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ABSTRACT 
Traditional uncertainty quantification (UQ) in the 
design of energy efficient buildings is limited to the 
propagation of parameter uncertainties in model 
input variables.  Some models inside building 
simulation are inherently inaccurate, which 
introduces additional uncertainties in model 
predictions. Therefore, quantification of this type of 
uncertainty (i.e., modelling, or more strictly speaking 
model form uncertainty) is a necessary step toward 
the complete UQ of model predictions.  This paper 
quantifies the model form uncertainty of a widely 
used sky model developed by Perez (1990), which 
computes solar diffuse irradiation on inclined 
surfaces.  
We collect a dataset from measured solar irradiation 
on surfaces with multiple tilt angles and orientations, 
covering a wide spectrum of sky conditions. We first 
show statistical evidence for the model inadequacy 
based on our collected data and some results in 
published studies. Then, we develop a two-phase 
regression model, quantifying the model form 
uncertainty, which de facto constitutes an alternative 
for the Perez model. Model validation results show 
that model bias errors and root mean square errors 
are considerably reduced by the new model 
formulation for every tilted surface. Lastly, we study 
the significance of this model form uncertainty in the 
energy consumption predictions obtained with whole 
building simulation. 

INTRODUCTION 
Energy assessment of buildings is traditionally based 
on deterministic simulation, but the last decade has 
seen a surge in the use of uncertainty quantification 
(UQ) of model predictions, in particular to quantify 
how wrong model predictions of selected outcomes 
could potentially be. UQ reveals the utility of the 
model for a given application. Its results are usually 
presented in the form of probability density functions 
(PDF). Recent studies (De Wit and Augenbroe 2002, 
Moon and Augenbroe 2007, Heo et al. 2012) show 
the application of UQ in the support of risk-
conscious decision making in building design and 

retrofit when decisions are driven by return on 
investment expectations, or when energy savings 
guarantees are part of a performance contract.   
Model predictions differ from true values for a 
variety of reasons. First of all, key model inputs such 
as weather conditions, building material properties, 
and operation schedules are usually not known with 
certainty or are subject to change in real operation 
conditions. Another source of discrepancy is in the 
process of solving the mathematical models with 
numerical methods, which is strictly the concern of 
verification. Besides, inevitable errors in the 
measurements and (in most cases), the 
uncontrollability of the experiment prohibit us from 
observing the true values. Furthermore, models by 
definition ignore to some degree, and simplify the 
physical processes of the real word. Model 
discrepancy associated with ignorance and 
simplification is called model form uncertainty (also 
referred to as “model inadequacy”) (Oberkampf and 
Roy 2010). Other factors that account for 
discrepancies between model predictions and 
physical measurements include human errors in 
preparing the inputs and processing the outputs. We 
typically refer to them as modeller’s bias or error. 
UQ must assess all origins of uncertainty to give a 
full reflection of uncertainties in the model 
predictions. Methods are well developed to deal with 
uncertainties in model input parameters, for example, 
sample-based UQ (Helton and Davis 2003). This 
approach first draws samples of uncertain model 
inputs from their PDFs; each sample is then executed 
in the model to obtain a realization of a model 
prediction; consequently uncertainties of model 
predictions are quantified by aggregating these 
realizations. However, what if the model itself is 
inherently inaccurate, i.e., any simulation result is 
biased from the reality even if the values of the 
model input parameters are assigned the true values. 
Indeed, studies (Roth et al. 2005, Loutzenhiser et al. 
2009) show some evidence of the inadequacy of our 
building simulations.  
For complex systems such as buildings, model form 
UQ at the complete system scale is intractable. This 
is primarily caused by the difficulties in gathering 
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high-quality data in terms of both model input 
parameters and model outputs. An effective way of 
conducting UQ for complex systems is to develop a 
hierarchy structure that breaks down a complex 
system into subsystems and then into units. In current 
dynamic building simulation, such hierarchy is 
indeed the structure of some tools. For example, 
EnergyPlus (EnergyPlus 2012) is a collection of 
modules that work together to calculate the final 
outcomes. Each module performs a specific function 
that contains only a few physical processes. For 
instance, the calculation of diffuse solar irradiation 
on building surfaces deploys sky models formulated 
by a set of algebraic equations whose outcomes 
affect the boundary conditions of other modules. 
Fortunately, at module scale we can in many cases 
collect high quality physical observations. Hence, 
UQ of building model form should exploit this 
hierarchical composition, focusing first on the 
lowest-level component and moving successively to 
more complex levels.  

How to infer model predictions from existing 
physical observations is usually the concern of 
statistics. Typically, model form UQ takes the form 
of a statistical model, e.g., regression, which 
correlates the discrepancies between model 
prediction and physical observations with some 
variables or model parameters.  

This paper proposes a framework for the 
quantification of model form uncertainty based on 
physical observations. We demonstrate this 
framework in the UQ of the very well known sky 
model developed by Perez et al. (1990) , which 
predicts solar diffuse irradiation on inclined surfaces. 
We choose the Perez mode as the case study for two 
reasons.  First, a number of studies have shown that 
this model performs adequately in some 
circumstances (Loutzenhiser et al. 2007), yet exhibits 
noticeable discrepancies in other circumstances 
(Diez-Mediavilla et al. 2005). Second, although solar 
irradiation is one of the most important boundary 
conditions for many components in the building 
model, we have not seen an effective approach that 
quantifies model form uncertainty of the Perez 
model, with the derived goal to improve the 
predictions given by the Perez 1990 model. 

APPROACH 

Formal approaches dealing with model form 
uncertainty can be categorized into two groups.  In 
the first group a model is compared with a higher 
fidelity model. An application of this approach is 
shown in (Sun et al. 2013) for the UQ of building 
microclimate variables. Equation 1 describes its 
generic formulation. We denote the output of the low 
fidelity model by !! !  when the variable inputs take 
values ! = (!!,⋯ , !!) . The high fidelity model 
typically requires more input variables; we denote the 
high fidelity model by !! !,!  when the additional 

variables are given by  ! = (!!,⋯ , !!). We denote 
model discrepancy by !"## !,! .  
!"## !,! = !! !,! − !!! ! + !!                     (1) 
where ! represents residual variations.   
This method requires superior domain knowledge in 
the given application context because it relies on a 
priori expert judgment regarding the selection of the 
high fidelity model. The approach has been 
successfully applied to the UQ of microclimate 
variables as a result of urban heat island (UHI) effect 
(Sun et al. 2013). The authors deploy a computer 
model from the meteorology domain as a high 
fidelity model to compute the UHI effect. If UHI is 
ignored in the standard model, the diff in (1) 
quantifies the influence of this (deliberate) ignorance 
on building simulation results.  A preliminary UQ is 
usually followed by a sensitivity analysis (SA), 
which ranks the effects of different models on the 
quantities of interest.  
If a high fidelity model does not exist or is rejected 
because the SA identifies the diff to be the most 
influential for a certain use, we turn to our second 
approach, which implies that we focus on model 
form uncertainty, in which case we have to turn to 
physical measurements.  Compared with Equation 1, 
the high fidelity model is now substituted by physical 
observations. We represent the relationship between 
model form uncertainty!!"##(!,!), the simulation 
model!! ! , and the physical observations !!"#  in 
the following equation     
!"## !,! = !!"# − !! !                                      (2) 
It is noteworthy that adding new variables ! in this 
case is beneficial, yet demanding. It needs a good 
understanding of the shortcoming of the model at 
hand and relies on an effective method for physical 
experimental designs. On the other hand, adding new 
variables will lead to better representation of the 
model inadequacy and eventually lead to better 
physical models. Stating model inadequacy as 
equation (1) and (2) is not the only way (Park et al. 
2010, Roy and Oberkampf 2011). We take this form 
not only for computational convenience but also 
because the results of !"##(!,!) are easy to interpret 
since they relate to the same physical units as the 
model outputs.  

UNCERTAINTY QUANTIFICATION OF 
THE PEREZ MODEL 
In building energy models, the diffuse component of 
solar irradiation appears in the boundary condition of 
external building surfaces. In case of transparent 
surfaces it also appears in the boundary conditions of 
internal surfaces. In few cases, the diffuse component 
is directly measured for the orientation and tilt of 
every surface that appears in a model. Therefore, in 
current building energy studies, it is derived from 
other directly measured quantities and sky condition 
parameters. Typically, measured data are only 
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available for horizontal surfaces. Thus, models were 
developed to derive solar irradiation on surfaces with 
any tilt angle and orientation from horizontal data, 
most notable the model developed by Perez et al. 
(1990). We refer to this model as the Perez model in 
this paper. We quantify the uncertainty of the Perez 
model for those cases where measurements of global 
horizontal solar irradiation and direct normal solar 
irradiation are available. 

Perez Model 

The Perez model postulates a simplified sky 
representation, in which the sky hemisphere is 
composed of a circumsolar disc and horizon band on 
an isotropic background. Each element has a 
parametric representation of solar irradiation with 
multiple coefficients, whose values were obtained 
through statistical regression analysis. Figure 1 
shows its input-to-output relationship.  

Experimental Data 
We use detailed measured data from a station of 
Solar Radiation Monitoring Laboratory at Eugene, 
Oregon (SRML) . The data includes simultaneous 
measurements of (1) global solar irradiation on 
horizontal surfaces, (2) diffuse solar irradiation on 
horizontal surfaces, (3) direct normal solar 
irradiation, (4) ground reflected solar irradiation, (5) 
global solar irradiation on south tilt surfaces at 30°, 
45°, and 90°, and (6) global solar irradiation on a 
north vertical surface. Global solar irradiation (i.e., 
the sum of direct and diffuse) is measured with the 
Eppley Precision Spectral Pyranometer (PSP). 
Diffuse solar irradiation is measured with the shaded 
Eppley PSE with automatic trackers. Direct normal is 
measured with Eppley Normal Incident 
Pyrheliometer (NIP). The ground reflected solar 
irradiation is measured with the Eppley PSP facing 
the ground. Table 1 provides an overview of the 
specifications of the instruments.  

The data were collected in 2011 at 5 minute intervals. 
Before we conduct the analysis, we first derive 
hourly measurements from the raw data. This hourly 
aggregation reduces the short-term variation of the 
measurements attributable to small cloud variations. 
Then, we remove measurements that are less than 
50W globally on a horizontal surface because 
measurements of low solar irradiation are often 
subject to high measurement error (Reda 2011). 
Model inputs for solar angles ! and ! are computed 
according to the ASHRAE Fundamentals (ASHRAE 
2009). Uncertainties in the angles are very minimal 
and are hence ignored.  
There is a need to detect systematic measurement 
errors before performing the UQ because the 
accuracy of instruments without timely calibration 
will decrease. Undoubtedly, undetected systematic 
measurement errors will contaminate the entire UQ 
results. In our case, we compare three independent 
measurements on horizontal surfaces to estimate the 
quality of the measurements. In principle, the 
following equation holds:  
!!"#$%" = !!!!"#$ + !!"##$%&                                    (3) 
where ! is solar incident angle on the surface. For 
horizontal surfaces, every element in equation 3 
except ! , which is computed with minimum 
uncertainty, is directly measured. Therefore, we 
compare the global horizontal irradiation between 
measured and calculated values. Figure 2 depicts the 
comparisons and linear regression analysis. It reveals 
a slightly under-prediction by roughly 1.5% of global 
horizontal irradiance compared with the calculations 
from the beam and diffuse horizontal irradiance 
components. The discrepancy on the horizontal 
surface may roughly estimate the overall 
measurement errors.   

We measure the discrepancies between the model 
predictions and measurements by the two following 
statistical indicators: Mean Bias Error (MEB) and 

 
Figure 1 Input-to-output relationship of the Perez 
1990 sky irradiation model 

Table 1 Specifications of instruments 

Instrument Specifications 

Eppley 
PSP 

Cosine Response: ±1% from normalization 0-70° 
zenith angle; ±3% 70-80° zenith angle. 

Accuracy: The absolute accuracy of calibration is 
about ±3-4%. The relative accuracy of calibration 
is about ±2%. 

Eppley 
NIP 

Accuracy: The absolute accuracy of calibration is 
about ±2%. The relative accuracy of calibration is 
about ±1%. 

 
Figure 2 Measured and calculated global horizontal 
irradiation 
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Root Mean Square Error (RMSE).  

!"# = (!! − !!)!
!!!

! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!(4) 

!"#$ = 1
! (!! − !!)!

!

!!!
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!(5) 

where !!  is the !!! measurement, !!  the !!! model 
prediction. 
Statistical evidence for model inadequacy  
Perez (1990, p. 12) claimed that his model is location 
independent. However, multiple sources in the 
literature show that the model performance is not 
uniform across various locations. Many researchers 
have studied the Perez model, and used their own 
measurements to compare with the predictions from 
Perez model. We collected the results from nine 
different researchers (Utrillas et al. 1991, Kambezidis 
et al. 1994, Igawa et al. 2004, Diez-Mediavilla et al. 
2005, Loutzenhiser et al. 2007, Noorian et al. 2008, 
Evseev and Kudish 2009, Gueymard 2009, David et 
al. 2013), each with one or multiple studies (with 
different surface orientations and/or different surface 
tilt angels) conducted in distinct locations. We also 
used the Eugene data mentioned above and Perez’s 
own results. In total we have data from eleven 
different locations. The box-plot of the percent MBE 
and RMSE for each location is given in Figure 3. The 
left most plot is the results reported by Perez (1990), 
and the right most one comes from the Eugene data. 
As we compare the values across various locations, 
there is a noticeable shift in the mean (the black bar 
in the middle of the box) for both MBE and RMSE. 
Moreover, we found that, for locations with multiple 
data points, their within-location variations are quite 
large, and the magnitudes of the variations fluctuate. 

With all this collection of evidence, the location 
independence claim is in doubt.  
Among these data, the discrepancy values reported in 
Perez (1990) are, by and large, smaller than those 
reported by other researchers. So, a Wilcoxon rank-
sum test (Wilcoxon 1945) was used to quantify this 
difference. It is the nonparametric version of the t-
test. Both methods compare whether samples from 
two populations differ significantly from each other. 
The two samples, i.e., Perez’ data and others, are 
found to be significantly different using the 
Wilcoxon rank-sum test with a p value of 0.027 for 
MBE and 0.012 for RMSE. Additionally, the use of 
the t-test gives the same conclusion (p value=0.013 
for MBE and 0.021for RMSE). Thus, we claim that 
the data used by Perez to develop the model, is not 
representative and may contain bias. 
Having observed the location dependency of the 
model and the possible bias in Perez’ results, we now 
focus on the Eugene data. First, we present in Table 2 
the MBE and RMSE of the global solar irradiation on 
four different surfaces indicated by orientation and 
tilt angle, in their original units as well as the 
percentage to the averaged measurements. It clearly 
shows that the Perez model over-predicts in all four 
cases, especially for vertical surfaces. Figure 4 
compares measured global solar irradiation with 
Perez predictions on south vertical and north vertical 
surfaces. It shows that a number of model predictions 
are higher than measurements. MBE observed on 
south and north vertical surfaces are −32W/m!!and 
−15W/m! , respectively. The results also show 
considerable RMSE on the two vertical surfaces, i.e., 
22% and 37% for south and north surfaces. Such 
discrepancies need to be quantified statistically to 
improve the prediction of the Perez model. 

 
Figure 3 The absolute MBE and RMSE of total solar irradiation predicted by Perez model at different sites 

|M
B

E
|(%

) 
R

M
S

E
(%

) 

Proceedings of BS2013: 
13th Conference of International Building Performance Simulation Association, Chambéry, France, August 26-28

- 74 -



Uncertainty Quantification 
In order to improve the prediction accuracy of the 
Perez model, we need to build a statistical adjustment 
to the prediction discrepancies from the Perez model 
using the Eugene data. The candidate parameters to 
be used in the adjustment model are the 10 
intermediate parameters of the Perez model, such as 
global irradiance and the sky overcast indicator ϵ. 
They are screened by using scatter plots. We plot the 
prediction discrepancies against the candidate 
parameters, and check whether the plots display 
significant patterns. Among the 10 such plots, only 
four (solar azimuth !, sky brightness factor ∆, direct 
normal solar irradiation !, and surface tilt angle !) 
show some systematic patterns. The corresponding 
scatter plots are given in Figure 5. The plot for the 
solar azimuth shows a decreasing trend. For sky 
brightness factor and direct normal solar irradiation, 
we observe a funnel shape in the plots. This indicates 
that the variance of !"## increases as either Δ or I 

increases. The surface tilt angle ! is known to be an 
important parameter in previous works, including 
Perez (1990). The trend line in this plot clearly shows 
a negative slope. 
 The whole year’s data are divided into two disjoint 
parts: the training part and the validation part. The 
latter consists of four half-months’ observations in 
January, March, June, and September. Both datasets 
cover a reasonably complete range of solar angles 
and sky conditions, so that any potential bias or 
extrapolation errors can be mitigated. 
We use a two-phase regression to construct the 
adjustment model. Because it has to meet the zero 
discrepancy constraint on horizontal surfaces (when 
S=0), we consider a polynomial regression model 
(Wu et al. 2009) in S without constant term. Only the 
linear and quadratic effects are found to be 
significant. Therefore, we obtain the following model 
for the first phase: 

!"##(∙) = !!! + !!!! + !                                      (6) 

In the second phase, we fit the coefficients !! and !! 
as linear functions of the other three parameters Δ, θ 
and I . By using a stepwise regression to select 
parameters, we obtain the following model 

!"##(∙) = !!! + !!! + !!Δ ! + !!! + !!Δ !! + !  
(7) 

All the coefficients in (7) are significant with p 
values <10-13. But the R2 value is only 0.504, which is 
acceptable because there are various sources of 
measurement errors present in the data. Ordinary 
residual diagnostics have been performed to verify 
the goodness of fit of the model. The residual plot 
shows a random pattern and the QQ plot almost 
forms a 45-degree line. So the fitted linear model 
appears to be quite good. 
We have now found a reasonably good adjustment 

 

 
Figure 4 Measured and predicted global irradiation 
on two vertical surfaces 

Table 2. Perez Model Evaluation [W/m!] 
Global 
Irradiance  

30° 
South 

45° 
South 

90° 
South 

90° 
North 

Mean 396 391 210 67 
MBE -12 -5 -32 -15 
MBE (%) -3% -1% -15% -22% 
RMSE 47 41 47 25 
RMSE (%) 12% 10% 22% 37% 

 

 
Figure 5 Plots of model prediction discrepancies 
against solar azimuth, sky brightness, direct normal 
solar irradiation, and surface tilt angle 
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for the Perez model for the Eugene data. We call the 
sum of Perez prediction and the fitted regression 
model in (7), the modified Perez model. 
VALIDATION  
In this section we validate the UQ model developed 
above on the validation dataset, which consists of 
four half-months’ observations in January, March, 
June, and September. Table 3 compares the modified 
Perez model to the original Perez in terms of MBE 
and RMSE. The results show a substantial 
improvement in predicting  global solar irradiation on 
tilt surfaces. The new model reduces the MBE by 
more than 50% for every test surface. For example, 
for south vertical surface, it decreases from 
−33!W/m!  to −11!W/m! , and on north vertical 
surface, it  reduces from −15!W/m! to 8!W/m!. In 
terms of RMSE, the modified Perez model also 
shows a significant improvement. Particularly for the 
south vertical surface, the RMSE is reduced by over 
40% from 46!W/m!  to 28!W/m! . Moreoever, the 
new model does not consistantly overpredict. From 
the energy balance perspective, the modified model 
promises a more reliable prediction as it  avoids 
significant amounts of overpredictions of solar 
irradiation on building envelops stemming from 
Perez model inadequacy.  Although the variable 
slection results indicate surface azimuth is an 
insignificant factor of Perez model discrepancy, we 
will investigate this result by collecting data on east- 
and west-facing surfaces in our future study.   

EFFECT ON BUILDING ENERGY 
SIMULATIONS 
In this section, we study the effect of the Modified 
Perez model on building energy predictions in 
Oregon. We deploy the small and large office 
reference building models developed by the 
department of energy in the US (Deru et al. 2011) 
We run two sets of simulations in parallel with the 
Perez and the Modified Perez model in EnergyPlus 
V7.0.0. All simulations are conducted using the 
TMY data in Oregon. To show the effect of model 
form uncertainty in the context of uncertainty 
quantification of building energy predictions, we 
include uncertainties of modelling four microclimate 
variables (Sun et al. 2013), convective heat transfer 
coefficients (Palyvos 2008), and material properties 
(Macdonald 2002, Domínguez-Muñoz et al. 2010).  

The uncertainties are then propagated using 500 
samples with Latin Hypercube Sampling technique 
(Wyss and Jorgensen 1998) in the Georgia Tech 
Uncertainty and Risk Analysis Workbench (GURA-
W). The workbench is a software environment that 
automates the processes of parameter sampling, 
uncertainty quantification and uncertainty analysis 
(Lee et al. 2013). 
We compute the sample-paired differences of cooling 
and heating energy consumption separately. The 
results show that the Modified Perez considerably 
changes the expectations of cooling and heating 
energy predictions and slightly affects their 
variances. Due to the length limit, we only plot the 
annual cooling results in Figure 6. It can be observed 
the Modified Perez shifts cooling distributions from 
the original Perez. As a result, the model form 
uncertainty of Perez 1990 model may cause an 
average overestimate of cooling electricity 
consumption by 2.5% for the small office and by 
1.7% for the large office.  Both case studies show 
statistical significant effects of improving solar 
irradiation calculations on building energy 
predictions, and show that the degree of the effects 
may change from one building to another. Whereas 
the small office building’s cooling need is dominated 
by solar gains, the large office building has only a 
moderate level of solar gains compared to the total 
cooling load. This explains the difference in the 
influence of the improved solar diffuse radiation 
calculation for two buildings. It confirms the 
recognition that where solar gains matter, the 
improved Perez can make a difference. 

SUMMARY  
A framework for uncertainty quantification (UQ) of 
model form (also referred to as model inadequacy) 
based on physical measurements was presented. The 
framework was exemplified by the Perez 1990 
model, which computes solar irradiation on tilt 
surfaces. One year hourly measurements were used 
to perform the UQ task. We collected results from 
different researchers at eleven different locations 
worldwide that substantiated that the performance of 
the Perez Model was neither location independent 
nor surface position independent. In addition, the 
results suggested that the data used by Perez 1990 to 
develop the model were not representative and might 
contain bias. 

Table 3 Model validation statistical results 

Surface 30° South 45° South 90° South 90° North 

Model Perez 
1990 

Modified 
Perez 

Perez 
1990 

Modified 
Perez 

Perez 
1990 

Modified 
Perez 

Perez 
1990 

Modified 
Perez 

Mean 385 382 210 68 
MBE -14 -7 -7 3 -33 -11 -15 8 

MBE (%) -4% -2% -2% 1% -16% -5% -21% 11% 
RMSE 45 31 39 30 46 28 22 19 

RMSE (%) 12% 8% 10% 8% 22% 14% 33% 28% 
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Figure 6 The distributions of annual cooling 
electricity use (a-small office; b-large office) and the 
sample-paired differences (c-small office; d-large 
office) between the use of Perez and Modified Perez 
model in EnergyPlus 

Model discrepancies were quantified statistically to 
improve the prediction of the Perez model. We 
constructed a two-phase regression model that was 
shown to considerably improve the solar irradiation 
predictions, and we named it the Modified Perez 
model. Two case studies confirmed the relevance of 
our research as they showed a significant effect of 
model form uncertainty of the Perez model in the 
context of uncertainty analysis of building energy 
simulations.  

NOMENCLATURE 
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