena that have not been taken into con-
sideration. Here is the function definition:

!(t) = |e(t)| (3)

W (t) = 1� !(t)�min !(t)

max !(t)�min !(t)

(4)
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where !(t) is the absolute estimation error and W (t)

is the normalized reversed estimation error which is
the weighting function in this case. The procedure of
applying this weighting factor is shown in figure 9.

 

Parameter 
Estimation Weighting Function 

𝒆(𝒕) 

 
𝑾(𝒕) 

Figure 9: Weighting function algorithm

The idea is to repeat this loop for a certain amount of
time (in our case 20 times) to finally assess the error
sensitivity and analyze the model’s behavior.
Figure 10 is the results of 20 weighted iterative estima-
tions for a set of 6 days captured data. A good model
should be able to reduce the error by the help of this
weighting function. Studying step by step the results
indicates some periods where there is neither signifi-
cant change in error nor reduction and even some times
the errors has increased in further estimations. In this
experiment, by the help of two other available infor-
mation the non-modeled phenomena are introducing.

Figure 10: Results of 20 weighted iterative estimation
with two samples of non-modeled phenomena

Estimated numbers of occupants from emitted CO2
and airflow rate of ventilation system have been cor-
related by the results of estimations in figure 11. Five
peaks over midnights are correlated at the same time of
maximum airflow during midnight. Indeed, two nega-
tive peaks occur at the same time of high occupancy in
fourth and fifth days. Consequently, it is feasible that
the model does not take into consideration the pres-
ence of occupants and also air flow variation of venti-
lation system.

Figure 11: Upper plot: airflow of ventilation system
captured by sensors, Middle plot: weighted estimation
errors, Lower plot: number of estimated occupancy

CONCLUSION
This paper proposes a methodology to assess reduced
order physically explicit models. It relies different
steps. First step consists in calculating parameters with
bounds from physics and to proposed a relevant model
structure according to the expected usage (paper fo-
cuses on models for GMBA-BEMS). The second step
relies on a nonlinear optimization algorithm that both
minimize the error between estimations and measure-
ments but also keeps parameters close to the values
calculated using physics in order to avoid weird values
for non identifiable parameters. The third step con-
sists in the assessment of the model quality using 2
curves: one points out whether best parameters can
be found whatever the initial parameters are (ergodic-
ity) and the other represents the parameter distribution
in order to appreciate parameter identifiability which
depends both on the selected model and on the used
dataset. This procedure has been applied to the PRE-
DIS/MHI platform. Physically explicit parameter val-
ues have been found but it turns out that it is still dif-
ficult to identify some parameters. Finally, a proce-
dure based on a recursive weighted parameter estima-
tion procedure has been proposed. It makes it possible
to automatically give more important to time periods
where there are few unknown phenomena.
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