
BUILDING PERFORMANCE SIMULATION USING MODELICA: ANALYSIS OF 
THE CURRENT STATE AND APPLICATION AREAS 

 
Sebastian Burhenne, Dominik Wystrcil, Mehmet Elci, Sattaya Narmsara, Sebastian Herkel 

Fraunhofer Institute for Solar Energy Systems ISE, Freiburg, Germany 
 
 
 
 
 

ABSTRACT 
During the last years, the modeling language 
Modelica became increasingly used in building 
performance simulation. Several Modelica libraries 
for building components and HVAC equipment exist 
and many research groups use the language. This 
paper provides an overview about the application of 
Modelica. This includes modeling on different scales 
(e.g., urban scale, building envelope, HVAC system) 
and for different applications (e.g., conceptual 
building design, building operation). The modeling 
and simulation process is analyzed with respect to 
available Modelica libraries, how compatible these 
libraries are between each other and how they can be 
extended. Furthermore, Modelica models are 
analyzed with respect to the common tool chain (e.g., 
coupling of Modelica–based models with other 
programs, uncertainty and sensitivity analysis and 
optimization). Project examples are introduced and 
practical advise concerning the effective application 
of Modelica is given. 

INTRODUCTION 
Today’s tasks in building performance simulation 
(BPS) require a flexible tool to meet diverse 
requirements. Many different simulation programs 
exist. Some of them are especially developed for BPS 
(e.g., IDA ICE, ESP-r, EnergyPlus, TRNSYS, 
WUFI®Plus) and others are more generic but also 
used for BPS (e.g., Dymola/Modelica, MATLAB/ 
Simulink, IDA SE). The decision which tool is used 
in a specific project is based on the questions to be 
answered, the experiences of the modeler, license 
costs, and many other aspects. 
In research, the questions to be analyzed vary 
significantly. Applications include conceptual 
building design, building operation, detailed analysis 
of HVAC components, calculation of heat and 
moisture transport in building components, fault 
detection and diagnosis, optimization and the 
simulation of several buildings at an urban scale. 
Neither of the mentioned monolitic BPS tools 
provide capabilities for all of these areas. Modelica 
as a flexible, equation-based and object-oriented 
modeling language can be used to develop models 
that meet given requirements. This article 
summarizes the application of Modelica models in a 

research setting examplified on the basis of the 
requirements at the institute of the authors. Howewer, 
many requirements also apply for common BPS 
practice. 
Several Modelica libraries exist that contain 
simulation models for heat/cold generation, storage, 
distribution and delivery as well as one-zone and 
multi-zone building models. Some of these BPS-
related libraries are introduced in the following. 
The basis of most libraries is the Modelica Standard 
Library (MSL) including Modelica.Fluid, 
Modelica.Thermal and Modelica.Media that contain 
models that can be used to model the basic physical 
phenomena such as heat flux through a thermal 
resistor, pressure drop or thermophysical properties 
of fluids. Furthermore, simple HVAC components 
such as static pipes, simple generic orifices, 
circulation pumps and valves are included in the MSL 
(Casella et. al., 2006). 
The Lawrence Berkeley National Laboratory (LBNL) 
develops a Modelica library called Buildings that 
contains a large number of HVAC components such 
as chillers, buffer storages, heat exchangers as well 
as controls. Furthermore, it contains a multi-zone 
building model (Wetter et al., 2011). 
Another Modelica library for HVAC-systems and 
building models is developed by the RWTH Aachen. 
Besides many models for HVAC components and 
different thermal zone models, it contains a large 
database of manufacturer’s data for building 
technology (Müller et al., 2010). 
Recently, another Modelica library was published by 
the UdK Berlin (Nytsch-Geusen et al., 2013). This 
library also offers a large number of building and 
HVAC models. The developed models do not build 
up on the connector types such as fluid and heat ports 
that are used in the MSL. Therefore, a coupling of 
these models with models from other libraries 
requires adjustments. 
The commercial Modelica library Hydronics is 
developed by XRG Simulation GmbH (2013). It is 
especially designed for the modeling of large fluid 
circuits and contains constant and variable speed 
pumps, heat exchangers and different models for 
liquids. The coupling of models based on the 
Modelica.Thermal library and the Modelica.Fluid 
library (only on the gaseous side) is possible. 
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Modelica models require a simulation environment in 
which the simulation is performed. Amongst others, 
the open-source simulation tools JModelica and 
OpenModelica as well as the commercial simulation 
environments SimulationX and SystemModeler are 
available on the market. For the examples presented 
in this paper, the commercial modeling and 
simulation environment Dymola is used. 
The increasing importance of Modelica in the BPS 
community resulted in the approval of an Annex of 
the International Energy Agency, under the 
implementing agreement on Energy Conservation in 
Buildings and Community Systems (ECBCS). The 
Annex 60 has the title New generation computational 
tools for building and community energy systems 
based on the Modelica and Functional Mockup 
Interface standards. It aims to encourage a joint 
effort of different modelers to further extend the 
capabilities of BPS related Modelica modeling. 
The authors aim to use Modelica models in all 
mentioned application areas. Different libraries are 
leveraged and if necessary models are extended or 
new models are written (e.g., adding a new HVAC 
component). 

SIMULATION EXAMPLES 
Building envelope 
In the following, simple building envelope models 
are introduced. The main advantage of these models 
is that they are computationally cheap. The models 
can be used for various tasks (e.g., the simulation of a 
district with many buildings and for applying Monte 
Carlo (MC) techniques or optimization algorithms). 
The building model is based on the so called 
Thermodynamic model (an equivalent circuit model) 
described in the German standard VDI 6020-1 (2001) 
and VDI 6007-1 (2007). However, it is partly 
simplified. 
Figure 1 shows the equivalent circuit model of the 
building model. The opaque components, which are 
exposed to an asymmetric heat load (exterior walls, 
roof and bottom plate), are represented by three 
resistors and two capacitors. Internal building parts 
(e.g., internal walls and ceilings) are represented by 
one resistor and one capacitor. The parameters for 
resistors and capacitors are calculated according to 
VDI 6007-1 (2007). 
 

 
Figure 1: Equivalent circuit of the Modelica building 

model. 

 
The implementation in Modelica was carried out 
mainly using the MSL. If a required model was not 
available in the MSL, own models were developed or 
existing models were modified. Figure 2 shows the 
graphical representation of the Modelica building 
model. By going one level deeper into a sub-model, 
for instance the external wall (circled in green in 
Figure 2), the resistors-capacitors-structure can be 
identified (see Figure 3). 
 

 
Figure 2: Graphical representation of the Modelica 

building model. 
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Figure 3: Graphical representation of an external 

wall model. 

 
The building model was validated by comparing its 
results with the results of a validated building model 
of IDA ICE (Sahlin et al., 2004; Achermann and 
Zweifel, 2003). This cross-validation was carried out 
by determining a reference building (a 4-storey 
multi-family house in Freiburg/Germany) and 
performing an annual simulation with both models. 
It was assumed that during the summer period, no 
heating demand is required. The summer period was 
defined as the period from 15th May to 14th 
September. For this period, no setpoint temperatures 
were defined in the models. For the simulation, the 
test reference year (TRY) data of region 12 from the 
German Meteorological Service was utilized (DWD, 
2013). 
Figure 4 shows the results of the validation 
simulations. The upper diagram displays the entire 
year and the diagrams below show two example 
weeks. 
 

 
Figure 4: Results of the IDA ICE simualtion and 

Modelica simulation. The upper diagram shows an 
entire year. The lower diagrams show two 

representative weeks. 

 

In addition to the visual evaluation, the discrepancies 
were also quantified. The summer period was not 
considered in the numerical evaluation. Table 1 
shows the results. The coefficient of determinaton 
shows that generally the simulation results are in 
good agreement. By the mean bias error being close 
to 0, it can be concluded that there is no systematic 
error. However, the root mean square error which is 
10.68 kW (mean value of the IDA ICE results is 
46.24 kW) shows that there is a clear discrepancy 
between the two models. The comparison of the root 
mean square error with the mean bias error indicates 
that the models oscillate differently. By a visual 
examination of the graphs in Figure 4, it is revealed 
that the curve of the Modelica simulation is flatter. 
The IDA ICE results contain larger load swings. 
Nonetheless, for the purpose of this study which is 
simulating the space heating demand of an entire 
district the simplified building model can be 
considered as sufficient. 
 

Table 1 
Quantification of simulation result deviations. Mean 
value of the IDA ICE results is 46.24 kW (reference 

value). 

MEASURE VALUE UNIT 

Coefficient of determination 0.89 - 

Mean bias error -0.11 kW 

Root mean square error 10.68 kW 

 
HVAC equipment 

In this section, a modeling and simulation example 
on the scale of a HVAC system for a building is 
shown. The analyzed building is a floating house on 
a lake as shown in Figure 5. The heating and cooling 
energy supply is realized by a brine-water heat pump 
system. As environmental heat source and sink the 
lake water is utilized by a coiled tube heat exchanger. 
The heat and cold delivery to the rooms is realized by 
a floor heating system. With the simulation model, a 
model-based analysis concerning the system design 
and system control shall be performed. The aim is to 
minimize the end energy consumption for the heat 
pump compressor as well as the circulation pumps 
with regard to the thermal comfort requirements. For 
this task, the modeling of the thermal and as well of 
the hydraulic behavior of the system was performed. 
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Figure 5: Floating house on a lake in Kalkar, 

Germany 

 

The modeling of the system components is based on 
the fluid and thermal connector concept provided by 
the MSL (Franke et. al., 2009). These connector types 
were used as interfaces of the component models and 
enable the communication between different models. 
Models with fluid connectors use pressure and 
temperature as potential variables and mass flow rate 
as flow variables. Models with thermal connectors 
use temperature as potential variable and the heat 
flow rate as flow variable. As already mentioned, 
different model libraries for HVAC systems exist that 
contain models for heat/cold generation, storage, 
distribution and delivery. For this example, models 
such as pipes, orifices, fluid volumes, thermal 
resistors and thermal capacities were utilized from 
the MSL (i.e., Modelica.Fluid, Modelica.Thermal and 
Modelica.Media). Other HVAC components were 
used from the Buildings library provided by Wetter et 
al. (2011) such as variable speed pumps and buffer 
storages. Non-existing or non-suitable component 
models were modeled from scratch using the MSL as 
basis. The modeling of the components was partly 
realized by implementing the equations for the 
investigated physical processes, using empirical 
equations and correlations from literature or 
deducing characteristic lines and curves from 
measurement data or manufacturer’s data sheets. 

As an example, the modeling of the heat pump of the 
introduced system is presented here. The heat pump 
model was built up as a black-box-model based on 
characteristic curves for COP and heating power 
dependent on the temperature levels on the 
evaporator and condenser side. The data points such 
as heat flow rates, electrical power consumption and 
temperatures were obtained from the data acquisition 
system in the real building which has a measurement 
frequency of 90 seconds. The measurement data set 
for the whole heating season in 2011/2012 were 
filtered for quasi-steady-state operating points of the 
heat pump in which the energy balance for 
evaporator, condenser and compressor energy was 
below a defined threshold of 100 W. For the 
characteristic curves for the COP as well as for the 

heating power, a layer-equation according to 
Equation 1 is used: 

0secprim zTbTaCOP   (1) 

The identification of the parameters a, b and z0 was 
realized using a nonlinear surface approximation. 
The relevant data points represented as black dots as 
well as the deduced regression curve is shown in 
Figure 6. The COP (dependent on the fluid side 
evaporator and condenser temperatures) can be 
determined with a coefficient of determination of 
0.88. 

 
Figure 6: COP dependent on evaporator and 

condenser temperature levels 
 
The electrical power consumption of the compressor 
can be derived from the definition of the COP as 
ratio between heating power and electrical power 
consumption. The cooling power at the evaporator is 
derived based on the energy balance of the heat pump 
which is considered to be adiabatic. 

For the modeling of the hydraulic network, a detailed 
on-site audit has been conducted to identify the pipe, 
orifice, valve and pump geometries and data for the 
hydraulic components of the system. Manufacturer’s 
data sheets for heat exchangers, heat meters etc. were 
also consulted to obtain nominal pressure drops at 
nominal volume flow rates. This data was used for 
the parameterization of the hydraulic model 
components that were used from the Modelica.Fluid 
respectively Buildings libraries (static pipe, simple 
generic orifice). All pipe lengths and pressure loss 
coefficients for independent valves, orifices and 
fittings in one section of the hydraulic network were 
aggregated into one hydraulic resistance to keep the 
number of equations in the system model small. 

For the variable speed pumps, a simulation model of 
the Buildings library was used. Herein, the user 
provides characteristic data for the pressure drop as 
well as the electric power consumption under 
nominal conditions (i.e., full-load operation). 
Operating points in between are interpolated by a 
cubic hermite spline. Part load operating points 
(relative speed between 0 and 1) are obtained by 
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Figure 9: Model of a district heating network  

 
Figure 10 shows simulation results of distribution 
heat losses with the following supply strategies: 

- Strategy A: Status Quo; Heating curve with 
max. 110°C supply temperature; current 
state of substation; average return 
temperature of 70° C 

- Strategy B: Heating curve with max. 90°C 
supply temperature; substation and return 
temperature equal to strategy A 

- Strategy C: Heating curve with max. 90°C 
supply temperature; maintained substation; 
reduced average return temperature of 50°C 

The simulation results show that a small reduction of 
heat losses could be achieved by decreasing the 
supply temperature (Strategey B). However, strategy 
C results in higher energy savings because the return 
temperature was also significantly decreased. Lastly, 
the return temperature depends mainly on the quality 
of the substation. 

 

 
Figure 10: Simulation result for heat losses with 

different strategies 
 

Using Modelica Models in Conjunction with 
Existing Programs 
Given the existing BPS programs and their 
capabilities it is desireable to couple Modelica 
models with these programs. This has the advantage 
that valuable programs can be used in an Modelica 
context and vice versa. In the following an example 
of such a coupling is introduced. WUFI®Plus is a 
holistic, model-based, on the hygrothermal envelope 
level calculation tool developed by Künzel (1994). 
The hygrothermal behavior of the building envelope 
affects the overall performance of a building. 
WUFI®Plus is a BPS tool that computes the coupled 
heat and moisture transfer in the building 
components. These components are combined to a 
whole building model. Until now, the HVAC 
equipment of the software was considered as ideal 
heating and cooling system. Current activities aim to 
implement realistic models into WUFI®Plus to 
simulate HVAC systems. These models are written in 
Modelica. The building envelope and the HVAC 
system influence each other significantly. This makes 
a separate simulation of both systems inaccurate and 
introduces special requirements for combining both 
in a co-simulation. The decision to implement the 
Modelica models into the existing software rather 
than model the building envelope with Modelica was 
made because of the big user community that is 
familiar with the existing GUI and other user specific 
requirements. A possible way to include Modelica 
models into an existing BPS program is the 
Functional Mock-up Interface (FMI) for Co-
Simulation. More details can be found in Pazold et al. 
(2012). 
The aim is to implement simple but realistic HVAC 
models, which can be used by practitioners. This 
means that only necessary and obtainable plant 
information is required for these simulations. The 
computation time to simulate a building should not 
increase to times which are no longer acceptable for 
practitioners. 
HVAC components to be simulated include: 

 Condensing gas boiler 
 Solar thermal collector 
 Combined heat and power plants 
 Heat pumps 
 Bore hole heat exchangers 
 Thermally activated building systems 

(TABS) 
 Radiators 
 Storage tanks 
 Control equipment 
 PV systems 

There are many HVAC configurations with different 
devices and different parameters and in consequence, 
many Functional Mock-up Units (FMU). WUFI®Plus 
have to interact with the HVAC system configuration 
which is chosen by the user of the software. A FMU 
adapter (Figure 11) is written in the object-oriented 
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