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ABSTRACT

Within the framework of building energy simulation,
empirical validation has been used for many decades.
This paper presents a first step in the empirical
validation of simulation tools in the context of low-
energy buildings. We were interested in comparing
results provided by two pieces of software for
dynamic  energy  simulation Dymola and
Pléiades+Comfie - to measurements from the
experimental platform BESTLab built on the EDF
site of the Renardi¢res (France). Then a methodology
was developed in order to identify the most
influential parameters on simulations and to
determine their influence on model predictions using
sensitivity and uncertainty analyses.

INTRODUCTION

With 44% of the total energy consumption, the
building sector is the first energy consumer in France
and one of the most polluting with 25% of the total
national CO2 emissions (e.g. ADEME, 2011). The
building sector has to reduce its energy consumption
in a context of global warming and fossil fuels
rarefaction. Thus, the construction of low, passive
and positive energy buildings should become a
standard and simulation tools must be used to
achieve such goals.

Reliable predictions are fundamental so as to be able
to guarantee the building’s energy performance. Even
more so now that some generally accepted modeling
assumptions for standard buildings may no longer be
valid because of the increase in the building’s
performance. Moreover, a physical phenomenon
previously neglected or inadequately considered for
standard buildings could become preponderant for
low-energy buildings and distort the simulation
predictions should it not be reconsidered. Therefore,
we must ensure that the physical models are able to
represent the behavior of low-energy or very low-
energy buildings just as the simulation results must
reflect the uncertainty effects related to the design
parameters, the solicitations and the building uses. In
this context, many studies have been conducted over
the years to compare simulation results to
measurements taking their respective uncertainties
into account, with local and global sensitivity

analysis methods (e.g. Spitz, 2012, Mara et al.,
2002).

This article presents a methodology developed as a
first step of an empirical validation. To begin with,
we provide a description of the chosen dynamic
simulation tools for building energy. Then, we
describe the experimental platform BESTLab and the
studied test case. Finally, a methodology is set up
with local and global sensitivity analysis methods to
determine the most influential parameters on the
predicted operative temperature while considering
their respective uncertainties.

TOOLS

Two simulation tools were used for this study: one is
rather used by researchers (Dymola) and the other
one by design offices (Pléiades+Comfie).

Dymola is a commercial modeling and simulation
environment developed by Dassault Systems and
specialized in the resolution of dynamic and complex
multi-physics systems for use within various
applications such as automotive or robotics. As this
environment uses the open Modelica® modeling
language, besides standard libraries (e.g. Modelica),
users are able to create their own model libraries for
their specific simulation needs. In that way,
EnerBAT, a department of EDF R&D, has developed
its own library dedicated to dynamic simulation for
building energy and related energy systems. This
library was used for this study, restraining the test
case model to a thermal model only (without
hygrometry or pressure). The matrix system obtained
was solved using the DASSL solver with a variable
time step.

Pléiades+Comfie is a dynamic simulation tool for
building energy developed by the Centre for Energy
and Processes (CEP) of MINES ParisTech in
collaboration with Izuba Energies. With this software
it is possible to estimate comfort levels, heating and
cooling needs (requirements) thanks to a multi-zone
model. It consists in the reduction of a finite
difference model using modal analysis in order to
decrease computing time. The Comfie numerical
model cannot be modified directly to model test
cases since all the information on building
components, environment, scenarios and weather are
provided via the software interface Pléiades.
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BESTLAB PLATFORM

The BESTLab platform was built in 2010 in the
context of low-energy buildings. It aims to test
innovative envelope components and building-
integrated solar technologies. It is located at the
Renardiéres site, at about 75 km southeast of Paris in
a rural environment without any close obstacle on its
Southern fagade. In this section, BESTLab’s physical
features and modeling hypotheses are described.

Studied cell characteristics
- Envelope and geometry:

The test facility’s goal is to compare different
building technologies within several cells at the same
time. For this purpose twelve independent cells were
built in the same building and distributed on two
floors. On each level the cells are disposed as follow:
four South oriented cells, one to the East and one to
the West (Figure 1).

Figure 1: BESTLab platform

In each cell, only one wall (the test wall) is in
contact with the outside. The others are over-
insulated (U<0.1 W/m2K) and kept at a constant
temperature through the contact they have with the
thermal guard that is maintained at a certain
temperature. Only the RDC SUD2 (Figure 2) cell
was taken into account. It is on the ground floor,
South-facing and built with a low-emissivity double
glazed window with a layer of argon.

Attic ceiling
Ceiling under

passageway

Side walls
Window

Test wall

Figure 2: Description of the test cell studied

The setting of the window in retreat within the test
wall (Figure 3) creates solar shading that must be
taken into consideration when running simulations.

030 m

Figure 3: Window of ground floor test cell

- Infiltration:

Infiltration into the building’s test cells was
minimized during construction as has been confirmed
by permeability measurements (Qypasy:t coefficient is
less than 0.5 m’/h.m?). Therefore, it indicates a very
good air tightness of the test cells. During the
construction of the ETNA platform, adjoining the
BESTLab facility, a study also showed that
infiltration due to wind could be neglected (e.g;
Barmaud, 1987).

Cells are not fitted with air vents, so that the cells’
ventilation can be viewed as non-existent.

- Thermal bridges:

Limitation of thermal bridges was carefully
investigated when designing and building the test
facility. Nevertheless, thermal bridges can still be
pointed out at a few singular points associated with
the test wall which was designed to be replaceable,
and with the floor slab which runs through the entire
building.

On Dymola, thermal bridges are modeled using a
single conductance between an indoor air node and
the concrete floor. On PleiadestComfie, thermal
bridges can model junctions between the outside
facade and low and intermediate floors, window sills
and doors. The values are chosen according to the
thermal regulation values included in the software.

- HVAC system:

An air control unit with inertia of approximately
50 000 J/K is set up in the test cell (Figure 4). It aims
at ensuring heating with an electrical resistance,
cooling using an external cold battery and air
temperature homogeneity by mixing. As it is
impossible to create this air control unit on
Pléiades+Comfie, its inertia is represented by the
insertion of furniture with higher inertia (100 Wh/K)
in the thermal zone that matches the test cell.
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Figure 4: HVAC system

- Sensors and measurement uncertainties:

The cell is equipped with a lot of sensors, with data
acquisition every minute. Measured variables and
sensors used in this study are:

e Temperatures, measured using Pt100 sensors with
an uncertainty of 0.1°C. They are located in near-
wall air but also on external surfaces, internal
surfaces and within the wall structure.

e Radiation temperature, measured using a black
globe temperature sensor with an uncertainty of
0.5°C.

e Heating power and dissipated energy by the fan
measured with a pulse counter, with an
uncertainty of 0.1 Wh for the heating power and
of 1 Wh for the dissipated energy.

e Cooling power measured using two water
temperature Pt100 sensors, with an uncertainty of
0.1°C and an electromagnetic flow meter, with a
precision of 0.5%.

Moreover, a weather station was built close to the

test facility. It measures external parameters with a

continuous acquisition system (every minute).

Measurements used for this study and associated

uncertainties are:

e Outside dry temperature measured using a Pt100
sensor with an uncertainty of 0.1°C.

e Global and diffuse solar radiations measured
using two pyranometers with an uncertainty of
0.2% until an incidence of 40° then 3% for the
global solar radiance and 0.2% for the diffuse
solar radiance for an incidence of 80°.

e All data is given with a time step of 5 minutes on
Dymola. This results from a compromise between
the simulation duration and the accuracy to be
reached, as the time step of the solver is variable.
On Pléiades+Comfie, only the one-hour time step
can be used. Moreover, temperatures, solar
radiations, humidity, wind speed and powers are
rounded up to the unit on this software, except for

outside temperature rounded up to the tenth of
degree.

COMPARISON BETWEEN
MEASUREMENTS AND SIMULATIONS

Case study: Power step response

In this study, results obtained with Dymola and
Pléiades+Comfie are compared with measurements
coming from the RDC_SUD?2 cell of the BESTLab
platform over a period of 10 days in May 2011
(Figure 5).

Over this period, after a free evolution (1: test cell is
only subject to outside climate variations without any
internal power supply), the cell undergoes a cooling
set point (2), and then a power step input (3). Lastly,
another free evolution begins (4).
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Figure 5: Experimental sequence

Various simplifying assumptions had to be made in
addition to those mentioned before. The most
important are:

e Wall surfaces are measured on the inside and the
cell is simulated as a single thermal zone. On
Pléiadest+Comfie, a thermal zone is added behind
every wall that is in contact with the thermal
guard. Temperatures in these thermal zones are
supposed constant and equal to 20°C, except for
the thermal zone under the floor where the
temperature measured in the middle of the floor is
used. Thus, only half of the floor was modeled.

e Radiative and convective heat transfers are taken
into account in a global constant coefficient
which is different between both pieces of
software. It depends on the angle and optical
properties of the walls, in addition to wind
exposure outside (e.g. Barnaud, 1987).

e The initialization of the dynamic simulation tool
is different for each program. Initialization is an
important step in an experimental validation since
it strongly impacts the numerical results of the
first day. On Dymola a steady state initialization
is performed by using the first measurement
values for each time varying input. This is
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implemented through an initialization equation
written in Modelica. On Pléiades+Comfie the first
study day in terms of weather data is repeated
from January to April with an initialization for the
inside temperature at 23°C. Then, three full 10-
day periods are simulated and only the last one is
used to do the comparison.

Results

Both pieces of software calculate a zone temperature
equivalent to an operative temperature (average of

the mean radiant and ambient air temperatures).
Figure 6 presents a comparison of the operative
temperatures resulting from the simulations and from
the measurements. An uncertainty margin equal to
+0.5°C is considered on the measured operative
temperature. Figure 7 shows the results in terms of
residue of operative temperature, calculated as:
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Figure 6: Operative temperature estimated vs. measurements.
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Figure 7: Residue of operative temperature

SENSITIVITY AND UNCERTAINTY
ANALYSIS

Local sensitivity analysis

The local sensitivity analysis aims at determining the
most influential input parameters on the simulation
result which in this case is the operative temperature.
As it classifies the impacts of parameters on the
output, this method allows us to highly reduce the
number of input parameters before applying a global

sensitivity analysis with usually higher CPU time
needs. The one-step-at-a-time method (OAT) is
applied so that in each run only one input parameter
value is changed by 5 percent around its nominal
value. The local sensitivity index S; for each
parameter X; is defined as:

O (—) L| ()
0
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Correlation analysis

After the local sensitivity analysis, a correlation
analysis is performed in order to reduce the number
of parameters by creating groups of parameters with
similar effects. The degree of correlation 7; ; between
two parameters JX; and X; is defined as:

-X 0 50 o)

A coupling is made between the Dymola model and a
program written in Python to perform the
calculations needed and to post-treat the results.

Global sensitivity analysis
- Objectives

The first step was to select parameters that have a
real influence on the operative temperature inside the
experimental cell. It was performed by changing one
parameter at a time around its nominal value. The
global sensitivity analysis purpose is to examine
changes of the result when all parameter values
change over their uncertainty range. Therefore, this
second analysis is more interesting than the first one.
Furthermore, it is best suited for experimental
validations when some parameters are well known.

- Simulation methodology

We used for these calculations Open TURNS, an
open source platform developed by EDF, EADS and
Phimeca and dedicated to uncertainty treatment by
probabilistic methods (www.openturns.org). Open
TURNS is usable as a Python module so that the
coupling between Dymola and Python is kept, as for
the local sensitivity analysis.

The global sensitivity of a given output 7 at time ¢ to
an input variable X; (taken alone and not in
interaction with any other inputs) is quantified by the
following first-order Sobol index (Sobol, 2001):

(O D
) ———=— 4)
(O)
Where E[.] E[.|.] and Var[.] denote the mathematical
expectation, the conditional mathematical

expectation and the variance, respectively. Note that
it is also possible to evaluate the influence of
interactions between several input variables.

The Sobol indices can be estimated using a Monte
Carlo approach, which relies upon a huge number of
model evaluations, say 10°-10°. As this approach
would be too time-consuming for our study case, we
resort to an alternative method based on polynomial
chaos expansions (Soize et al., 2004). In this setup,
the model response 7(?) is expanded onto a specific
basis made of orthogonal polynomials, namely the
Polynomial Chaos (PC) basis. Then the Sobol indices
are obtained analytically from the PC coefficients
(Sudret, 2008). Hence the computational cost is
focused on the estimation of the latter. The advantage

of the PC approach over the “crude” Monte Carlo
one is that the estimation of the PC coefficients often
requires a relatively small number of model
evaluations, say 100-1000.

The PC coefficients can be estimated by means of a
set of model evaluations at random sets of input
parameters (Monte Carlo sampling method).
Nonetheless, as shown in Blatman et al. (2007), the
convergence rate of estimation can be improved
using the so-called quasi-Monte-Carlo sampling
method (Morokoff et al., 1995). The efficiency of
this scheme is due to the fact that it guarantees an
excellent coverage of the variation domain of the
input variables (space filling design).

Once the model has been evaluated at the design
points, the PC coefficients are typically computed
using a classical least squares approach. However, as
done in Blatman et al. (2011), we prefer using a
sparse least squares scheme, i.e. a method which
automatically sets the insignificant coefficients to
zero. Indeed, this method is known to be more robust
and converges more rapidly than ordinary least
squares. Precisely, the so-called Least Angle
Regression (LAR) method was used (Efron et al.,
2004).

The Open TURNS implementations of the quasi-
Monte Carlo and LAR-based PC methods were used
to solve the problem under consideration. 500 quasi-
Monte Carlo samples were generated and the
evolution versus time of the first-order Sobol indices
(Saltelli et al., 2000) was determined for each
parameter.

RESULTS., ANALYSIS AND
DISCUSSION

Local sensitivity analysis

To carry out the local sensitivity analysis, most of the
input parameters were considered, i.e. 193
parameters including: dimensional data (surfaces,
material thicknesses, cell volume, dimensions of the
solar shading) ; optical data (absorptivity and
emissivity of walls, transmittance and absorptivity of
double glazing, albedo of the environment) ; thermal
characteristics of materials (conductivity, density,
specific heat capacity) ; internal and external
convective coefficients ; characteristics of the HVAC
system (inertia and convective factor associated to
the air mixing) ; thermal bridge conductance ;
initialization of the cell air temperature.

Figure 8 represents the sensitivity indices of a few
parameters as a function of time (Table 1 indicates
the physical meanings of the X; parameters). It shows
different behaviours with influential parameters that
consistently impact the output and others with strong
temporal variations.
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Figure 8: Local sensitivity indices versus time.

In order to keep parameters with a small mean value
but a high variation in time, they were sorted from
the most to the least influential by calculating their
distance S;, throughout the studied period (10 days).
The distance is defined as a function of the mean S;,,
and the standard deviation S;,,; of the sensitivity
indices S;(2):

Si,d = ’Si%m + Siz.std (5)

In order to discard many parameters, we chose to
retain the parameters with a distance greater than
0.002 which corresponds to a temperature variation
of approximately 0.1°C.  Consequently, 14
parameters were retained.

Then, on the plots of sensitivity indices as a function
of time we checked if we had not dismissed some
parameters with a strong instantaneous influence, i.e.,
if they have a sensitivity index greater than 0.1°C
during the free evolution or the cooling period but
not during the power step input and vice versa.
Hence, 2 more parameters were selected.

Correlation analysis

A correlation analysis was carried out in order to
remove correlated parameters which have the same
effect on the output. When the degree of correlation
r;; between two parameters is higher than 0.99, they
are supposed to be correlated and only the parameter
with the highest distance is retained. 13 groups were
found by using this method and the number of
parameters previously selected was reduced to 13
(Bontemps et al., 2013).

Thus, among 193 parameters at the beginning of the
study, 13 parameters (Table 1) remained as
influential parameters on the operative temperature
estimated by Dymola, using local sensitivity analysis.

Table 1
Parameters selected after local sensitivity analysis

X; | Albedo Xg | Test wall surface
X, | HVAC system inertia Xy | Window surface
X5 Thermal bridge X0 | Floor surface

conductance

Convective factor
X4 | associated to the HVAC Xi1
system

Window frame
overhang

Glazing thermal

X ;
5 | transmittance

X12 Window width

Glazing direct

X :
6 | transmittance

Xi3 | Window height

X5 | Glazing diffuse transmittance

Global sensitivity analysis

The convergence of the various global sensitivity
indices was considered to be attained with respect to
the size of the quasi-Monte Carlo sample, as
illustrated for instance in Figure 9 for input variable
X.
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Figure 9: Convergence of the calculations with the
sample size for parameter X; at time t=100h

Besides, Figure 10 shows the sum over all the
parameters of the first-order Sobol indices versus
time. Since this sum is very close to unity, it
demonstrates that there is no interaction effect
between the remaining parameters. Indeed, it is
shown that the various indices (related not only to the
input variables taken separately but also to
interactions thereof) sum up to one (Sobol, 1993).
Therefore, there was no need to compute higher order
indices for the current study.
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Figure 10: Sum over the parameters of the first-order
Sobol index

Once the reliability of the calculations was verified,
we could analyze the results. Firstly, the sensitivity
indices are equal to zero during all the sequence for
parameters X, Xo, Xj0, Xi2 and Xj3. It should seem
surprising since they were selected from non-zero
local sensitivity indices. This may be due to the
sparse least squares scheme which forces all the low
indices to zero.

Secondly, we observed in Table 2 the predominance
of two parameters: the environment albedo and the
thermal bridge conductance with respectively a mean
sensitivity index of 40% and 50% and maximum
values near 90%.

Table 2

Maximum value of first-order Sobol indices

X | X | X5 | X4 | X5 | X6 | X7 | Xy

0.87 | 0.07 | 0.89 | 0.27 | 0.01 | 0.02 | 0.02 | 0.05

Based on these observations, Figure 11 indicates the
evolution of the three most important first-order
Sobol indices as a function of time. The main
observation is that there is an inversion of the
influence of the albedo and the thermal bridge
conductance between the power step input period and
the other experimental sequences. This indicates that
in order to proceed to a better identification of
thermal bridges due to construction design one
should consider an experimental sequence with a
power step response. In the same way, results
showed that parameters of the HVAC system (inertia
and convective factor) are influential in free-floating
and cooling periods.

Figure 11: First-order Sobol indices versus time.

The influence of one parameter on the output can be
seen by drawing scatter plots at selected times, i.e. a
representation of the input-output sample in the
(X;,T) planes (Saltelli et al., 2000). Figure 12
indicates the evolution of operative temperature
which increases with the thermal bridge conductance
and it shows that the uncertainty on the output is
around 2.9°C when the value of the thermal bridge
conductance fluctuates between 3 and 4 W/K. Note
that the experimental value is 3740.5°C at that time
and it matches with the uncertainty range of the
temperature estimated with Dymola.
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Figure 12: Scatter plot for parameter X; at t=100h

CONCLUSION

In this paper, a comparison between
PléiadestComfie and Dymola demonstrates the
capability of such pieces of software to represent the
thermal  behavior of  experimental rooms.
Nevertheless, modeling efforts were more important
on Pléiades+Comfie since it is not a tool designed for
such comparisons and some additional hypotheses
had to be made.

In a first step, the problem was downsized by fixing
180 input parameters out of 193 to their nominal
values. This was achieved using local sensitivity
analysis. The influence of the 13 remaining
parameters was analyzed in details by means of a
global sensitivity analysis, which accounts for the
variability of the variables over their whole variation
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domain. The global sensitivity analysis contributed to
exclude from experimental comparison some well-
known parameters such as surfaces or radiative
properties.

First-order Sobol indices were evaluated over time
and some parameters were then identified to be
influential only for specific experimental sequences
among the three boundary conditions applied in the
test cell: free-floating, cooling set point and power
step input. This point is important in order to better
understand the physical phenomena modeled via the
following parameters: thermal bridge conductance,
albedo and convective factor associated to the HVAC
system.

In particular, the albedo value will soon be measured
with an albedometer near the BESTLab platform
instead of using a guess value which remained
constant in the model. The identification of structural
defects modeled by thermal bridges will also be an
important subject of study.

NOMENCLATURE

re = residue

Veaswe measured operative temperature, °C
Voimutation estimated operative temperature, °C
X = input parameter

T = operative temperature, °C

S = local sensitivity index

FSI = first-order global sensitivity index
- = degree of correlation

N = parameter number

Subscript and superscript

0 = nominal value

d = distance

m = mean

std = standard deviation
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