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ABSTRACT

The integration of buildings in a Smart Grid
environment, enabling demand-side management and
thermal storage, requires robust reduced-order
building models that (i) allow simulation of the
energy demand of buildings at a grid-level and (ii)
contribute to the development of demand-side
management control strategies.

System identification is carried out to identify
suitable reduced-order models that are able to predict
and simulate the thermal response of a residential
building. Both grey-box models, based on physical
knowledge, and statistical black-box models are
considered and identified on data obtained from
simulations with a detailed physical model, deployed
in the Integrated District Energy Assessment
Simulation (IDEAS) package in Modelica.

The robustness of identified black-box and grey-box
models for day-ahead predictions and simulations of
the thermal response of a dwelling is analysed.
Whereas accurate day-ahead predictions are obtained
for both grey-box and black-box models, the
simulated indoor temperatures for the grey-box
models tend to gradually deviate from the validation
data. Thereby the influence of the data period used
for the identification process is found to be of
significant importance.

INTRODUCTION

In order to allow a more sustainable integration of
renewable energy sources in the electricity network
and avoid possible stability problems resulting from
the mismatch between the demand and supply,
development of intelligent networks or Smart Grids
is suggested. Smart Grids integrate real-time
communication between actuators on both demand
and supply side to enable demand-side management
and the use of storage technologies. In this context of
Smart Grids, buildings can be of significant
importance since the thermal mass of the building
may be actively used as an active thermal storage
capacity to enable demand-side management of the
energy demand for heating (Reynders et al. 2013).

To activate the thermal mass of buildings active
control of the indoor temperature, e.g. by means of
model predictive control (MPC), is required. MPC
has shown significant potential to improve the
efficiency of heating systems and increase the

penetration of renewable energy, taking into account
time-of-use electricity rates and the availability of
passive gains (Kintner-Meyer & Emery 1995).
However a strong dependence is found of the
potential savings to the coupling of the building with
the outdoor environment and the efficiency of the
control strategy, since the activation of the structural
storage gives rise to increased conduction losses
(Braun 2003). Therefore efficient application of MPC
demands for reduced-order building models that are
able to accurately predict the future heat demand of
the building with a minimal computational effort (S
Liu & G. Henze 2004).

In general three approaches can be followed in order
to derive reduced-order models. A first group of
reduced-order models is represented by physical
white-box models that simulate the heating demand
by simplified physical equations using solely
physical knowledge about the system and material
properties. Lumped capacity models are well known
examples mostly represented by electric network
analogies (Gouda et al. 2000). Where these white-
box models make it possible to analyse the physical
behaviour of buildings and are therefore interesting
for research purposes, the accuracy of control
strategies relying on these physical models have not
been satisfactory since the real building parameters
tend to deviate from the physical values used during
the control design. Therefore the use of statistical
input-ouput models (black-box models) that have
self-learning capabilities is suggested (Chen et al.
2006; Cigler & Privara 2010; Simeng Liu & G. P.
Henze 2006). These black-box models do not require
any prior knowledge about the system. Instead they
rely purely on statistical data analysis. However, a
substantial amount of data might be required to
achieve the accuracy needed for model predictive
control. Moreover, the resulting parameters do not
necessary have a physical meaning and can therefore
not be extrapolated to other buildings with the same
physical properties.

To overcome this problem grey-box models are
introduced. Grey-box models rely on physical
knowledge about the system dynamics to define the
model structure wusing stochastic  differential
equations. Statistical methods are then used to
estimated the unknown parameters. These parameters
may be directly linked to the physical properties of
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Figure 1 RC network representation of grey-box models

the building, given that the model structure correctly
represents the physical behaviour of the system (Xu
& Wang 2008; Bacher & Madsen 2011).

The presented work compares the robustness of
identified black-box and grey-box models for day-
ahead predictions and simulations of the thermal
response of a dwelling. The day-ahead period is
representative for the forecast period that is typically
found in MPC. In addition, robust reduced-order
models are needed to evaluate demand-side
management measures on a district level.

The influence of the data set used for the
identification process is analysed. Thereby it is
investigated whether robust models can be derived
based on simple measurements in an occupied
dwelling. The added value of dedicated identification
experiments, using Pseudorandom binary sequences
(PRBS) for the heating system, is evaluated.

Finally the physical interpretability of the parameters
of the grey-box models is evaluated. The impact of
the simplifications used to develop the model
structure is analysed.

METHODOLOGY

Detailed model

The data used for the identification of reduced-order
building models is obtained from detailed
simulations of a detached single family dwelling. The
detailed simulations are carried out using the IDEAS
tool developed at KU Leuven. The IDEAS tool is
implemented in the object-oriented modelling
language Modelica and expresses transient thermal
processes in detail based on the control volume
method (CVM) as described in (Baetens et al. 2012).

Table 1
Thermal properties implemented in detailed model
A U C
] [WmK)]  [J(meK)]
External walls 200 0.21 2.743E+05
Windows N 16.2 1.10
Windows E 14.7 1.10
Windows S 20.2 1.10
Windows W 11.8 1.10
Floor on ground 132 0.12 4.567E+05
Roof 152 0.12 3.903E+05
Internal walls 120 1.82 1.843E+05
Internal floors 132 1.75 4.595E+05

The dwelling, an example of a typical Belgian
detached single family house, has a floor areca of
131 m? and a volume 741 m?*. The building envelope
has a total surface area of 365 m?. The external walls
are masonry walls with cavity insulation to assure
both thermal resistance and the accessibility of the
thermal mass. The EPS-insulation layer has a
thickness of 0.15 m, resulting in a U-value of 0.21
W/m?K for the exterior walls. Thermal losses to the
ground are reduced by an under-floor insulation
layer. A well insulated, concrete structure is used for
the flat roof. The thermal properties of the different
building components are summarized in table 1.

The model is simulated for the heating dominated
climate of Uccle (Belgium) as a single zone building,
assuming a uniform air temperature for the whole
building. Thereby 1-minute data are used for the
boundary conditions. The output is generated with a
sample time of 5 min.

An ideal heating system is implemented with a
nominal power of 8 kW. The use of ideal heating
results in an instantaneous response of the system.
Consequently the dynamics of the heating system
should not be included in the reduced-order models.
Note that in real experiments the dynamics and
efficiency of the heating system should be taken into
account when using measurements of the energy use
for heating as an input to the system.

Grey-box modelling
Grey-box models consist of a set of continuous
stochastic differential equations formulated in a state
space form that is derived from the physical laws
which define the dynamics of the building. The
unknown parameters in these equations are derived
using estimation techniques. The grey-box approach
is interesting from a research perspective as the
parameters of these models may be directly
interpreted as physical properties (Madsen 2008).
The model structure is formulated in a state space
form, given by equation 1.

dX(t) = A(0)X(t) + B(O)U(t) + 0(0)dw (1.)
In this equation X(t) is the state vector of the
dynamic system. In the case of thermal models in this

paper these states correspond to the temperatures of
different building components.
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U(t) is a vector containing the measured inputs of
the system. These inputs can be controllable, such as
the heat delivered by the heating system or the air
flow rate of the ventilation system, or not
controllable, such as the outdoor temperature, solar
gains, internal gains... w is a random function of time
(Wiener process).
The measured output of the system Y (t) is given in
equation 2 as a function of the states X(t) and the
inputs U(t). € is the measurement error.

Y(t) =C(O)X()+DO)U(t) + ¢ (2.)
The parameters 0 are estimated using the Continuous
Time Stochastic Modelling (CTSM) toolbox
implemented in the statistical software R (Kristensen
& Madsen 2003). CTSM uses maximum likelihood
estimation (MLE) to find the unknown parameters
for a given model structure. The model structures are
derived from resistance capacitance (RC) networks,
analogue to electric circuits. Thereby the distributed
thermal mass of the dwelling is lumped to a discrete
number of capacitances, depending on the model
order. In this work 1%, 2™ and 3™-order models,
referred to as model A, B and C (figure 1), have been
investigated. In all cases the air temperature is used
as the observation variable. As a simplification, the
internal and solar gains, as well as the heating are
directly injected to this air node.

Black-box models

Whereas grey-box models can be defined as internal
models since they can give insight to the internal
states and dynamics of the system, black-box models
purely concern the input-output relation of a dynamic
system. As such the parameters in these models have
no direct relation to physical properties, but result
from a pure statistical relation between the input and
output of the system.

In this paper auto-regression models with exogenous

input (ARX-models) are used to predict the indoor
temperature based on input data for the outdoor
temperature, heating input, internal gains and solar
gains. The general formulation of a discrete ARX-
model of order n is given by equation 3
y(k) + Buoy(k — 1) + -+ Byy(k —n)

= ajyu(k —n+m)

+a,_quk—n+m-—-1)

+ -+ oauk—n+1)

+ agu(k — n)
with y(k) the output at instance k, u(k) a vector
containing the inputs of the system, 8 and «a the
regression coefficients.
The identification process is carried out for 3 models
(I, I and IIT) characterized by an increasing amount
of input signals u(k) that is taken into account.
Model I only takes the outdoor temperature and the
heating input into account. For model II the influence
of solar gains, both direct and diffuse, is included.
Finally, Model III also integrates the internal gains.
For all models the maximum order (n) is 192,
corresponding a delay of 48 h, with a sample time of
15 min. However to reduce the amount of
parameters, while maintaining the maximum lag of
48 h, a step of 1 h is used between 6 and 48 hours.
The regression coefficients are estimated using
maximum likelihood estimation. Thereby a backward
selection procedure is used to identify a suitable
model of the lowest possible order. The backward
selection procedure reduces the number of
parameters using a stepwise elimination process that
minimises the Akaike information criterion (AIC)
given by equation 4

AIC = —2log(L) + 2k (4.)
with L the value of the likelihood function for the
estimated model and k the number of parameters. As
such, the goodness of fit, expressed by the likelihood
function, is penalised by the number

(3.)
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Table 3
Root of mean squared residuals obtained for a 1-step prediction, 1-day ahead prediction and simulation with the
grey-box models identified for the different data sets. Empty cell correspond to cases that did not convergence.

Model Data 1 step prediction 1 day prediction simulation
type period| Free PRBS Userl User2 | Free PRBS Userl User2 | Free PRBS Userl User2
Datl | 0.0071  0.044 0.050 0.053 | 0.27 146 0.76 0.65 | 026 1.63 0.87 0.79
Dat2 | 0.0111 0.045 0.017 0.017 | 0.38 1.12  0.36 036 | 098 1.06 0.8l 0.73
A Dat3 | 0.0095 0.046 0.049 0.048 | 037 1.52  0.68 055 | 1.52 224 079 0.73
Dat4 | 0.0099 0.044 0.027 0.028 | 0.34 1.19  0.56 054 | 1.30 1.16 1.10 1.04
Dat5 | 0.0101 0.046 0.050 0.049 | 0.39 139  0.63 054 | 219 176 091 0.83
Dat6 | 0.0121  0.045 0.024 0.025 | 046 1.28 0.53 0.55 | 3.16 226 1.92 1.98
Datl | 0.0062 0.006 0.033 0.026 | 0.07 0.34  0.53 022 | 0.08 0.51 0.69 0.22
Dat2 | 0.0027 0.011  0.010 | 0.13 0.19 0.15 | 0.18 0.50 0.30
B Dat3 | 0.0069  0.006 0.07 032 0.12 0.97
Dat4 | 0.0025 0.006 0.018 0.015 | 0.10 0.28 0.18 0.18 | 023 056 035 0.69
Dat5 | 0.0024  0.006 0.11 0.28 034 1.05
Dat6 | 0.0028 0.006 0.013 0.014 | 0.11 0.28 0.16 0.15 |1 049 0.92 0.74 0.65
Datl | 0.0068 0.006 0.028 0.026 | 0.48 0.23 0.16 0.16 | 0.48 0.52 0.32 0.17
Dat2 | 0.0026  0.006 0.024 | 0.33 0.28 0.64 | 097 0.27 1.43
C Dat3 | 0.0022 0.006 0.027 0.025 | 0.30 0.50 0.14 0.13 | 1.35 1.21 0.42 0.20
Dat4 | 0.0024 0.006 0.014 0.014 | 028 0.39 0.24 026 | 1.44 040 0.69 0.85
Dat5 | 0.0023  0.006 0.028 0.025 | 0.34 0.28 0.16 0.14 | 2.18 1.04 1.04 0.46
Dat6 | 0.0027  0.007 041 0.44 444 2.68
Data 6 data periods have been selected for the 4 data sets.

The data for the identification process is generated
using the detailed building model. In total 4 data sets
are generated, corresponding to 4 different virtual
experiments: (1) Free-floating, (2) Dynamic heating
using PRBS-signal, (3) In-use data for user 1 and (4)
In-use data for user 2.

The first two data sets represent experiments during
unoccupied periods. Thereby the free-floating
experiment corresponds to measurements in an
empty building without heating. Note that, although a
free-floating experiment is a simple procedure, it is
not expected to give good results for the
identification of a dynamic building model, due to
the absence of higher excitation frequencies. In
contrast, the dynamic heating experiment uses a
Pseudo-Random Binary Sequence (PRBS) for the
on/off control of the heating system. The signal also
excites higher frequencies and is generated to
maintain the state of the heating system (on/off) for
at least 90 min and has a total period of 6 weeks.

In addition to these dedicated experiments, two data
sets are generated corresponding in-use building data.
Thereby the set point for heating is 20.5°C during the
occupied period with a setback to 16°C during un-
occupied periods. A hysteresis control of £0.5°C is
used for the heating system. The occupied periods
follow a deterministic pattern and differ between the
two user profiles, as shown in figure 2. The profile of
user 1 represents the behaviour of a family that is out
for work throughout the day, whereas user 2
represents a case with occupancy throughout the
entire day. The internal gains are calculated from a
corresponding stochastic profile.

In order to evaluate the influence of the period in
which the data is collected on the identified models,

Thereby winter and mid-season periods have been
selected to get different contributions of the heating
and the solar gains. The length of the periods varies
from 1 week to 1 month as shown in table 2

RESULTS

In order to evaluate the quality and robustness of the
models, 3 validation steps are taken. Firstly, the
statistic properties of the residuals are analysed.
Thereby both the root of the mean squared residuals
as well as the autocorrelation of the residuals are
investigated. Secondly, the models are used for day
ahead prediction and simulation. Thereby only the
models that showed good performance in the residual
analysis are used. Finally, the parameters of the grey-
box models are compared against the physical
properties of the building. In all cases, the influence
of the data period and the type of virtual experiment
is analysed.

Residual analysis

Tables 3 and 4 show the root of the mean squared
error (RMSE) for the 1-step prediction, day-ahead
prediction and simulation of the identified models for
each data set. The errors for 1-step prediction are
analysed since they correspond to the residuals
obtained by the Prediction Error Method, that is used
to estimate the parameters, and thus indicate the
goodness of fit. In addition, RMSE values for the
day-ahead prediction and the simulation are analysed,
quantifying the uncertainty that can be expected in
MPC application and simulation on network level
using the identified models.

Table 3 shows decreasing residuals for the 1-step
prediction as the order of the grey-box model
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increasing trend for longer data periods is
ol no longer found. In contrast, longer data
periods improve the model robustness
when the identification is done on the in-
use data set, especially for the mid-season
data.
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' In addition to the RMSE values, an
important statistical test to evaluate the
quality of a model is to analyse the
autocorrelation in the residuals for one-
step predictions. If all dynamics in the
data are explained by the model, no
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| are analysed (figure 3 and 4). For white
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estimated on the data set from User 1

increases. This effect is explained by the increasing
degrees of freedom that is available to optimize the
cost function in the parameter estimation method.
This effect is generally found for increasing model
orders and should be interpreted carefully as
consequently increasing the model order might affect
the robustness due to overfitting. Overfitting occurs
when a model is excessively complex and describes
random error in the data instead of the underlying
physics. In literature, a number of tests such as the
Akaike information criteria (AIC) are found to decide
on the optimal model order and avoid over-fitting.

The effect of overfitting is shown for the day-ahead
prediction and simulation with the free-floating data
set. In both cases the residuals increase when the
model is extended from model B to C. A similar
effect is shown for model C fitted on the in-use
building data (User 1 and User 2). Here the smallest
residuals in a one-step prediction are obtained for the
data periods in mid-season (Dat 2, 4 and 6). During
these periods the heating input, responsible for most
of the high-frequent dynamics, is small.
Consequently, overfitting occurs when the third order
models is fitted on mid-season data, shown by large
errors for day-ahead prediction and simulation,
indicating that free-floating measurements do not
provide adequate dynamics for system identification.
Note that for the PRBS-signal the
inverse effect is shown, since for this
virtual experiment both heating and

0.4 noise, the variation of the residuals is
uniformly distributed over all frequencies.
As such, the theoretical cumulated
periodogram for white noise is a straight
line through the origin. A 95%-confidence
interval (dotted lines) is obtained based on the
Kolmogorov-Smirnov test (Madsen 2008). For the
assumption of white-noise residuals to be valid, the
cumulated periodogram needs to lie within this
confidence interval.

The cumulated periodogram for the grey-box models
(figure 4) show significant autocorrelation for models
A and B, indicating that there are still dynamics in
the data that are not explained using these models.
For model A the cumulated periodogram indicates
that especially low frequency dynamics are not well
explained by the model. By separating the low-
frequent behaviour of the walls and the high-frequent
response of the air capacity (model B), the amount of
autocorrelation is slightly reduced. However, a third
capacity is required to obtain white-noise residuals as
introduced by model C.

The cumulated periodograms for the ARX-models
(figure 3) shows that the autocorrelation significantly
reduces when the model is extended from model I to
I, by taking into account the solar gains. The
influence of further extending the model by taking
into account the internal gains is limited.

Cross-validation and simulation

In addition to the residual analysis, the robustness of
the models is evaluated by cross-validation and

Table 4

Root of the mean squared residuals for ARX-model 111

high solar gains are available in mid- PRBS User 1

season. l-step day-ahead simulation | 1-step day-ahead simulation
The magnitude of the residuals for the Datl | 0.010 0.062 0.540 0.026 0.050 0.220
ARX-models (table 4) is comparable Dat2 | 0.010 0.122 1.423 0.028 0.087 0.851
to the residuals obtained for the third Dat3 | 0.010 0.085 0.861 0.025 0.053 0.341
order grey-box models. Nevertheless, Dat4 | 0.010 0.069 0.621 0.026 0.056 0.369
the black-box models appear to be Dat5 | 0.010 0.085 0.861 0.024 0.053 0.341
more robust for simulations as the Dat6 | 0.010 0.073 0.728 0.024 0.040 0.226
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Figure 5 Cross-validation and simulation of grey-box model C for the period of 14" February - 30™ the May

simulation.

Cross-validation is carried out by performing a day-
ahead prediction of the indoor temperature for a data
from 14™ February until 30™ May, assuming perfect
prediction of the future inputs. As such, the model is
tested in both cold and warm climatic conditions. The
same data period is used for simulation.

The results of both day-ahead prediction and
simulation for the grey-box model C, estimated on
data period 3, are shown in figure 5. This model was
chosen as it showed the smallest RMSE in table 3.
Whereas the results indicate that the model can be
used for day-ahead predictions with a strong
accuracy, a root mean squared error of 0.14 °C, a
gradual deviation from the correct solution is
obtained when the model is used for simulation. This
deviation indicates that the low-frequent dynamics
are not correctly estimated. Consequently, the use of
the grey-box models for estimation demands for
further extending of the model order. However it has
to be noted that for the data used to estimate the grey-
box models, white-noise residuals are obtained. This
indicates that the model explains all the dynamics
that is available in the data. Further extending the
model will therefore require information from
additional variables as for example heat flux
measurements or surface temperatures of the walls.
For the ARX-models a similar deviation is shown
(Figure 6). However the residuals for both day-ahead

prediction and simulation are smaller, indicating a
higher robustness of the ARX-models. For simulation
the RMSE-value of the ARX-model III is 0.2°C.

As such, it can be concluded that both grey-box and
black-box models can be used for accurate day-ahead
predictions of the dynamic behaviour of the dwelling.
For the grey-box models a 3™-order model is able to
capture the dynamics needed for forecasting over a
limited timeframe, i.e. up to a few days. For long-
term predictions and simulation the grey-box models
tend to drift away from the correct solution, since the
low-frequent dynamics are not well explained. For
the ARX-models the drift is less pronounced, given
the data set used for identification contains both cold
and warm periods.

Physical properties of parameters in grey-box

An important benefit of grey-box models is the
physical interpretation which may be given to the
model parameters. As the model structure is derived
from prior knowledge about the physics of the
system, the parameters may be directly linked to the
physical properties of the system, in this case the
thermal properties of the building. However, one can
expect that the physical interpretability of the
estimated parameters are strongly influenced by the
assumptions and simplifications used for defining the
model structure. Therefore this section compares the
estimated parameters for the different model

235 I T
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Figure 6 Cross-validation and simulation of ARX-model III for the period of 14™ February - 30™ the May
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Figure 7 Estimated total heat loss coefficient. Empty cells correspond to cases that did not converge

structures and the different data sets.

Figure 7 shows the estimated values of the total heat
loss coefficient of the building for the different
models and data periods. Firstly, it is shown that the
use of free-float data results in an unreliable
estimation of the total heat loss coefficient. This can
be explained by the limited difference between the
indoor and outdoor temperature for the unheated
building. The same problem occurs for the estimation
of Model C on the in-use data during the mid-season
periods (Dat 2 and Dat 4). Compared to the
theoretical value of 145 W/K, the third order model
tends to overestimate the heat loss coefficients
explaining the underestimation of the
temperature in the simulation test (Figure 5).

indoor

C, [MI/K]

A second interesting parameter is the estimate of the
indoor air capacity. Figure 8 shows that this capacity
is strongly overestimated for the first order model.
Since no distinction is made between the thermal
mass of the structure and the thermal mass of the air,
the estimated capacity represents the active thermal
mass corresponding to the dominating time constant
of the building. When the order of the model
increases the fast dynamics of the indoor air can be
separated from the slow dynamics of the building
fabric. However, the estimated capacity is still higher
than the theoretical value for the total thermal
capacity, of 4.5 MJ/K for the indoor air, that is
implemented in the detailed model. This
overestimation is caused by the assumption that all

PRBS Free

User 1 User2

Datl|Dat2|Dat4|Dat4|Dat5|Dat6|Datl|Dat2|Dat3|Dat4

Dat5

Dat6

Datl|Dat2|Dat3|Dat4|Dat5|Dat6|Dat1|Dat2|Dat3|Dat4|Dat5|Dat6

B A|62,5/60,8|58,0(58,4(57,3|59,7|60,0|60,8|53,8|59,1

54,5

58,6

55,2165,2|48,4|50,4|46,8|56,1|45,3|66,8(45,6/51,1|45,1|54,2

mB|(7,28 7,24|7,23|7,24|7,25|10,0(7,24|10,0|7,30

7,29

6,97

10,0(8,35 10,0 8,38|7,73|8,43 8,90 8,43

5,98/5,53|10,0/9,93|7,24(9,99|0,15|6,77|4,35|6,95

3,88

6,79

7,13 7,12|7,44

7,18 6,91|0,10(6,99|7,53|6,99

Figure 8 Estimated values for the indoor air capacity. Empty cells correspond to cases that did not converge
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gains are directly attributed to the air-node, whereas
in the detailed model the solar gains are distributed
over the indoor surfaces of the zone and the internal
gains and heating are characterized by both a
radiative and convective component. Moreover the
figure indicates that the use of data periods in mid-
season results less reliable results. This can again be
explained by the absence of heating in the data for
mid-season.

Based on these results it can be concluded that the
physical interpretation of the parameters should be
handled carefully and is strongly influenced by the
assumptions and simplification in the grey-box
models. When the purpose of the system
identification is to quantify the thermal properties of
buildings, rather than the prediction of the dynamic
behaviour, further extension of the model is required.
Note however that this might require the availability
of additional measurements since the 3™-order model
already results in white-noise residuals, indicating
that the dynamics that are available in the data are
well explained by the model. Further research is
required to analyse the hypotheses.

CONCLUSION

System identification is carried out on simulation
results for a single zone dwelling in order to identify
both grey-box and black-box models that can be used
for accurate day-ahead prediction as well as
simulations of the thermal response of the dwelling.
The 4 data sets are generated using a detailed
building model developed in Modelica and
representing both dedicated identification
experiments as measurements in occupied buildings.
For all scenarios 6 sample periods are analysed with
a length of 1, 2 and 4 weeks in both winter and mid-
season conditions.

The influence of the data period and the virtual
experiment on the quality and robustness of the
identified models is analysed. Thereby both grey-box
and black-box models show reliable results for day-
ahead prediction. The best predictions are obtained
for the 3™-order grey-box model and the ARX-model
that takes into account the outdoor temperature, solar
gains, internal gains as well as the heating input, with
a root of the mean squared residuals equal to 0.14 °C
and 0.05 °C, respectively.

Considering long-term predictions or simulations, the
temperatures obtained with the grey-box models
show an important drift from the validation data,
indicating that the long-term dynamics are not well
described.

The results show that the data set used for
identification has an important influence on the
robustness of the identified models. It is shown that
measurements in free-floating conditions do not
contain adequate dynamics to allow the identification
of robust reduced-order models. Nevertheless, the
added value of a dedicated experiment using PRBS

control signals for the heating does not improve the
model  quality  significantly  compared to
measurements of occupied buildings.

Further research is required to evaluate the process
and models discussed in this paper on multi-zone
buildings as well as on actual measured data.
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