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ABSTRACT 
Based on observations conducted in an office 
building, we apply advanced statistical analysis 
methods, leading to the formulation of stochastic 
models   for   the   prediction   of   buildings   occupants’  
actions on window openings and shading devices.  
The statistical analysis method – based on 
generalised linear mixed models – enables a correct 
treatment of the longitudinal nature of the datasets, 
an  accurate  estimation  of  the  calibration  parameters’  
uncertainty and a detailed study of the differences 
between the occupants surveyed. This analysis results 
in the formulation of stochastic models for the 
prediction   of   occupants’   interactions   with   the key 
elements of the building envelope, which include 
explicit in-built probabilistic terms to account for 
occupants’  diversity if required. 
Furthermore, we show that the properties of these 
probabilistic terms can be used to infer a statistical 
distribution   of   the   model’s   calibration   parameters,  
which comprehensively represent the diversity of 
observed behaviours between building occupants, 
and can be applied to simulate their behavioural 
properties. 

INTRODUCTION 
The issue of the ability of building simulation 
programs to correctly represent reality is regularly 
discussed, in particular regarding the incomplete 
representation of occupants’ presence and 
interactions with environmental controls, which 
undermines the accuracy of predictions. Based on 
field survey monitoring of heating or electricity 
consumption, these factors are known to be of great 
importance, as the performance of identical building 
is generally estimated to vary by a factor of two, a 
spread that is entirely induced by the differences in 
behaviour between occupants. 
In   order   to   account   for   the   impact   of   occupants’  
interactions with the components of the building 
envelope which determine building energy flows 
(Figure 1), deterministic and stochastic models were 
developed to predict interactions with window 
openings (reviewed by Roetzel et al. (2010) and Fabi 
et al. (2012)) and shading devices (reviewed by 
O’Brien   et   al.   (2013)).   The   data   supporting   their  

development, the proposed modelling approaches, 
the robustness of their validation and their scope of 
application are variable, which advocates for the 
strengthening of published work into a robust 
formulation, adaptable to a sufficiently wide range of 
situations.  
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Figure 1. An overview of the principal occupant-
induced processes in building energy simulation 

 
On the other hand, the validation of these models is 
still to be completed, particularly regarding their 
ability to predict behaviour in buildings that are 
different from their original calibration basis. 
Validation studies of Haldi et al. (2010) and 
Schweiker et al. (2012) suggest that similar patterns 
occur in residential and office environments of 
temperate climates, but that they strongly differ in 
humid climates and within buildings equipped with 
cooling devices. 
Preliminary attempts to implement stochastic models 
representing interactions with windows (Haldi and 
Robinson, 2009) and shading devices (Haldi and 
Robinson, 2010) into building simulation tools have 
led to encouraging results which are in coherence 
with experimental evidence. Based on an 

Proceedings of BS2013: 
13th Conference of International Building Performance Simulation Association, Chambéry, France, August 26-28

- 1475 -



implementation of this approach, Haldi and Robinson 
(2011) have shown that in the context of a single 
zone model, the simulated behaviour of different 
behavioural patterns lead to heating and cooling 
demands that vary by a factor of two. In a different 
simulated context of an office building with sealed 
windows, Parys et al. (2011, 2012) have shown that 
the demand at the level of a whole building varies by 
a magnitude close to 20%. 
These results are encouraging, but the quality of the 
predictions of such models depends heavily on the 
quality of calibration parameters, particularly with 
respect to the representation of the diversity between 
occupants. A correct methodology is of central 
importance, particularly towards a correct prediction 
of extreme values of energy use, or to assess the 
robustness of a given building design towards 
particular behavioural patterns. 
With regard to this important issue, previously 
published models have either:  
a) ignored the representation of behavioural 

diversity and only presented aggregated results 
(Rijal et al. (2007), Herkel et al. (2008)), or 

b) proposed simplified classification mechanisms 
based on fixed thresholds (eg. active versus 
passive occupants, Reinhart et al. (2002)), or 

c) presented occupant-specific results from their 
surveys, but without the integration of this 
diversity into a modelling framework (Haldi and 
Robinson (2009, 2010), Yun and Steemers 
(2008), Mahdavi et al. (2008)). 

In order to strengthen existing models, we propose to 
develop an original approach which integrates the 
issue of behavioural diversity into the existing 
modelling approaches of Haldi and Robinson 
(2009,2010) and extends their results for predicting 
actions on windows and shading devices. 

EXPERIMENTAL DATA 
The data that support the development of these 
models were collected from the Solar Energy and 
Building Physics Laboratory (LESO-PB) 
experimental building, located in the suburb of 
Lausanne, Switzerland (46°31'17''N, 6°34'02''E, alt. 
396 m).  
In every office, occupants have the possibility to tilt 
or open up to any angle each of the two windows 
(height 90 cm, width 70 cm) and to control two 
external blinds (width 350 cm): a lower blind 
potentially covering the totality of the vision window 
(height 100-185 cm) and an upper blind covering an 
anidolic system (height 210-270 cm). These blinds 
are controlled by switches (one to start and one to 
stop lowering/raising) allowing occupants to shade 
any desired fraction. Occupants may also close and 
tilt internal vertical slat blinds at the upper window to 
reduce glare whilst benefiting from direct solar gain 
during the heating season.  

Six offices are each occupied by two persons, who 
can both individually access their own window, 
while eight offices accommodate single occupants 
also able to act on the two windows. It is safe to 
leave windows open (eg. for night ventilation) during 
periods of absence, except on the ground floor.  
All 14 south-facing cellular offices of this building 
have been equipped with sensors whose real-time 
measurements were archived by a centralised EIB 
data acquisition system. For a period covering 19 
December 2001 (1 January 2004 for blinds) to 8 
September 2009 (with the exception of a few short 
interruptions caused by maintenance and technical 
reasons), measurements of local indoor and outdoor 
temperature and illuminance, occupancy, window 
openings and closings, blinds lowering and raising 
with their unshaded fractions, actions on electrical 
lighting were continuously recorded (Figure 6). 
The reader is referred to Haldi and Robinson (2009, 
2010) for a detailed description of the surveyed 
building and exploratory data analysis. 

THE MATHEMATICAL MODEL 
Following the approach previously developed by 
Haldi   and   Robinson   (2009,   2010),   occupants’  
interactions with windows and shading devices are   
modelled as a discrete-time Markov process (Figures 
2 and 3). This dynamic method can account for the 
real adaptive processes of occupants, based on the 
relevant set of time-evolving physical predictors as 
well as special patterns such as occupancy events. 
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Figure 2. General scheme of the modelling approach 

for predicting actions on windows. 

Formulation of action probabilities 
In this approach action probabilities p are formulated 
as logistic models which include a set of n predictors 
x1,  …,  xn:  

logit (p) = log (p/(1-p)) = β0 + Σk=1,…,n βk xk (1) 

where βk are the regression parameters (see the 
nomenclature for other definitions). The relevant 
predictors xk (possibly including any environmental 
parameter such as temperature or occupancy status) 
are then selected by forward selection on the basis of 
their statistical significance. 
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In the case of windows, action probabilities refer to 
the opening and closing probabilities, depending on 
the current status of the window. These two 
probabilities are separately estimated in the situations 
of   occupants’   arrival,   departure   and   during   their  
presence (Figure 2). 
The model for the prediction of actions on shading 
devices (Figure 3) defines lowering and raising 
probabilities, which refer to events that may both 
occur at any simulated time step, except when the 
shaded fraction is zero or one. A specific sub-model 
then determines the occupant chosen shaded fraction. 
The analysis   shows   that   occupants’   behaviour   is  
specific on arrival, but that there is no significant 
difference between actions during presence and at 
departure. 
Both  models  predict  occupants’  actions  on  5-minute 
intervals, but the approach can be generalised to any 
other desired interval. 
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Figure 3. General scheme of the modelling approach 

for predicting actions on shading devices and the 
resulting shaded fraction. 

 

Extension to generalised linear mixed models 
An extension of the model for action probabilities in 
order to integrate the  effect  of   individuals’ diversity 
requires a particular treatment, as this latter is 
associated with the characteristics of individuals that 
are drawn at random from a population; unlike the 
design or environmental variables such as 
temperatures and occupancy status, which are 
definite values of experimental conditions. The 
former type of variable is treated as a random effect, 
while these latter (such as xk in Equ. 1) are fixed 
effects. Considering together these factors, a mixed-
effects logistic model is defined for action 
probabilities: 

logit (p) = β0 + b0 + Σk=1,…,n (βk xk + bk xk) (2) 

where bk denotes a random variable representing the 
deviation from the population mean of the mean 
logit(p) for the ith individual. With this convention, 

the vector b = (b0,…,bn) is assumed to be distributed 
as a multivariate normal distribution Nn+1(μ,Σ2), 
whose density function f is defined as:  

f(b0,…,bn)  =  (1/(2π)k/2|Σ|1/2)  

∙  exp(-(1/2)  ∙  (b-μ)T ∙  Σ-1 ∙  (b-μ)), 

 
(3) 

where μ is the expectancy of the vector random 
variable associated with b (μ is set by definition to 0 
in the context of regression within Equ. 2), Σ the 
associated positive-definite covariance matrix and |Σ| 
its determinant.  
With these definitions, generic models for the action 
probabilities are deduced by regression with Equ. (2), 
if the fitted values of the random effects b are 
ignored, but with an estimation of the standard errors 
of the regression parameters βk that is coherent with 
the longitudinal nature of the surveyed data.  
Furthermore, for each predictor xk, the obtained 
distribution of each bk measures the variability 
around the associated regression parameter βk, 
induced by the behavioural differences among 
occupants. 

RESULTS 
Based on a dataset similar as Haldi and Robinson 
(2009, 2010), the results regarding action 
probabilities on windows and shading devices 
obtained by this methodology are presented in this 
section. 

Estimated parameters and uncertainties 
As expected, we observe that this methodology 
generally selects the same significant variables (with 
a few exceptions) with slightly different values of 
their associated regression parameters (Table 1) than 
those obtained by Haldi and Robinson (2009, 2010), 
where the distinction between fixed and random 
effects was ignored. 
This difference is caused by a different treatment of 
the weight put to each surveyed occupant in the 
computation of the regression parameters for the 
fixed effects, which solves the problem of previously 
overweighing observations from occupants that were 
surveyed for a long duration. 
An important change lies in the estimation of 
standard errors of the parameters for the fixed effects, 
which typically increase by a factor of three for most 
predictors (Table 1). The correct integration of the 
part of the variance in the data which is due to inter-
occupant variability results in this larger uncertainty 
in the instrinsic effect of the retained predictors 
(Figure 4). 
On the other hand, a new result produced by this 
mixed model approach is the covariance matrix Σ 
which comprehensively describes the correlations 
between all the random effects bk which are linked 
with the predictors xk. A comprehensive presentation 
of the elements of the matrices Σ is out of the scope 

Proceedings of BS2013: 
13th Conference of International Building Performance Simulation Association, Chambéry, France, August 26-28

- 1477 -



of this article. However, the square root of their 
diagonal elements corresponds by definition to the 
standard deviation of the random effects retained in 
the models. Their values are also presented in Table 
1. 

 
Figure 4. Fitted window opening probability on 

arrival (for the case  where  θout = 20°C, fabs,prev = 1, fR 
= 0) 

These latter provide an estimation of the magnitude 
of the deviations bk from   the   ‘average’   behaviour  
expressed by βk with respect to environmental stimuli 
xk that are caused by the behavioural diversity among 
individual occupants. It is of particular interest to 
point out that these deviations are generally of a 
magnitude three to four times larger than the 
statistical errors on the fixed effects βk. This fact 
points out how behavioural diversity with respect to 
the use of environmental controls is expected to 
heavily impact the associated energy flows through 
the building envelope. 

Predicting individual behavioural patterns 
The approach presented here is particularly 
constructive as it also produces further valuable 
results. Indeed, with this regression method the 
distinct sources of uncertainty due to statistical 
spread and the diversity among occupants are 
correctly identified and estimated using a detailed 
statistical treatment. However an important added 
value lies in the possibility to simulate individual 
behavioural patterns on a sound statistical basis. 
Indeed, by knowing the parameters βk of the included 
fixed effects it is straightforward to generate any 
desired number of individual behavioural profiles as 
this information is entirely encapsulated within the 
statistical distribution of the random vector b. 
Therefore, by knowing its covariance matrix Σ, any 
behavioural profile based on a number of parameters 
n can be sampled from its multivariate normal 
distribution Nn+1(0,Σ2). 

An example of this procedure is provided in Figure 3, 
where 1000 individual behavioural profiles are 
displayed for the case of opening actions on windows 
on occupant arrival, together with their statistical 
univariate (histograms) and bivariate (scatterplots) 
graphical representations. 

DISCUSSION 
Statistical models 
The results obtained using generalised linear mixed 
models offer: an appropriate treatment of the 
longitudinal nature of the dataset; an accurate 
estimation  of  the  calibration  parameters’  uncertainty; 
a detailed study of the differences between the 
occupants surveyed; and a specific quantification of 
the inter-individual variability with respect to 
interactions with windows and shading devices in 
buildings. 
The underlying assumptions related to the use of 
generalised linear mixed models were verified 
(particularly the assumed normal distribution of 
random effects) without observing violations of this 
important requirement; although a database including 
a larger number of occupants would be desirable to 
thoroughly investigate this issue. This assumption of 
normality allows a coherent and accessible 
representation of the diversity between occupants 
which can be easily programmed for simulation 
purposes. 

Behavioural diversity and its representation 
This approach implicitly considers the issue of active 
and passive occupants within buildings. This 
distinction is closer here to that which is often 
observed in practice meaning that there is a 
continuity rather than a categorical separation within 
the observed behavioural patterns.  
One strength of this approach is to treat behavioural 
diversity as a continuum, which is achieved by 
inferring a comprehensive statistical distribution of 
the parameters that describe individual interactions 
between environmental stimuli and actions in the 
building. 
After integration within building simulation tools this 
approach facilitates the testing of  the impact of a 
realistic set of behaviours on the energy demand of a 
building, and to identify which of these result in the 
particular outcomes under investigation eg. 
thresholds in energy consumption, overheating risk, 
moisture induced damage due to insufficient air 
renewal, etc. Such studies may also inform the added 
value of integrating automatic control systems within 
the building such as the control of shading devices or 
ventilation openings. 

Statistical properties of diversity indicators 
Based on Figure 7, it is possible to classify categories 
of behaviours. Occupants that interact only at high 
temperatures with windows tend to occupy an upper 
right position in the first chart of the second row of 
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Figure 7, as this is the domain of high characteristic 
temperatures in,50 (for which action probability 
reaches 0.5). These latter behaviours can also be 
simulated with the resulting regression parameters 
and statistical properties of the covariance matrix, as 
shown in Figure 5 for the indoor characteristic 
temperatures for opening actions at arrival. 
In this latter case, the statistical properties of such 
derived indicators require particular care. As the 
characteristic temperature is computed by the ratio of 
two quantities (βk + bk) which are both normally 
distributed, the result theoretically converges to a 
Cauchy distribution; (in the case where these 
quantities are independent, approached in principle 
when the correlation is zero. This distribution is 
heavy-tailed implying that predicted extreme values 
may strongly diverge, which is not consistent with 
what is observed in practice. However, although the 
Cauchy distribution has undefined mean and 
variance, its median and quantiles can be defined, 
which allows a rigorous classification of the 
‘activity’   of   occupants   towards controls based on 
statistical domains (eg. characteristic temperature 
situated between the median and the 3rd quartile). 

 
Figure 5. Observed (rugs) and simulated (histogram) 

indoor characteristic temperatures for opening 
actions at arrival (for the case  where  θout = 20°C, 

fabs,prev = 1, fR = 0)  
In the context of the simulation of individual profiles, 
this observation illustrates the importance of 
integrating the in-built correlations between the 
random effects, which are frequently significant (see 
for instance Fig. 6), and to perform simulations on 
the basis of a statistical distribution which is inferred 
on the basis of a sufficiently large number of 
observed occupants. 

CONCLUSION 
Main findings 
This analysis results in the formulation of stochastic 
models   for   the   prediction   of   occupants’   interactions  
with the building envelope, which include explicit in-
built   probabilistic   terms   to   account   for   occupants’  
diversity. 
The method implemented allows to correctly extract 
from longitudinal databases the standard errors of 
calibration parameters related to environmental 
stimuli, as well as the effect and dispersion of 
individual occupants surveyed. 

Limitations and further research 
It would be of interest to strengthen the calibration 
basis of this model by including data from other field 
surveys or other climates. If relevant, specificities 
may also be accounted for by a specific random 
effect. 
This inclusion of further data can also allow for the 
performing of detailed statistical tests on a larger 
database regarding the validity of the assumption of 
normality for the random effects. Such examinations 
are particularly needed for the correct treatment of 
extreme values which needs a wider calibration basis. 
A promising application of this method probably lies 
in the analysis of risks in buildings, as it allows an 
estimation of the prevalence of behavioural patterns 
that can lead to problems in buildings. Once this 
model is implemented, a detailed assessment at the 
design phase whether buildings are robust to the 
influence   of   occupants’   behaviour becomes – in 
principle – possible. 
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NOMENCLATURE 
 

in Indoor temperature (°C) 
in,50 Indoor temperature at which action probability 

equals 0.5 (°C) 
out Outdoor temperature (°C) 
out,dm Daily mean outdoor temperature (°C) 
fR Rainfall (binary variable) 
Tpres Ongoing presence duration (min) 
fabs,prev Preceding absence longer than 8 hours (binary) 
fabs,next Following absence longer than 8 hours (binary) 
fGF Window higher than ground floor (binary) 
B Unshaded fraction of a shading device 
W Window status (binary - 0: closed, 1:open) 
Ein Indoor workplane illuminance (lux) 
Egl,hor Outdoor global horizontal illuminance (lux) 
xk Fixed effect predictor in a regression model 
βk Regression parameter for a fixed effect 

predictor xk 
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bk Esimated random effect associated to a 
predictor xk 

Σ Covariance matrix, whose (i,j)th element is the 
covariance between the (i,j)th elements (here 
bi,bj) of the vector b of random effects 
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Table 1 
Overview of the regression parameters for action probabilities on windows (upper part) and shading devices 

(lower part) with standard deviation of the associated random effects. 
Significance: no sign: p<0.001, ** 0.001<p<0.01, * 0.01<p<0.05 

 
 

CONTROL & 
OCCUPANCY 

PREDICTOR OPENING / LOWERING 
PROBABILITY 

CLOSING / RAISING 
PROBABILITY 

  Estimate fixed  
effect 

Std. dev. 
random  
effect 

Estimate fixed  
effect 

Std. dev.  
random  
effect 

Windows  Intercept -16.0 ± 1.2 4.7 6.0 ± 1.2 4.1 
Arrival in 0.407 ± 0.054 0.21 -0.361 ± 0.053 0.151 
 out 0.058 ± 0.012 0.045 -0.058 ± 0.022** 0.087 
 fabs,prev 1.65 ± 0.16 0.66   
 fR -0.43 ± 0.13** 0.43   
Windows Intercept -14.7 ± 1.3 0.002 -0.2 ± 1.1 5.1 
Intermediate in 0.371 ± 0.056 0.065 -0.100 ± 0.045 0.194 
 out 0.038 ± 0.012** 0.070 -0.093 ± 0.018 0.088 
 Tpres  0.0043 -1.41 ± 0.18 E-03 0.60 E-03 
 fR -0.34 ± 0.15* 0.0225   
Windows Intercept -15.1 ± 1.9 6.35 -5.66 ± 0.70 1.03 
Departure in 0.317 ± 0.091 0.308 0.078 ± 0.032* 0.043 
 out,dm 0.096 ± 0.027 0.094 -0.079 ± 0.029 0.120 
 fabs,next   1.88 ± 0.16 0.57 
 fGF 0.76 ± 0.46* 1.64 -1.20 ± 0.31 0.83 
Lower blinds Intercept -8.50 ± 0.59 2.39 -0.016 ± 0.452 2.09 
Arrival Ein 1.263 ± 0.076 10-3 0.30 10-3 -1.90 ± 0.34 10-3 1.51 10-3 
 BL 2.39 ± 0.51 1.98 -4.67 ± 0.40 1.77 
Lower blinds Intercept -8.25 ± 0.10 0.008 -2.48 ± 0.39 1.83 
Intermediate  Ein 4.88 ± 0.70 10-3** 0.33 10-3 -0.91 ± 0.16 10-3 0.74 10-3 
& departure BL 1.43 ± 0.10 1.17 -3.88 ± 0.36 1.66 
Upper blinds Intercept -8.11 ± 0.34 1.36 -1.35 ± 0.28 1.25 
Arrival Ein 1.307 ± 0.078 10-3 0.31 10-3 -2.74 ± 0.42 10-3 1.80 10-3 
 BU 2.11 ± 0.16 0.42 -4.38 ± 0.23 0.78 
Upper blinds Intercept -8.92 ± 0.30 1.30 -3.59 ± 0.27 1.26 
Intermediate  Ein 1.071 ± 0.062 10-3 0.27 10-3 -1.30 ± 0.25 10-3 1.18 10-3 
& departure BU 1.84 ± 0.16 0.64 -3.53 ± 0.21 0.90 
Any blind Intercept -7.36 ± 0.37 1.55 -0.25 ± 0.35 1.61 
Arrival Ein 1.224 ± 0.076 10-3 0.32 10-3 -2.09 ± 0.33 10-3 1.45 10-3 
 Btot 1.90 ± 0.21 0.75 -4.87 ± 0.33 1.40 
Any blind Intercept -8.51 ± 0.47 2.16 -3.08 ± 0.33 1.55 
Intermediate  Ein 1.074 ± 0.077 10-3 0.35 10-3 -0.87 ± 0.17 10-3 0.79 10-3 
& departure Btot 1.74 ± 0.33 1.49 -3.30 ± 0.31 1.40 
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Figure 6. General scheme of the devices used for the field survey  
 
 

 
Figure 7. Multivariate distribution of the vector of random effects b for window opening probability on arrival, 
superposed with a thousand simulated random effects, presented as bivariate plots with frequency histograms 

and correlations  
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