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ABSTRACT 
In this paper, two different forms of the non-linear 
PDE-system for heat and mass transfer in porous 
materials and their implementation with COMSOL 
Multiphysics are considered. 
The φ-based form presents the relative humidity as 
system variable and leads in general to non-
conservative solutions. The u-based form uses the 
water content as variable and is conservative. 
This study aims to select the most appropriated form 
for the implementation of the heat and mass transfer 
problem in COMSOL Multiphysics, comparing the 
quality of the numerical solutions and the solver 
performances. 
As first test-example, the simulation of a one-
dimensional porous layer with a moisture flux 
imposed on one of the boundaries is presented.As 
second example, the moisture redistribution inside a 
partially saturated layer is simulated. 

INTRODUCTION 
COMSOL Multiphysics can be used for solving 
transient heat and moisture transfer problems inside 
construction materials (Schijndel, 2008), (Bianchi 
Janetti, 2012). This FEM software allows 3D-
modeling and the coupling with convection inside air 
gaps in the construction. Moreover, the possibility of 
an easy integration with Matlab/Simulink is given. 
These features can represent an advantage compared 
to other available programs specific for hygrothermal 
simulation (“WUFi Software,” 2011) (“Delphin 
Software,” 2011).  
However, the numerical error of the model 
implemented in COMSOL has to be investigated. In 
particular the error concerning the conservation of 
global mass and energy over the domain has to be 
quantified. 
Heat and moisture transfer processes in porous 
construction materials are described by a system of 
two partial differential equations derived by 
imposing the equilibrium balance of mass and energy 
within an infinitesimal element of volume (Nicolai, 
2008). This system is non-linear since the material 
properties depend on the temperature and moisture 
distribution. It is known that conservation of mass 
and energy over the domain depends on the 

formulation of the PDE-system (Celia, 1990). In 
order to obtain a conservative formulation, the 
dependent variables have to be properly chosen. 
In order to select the best form for the system, both 
the described variants will be evaluated considering 
the influence of the numerical errors on the results. 
The determination of the numerical precision of the 
model implemented in COMSOL Multiphysics for 
heat and moisture transfer represents an important 
step in the evaluation of the usability of this program 
for the solution of problems such as moisture transfer 
inside constructions. 

TEST PROBLEM 1 
We consider a porous layer with a constant water 
flux j imposed on the left boundary (Figure 1). The 
thickness of the layer is one centimeter (L=1 cm).  
The right boundary is closed to both, mass and 
energy transfer. 
The initial temperature and moisture distributions 
inside the layer are uniform. 
This problem is implemented in COMSOL 
Multiphysics using both the φ-based and the u-based 
form. 
 

 
Figure 1 Schematic representation of the 1D test 

problem (here with j=5.5E-7[Kg/(m2 s)]) 
 

ĳ-based form 
We write the system of partial differential equations 
governing the transport inside the layer as follows 
(eqs. (1) and (2)): 
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The boundary conditions are given by eqs. (3) to (6): 
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Notice that the energy fluxes on the boundaries are 
given by equations (4) and (6) and are equal to zero, 
thus we aspect the process to be almost isothermal, 
since the temperature can change only due to 
moisture gradients. 
The initial conditions are: 
߮ሺݔǡ Ͳሻ ൌ ͲǤͲͳ� (7) 

ܶሺݔǡ Ͳሻ ൌ ʹͺ͵Ǥͳͷ(8) ܭ 

The dependent variants of the system written in this 
form (φ-based) are the temperature T(x,t) and relative 
humidity ĳ(x,t). 
The coefficients Dm,ĳ, Dm,T, De,ĳ and De,T are 
functions of material specific parameters, describing 
heat and moisture diffusion through the layer. 
The moisture storage inside the porous medium is 
described through the derivative of the water content 
u with respect to ĳ in the left hand side of equation 
(1), whereas the energy storage is taken into account 
due to the coefficient C (left hand side of equation 
(2)). This coefficient represents the equivalent heat 
capacity of the moist material. 
In general, all the transfer and the storage parameters 
are strongly depending on temperature and moisture 
distributions (T(x,t) and ĳ(x,t)). This makes the 
problem (1)-(8) non-linear and only solvable using a 
numerical method. 
It has been demonstrated that numerical schemes 
applied to PDE presenting non-linear storage terms 
can lead to non-conservative solutions (Celia et al., 
1990). 
In order to verify this for the set of equations (1)-(8), 
we consider just the dependence of the water content 
(u) on the relative humidity (ĳ), while all the others 
coefficients are assumed to be constant (see Table 1). 
Even if this assumption is not realistic from the 
physical point of view, it is justified for two reasons: 
First, we are primarily interested in investigating the 
effect of the storage-terms non-linearity, thus the 
transfer-terms non-linearity can be neglected. 
Moreover, the dependence of the coefficient C on the 
dependent variables is not as relevant as that of the 
moisture retention on the relative humidity. 
Second, due to this simplification, the model is much 
simpler allowing an easier overview and 
reproduction. 
According to (Holm, 2002), the relation between the 
water content u and the relative humidity ĳ can be 

approximately described with the following close 
form expression: 

ሺ߮ሻݑ ൌ ݑ
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݇ଵ ൰

మ  (9) 

Here, uf is the water content at saturation, w is the 
density of water, Rv is the individual gas constant for 
water vapour, Tref is the reference absolute 
temperature and k1 and k2 represent two material 
specific fitting parameters. 
Figure 2 shows u and its derivative with respect to ĳ. 
The plot has been obtained using the data in Table 1 
and in Table 2.  
Since the derivative du/dĳ assumes very high values 
for both, relative humidity ĳ approaching zero and 
one, we aspect numerical difficulties when the 
material is dry and close to the water saturation. 

Figure 2 Moisture retention curve u(φ) and its 
derivative 

 

Table 1 Material parameters 
 

Parameter Unit Value 

Dm,ĳ [kg/(m s)] 2.715493e-9 

Dm,T [kg/(m s K)] 9.107562e-11 

De,ĳ [W/m] 6.639e-3 

De,T [W/(m K)] 1.6 

C [W/(m3 K)] 1.430417e6 

k1 [Pa] 2.997117e6 

k2 [-] 0.51671 

uf [Kg/m3] 180 
 

Table 2 Constants 
 

Constant Unit Value 

ȡw [Kg/m3] 1000 

Rv [J/(Kg K)] 462 

Tref [K] 283.15 
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u-based form 
Writing the system in the u-based form, we obtain 
the set of equations (10) to (15). 
 

Transport equations: 
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Boundary conditions: 
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The initial water content u(x,0), is calculated using 
equation (9) with eq. (7). The initial temperature is 
given by eq. (8). 
It can be observed that the system (10)-(15) is 
equivalent to (1)-(8) from the analytical point of 
view, since the coefficients Dm,u and De,u are obtained 
from Dm,ĳ and De,ĳ using the equations (16) and (17) 
where ĳ(u) is the inverse function of (9). 
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We observe that the coefficient of the time derivative 
in the first member side of equation (10) is constant 
(equal to one). This guarantees the mass conservation 
of the solution calculated with COMSOL 
Multiphysics, as shown in the results of this study. 

IMPLEMENTATION IN COMSOL 
MULTIPHYSICS 
For the solution of the set of equations (1)-(8) and 
(10)-(15) the COMSOL version 3.4 is employed 
(“COMSOL Multiphysics Software,” 2011).  
This program, based on the finite element method 
(Galerkin), allows the solution of various nonlinear 
PDE Systems of equations having the following 
generic form valid in the domain:  

  fac
t
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(18) 

With Neumann boundary conditions given by the 
following equation: 

  gqcn  uuu   (19) 

Equations (18) and (19) can be easily adapted to the 
φ-based form described by equations (1) to (6) 
putting: 
  

u={ĳ,T} 
ea=α=β=a=f=q1=q2=g1={0,0} 
da={du/dφ,C} 
c={Dm,ĳ,De,T} 
γ={-Dm,T·dT/dx,-De,ĳ·dĳ/dx} 
g2={j,0} 
 

The subscripts 1 and 2 refer to the left and the right 
hand side boundary, respectively. With the u-based 
form is possible to proceed in analogous way. 
Notice that COMSOL would accept also other forms 
for the same problem. For example, it is possible to 
include the time derivative of the water content u(ĳ) 
in the coefficient f, modifying the previous defined 
coefficients as follows: 
 

f={∂u(ĳ)/∂t,0} 
da={0,C} 
 

The performance evaluation of such alternative 
mixed forms in Comsol may be part of future work. 
The equations (18) and (19) can be set in the 
graphical user interface of COMSOL directly in their 
analytical form, whereas the software performs the 
numerical discretisation and linearization of the 
system. 
The user has to specify the shape function for the 
simulation (Physics → Subdomain settings → 
Element): in this study, linear and quadratic 
Lagrange-elements are investigated. 
The simulations are performed with the following 
solver parameters (standard settings, with exception 
of relative and absolute tolerance):   
Linear system solver: Direct UMFPACK; relative 
tolerance:1e-5; absolute tolerance: 1e-5.  
Time stepping: BDF (Backward Differentiation 
Formula), maximum BDF order: 5; minimum BDF 
order: 1 

RESULTS OF THE TEST PROBLEM 1 
The distributions of relative humidity, water content 
and temperature inside the porous layer at different 
time steps are reported in Figure 3, Figure 4 and 
Figure 5, respectively.  
These results have been calculated with five equal 
linear elements (Δx = 2mm). 
The ĳ-based form and the u-based form show a good 
agreement for temperature and relative humidity. 
For the water content distribution, the difference 
becomes relevant just if u approaches to the 
saturation (ĳ approaching to unity). 
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Figure 3 Relative humidity distribution at different 

time steps. Five equal mesh elements. 
 

 
Figure 4 Water content distribution at different time 

steps. Five equal mesh elements. 
 

 
Figure 5 Temperature distribution at different time 

steps; five equal mesh elements 
 

Considering the water content calculated on the left 
boundary, we notice that the φ-based form solution 
overestimates the exact value, whereas the u-based 
form solution underestimates it. Both the solutions 
converge to the same value by refining the mesh (see 
Figure 6). 

In order to show this more clearly, it is convenient to 
write the deviation between the two models as 
follows:  
 

ሺͲǡݑ߂ ሻݐ ൌ ఝሺͲǡݑ ሻݐ െ ௨ሺͲǡݑ  ሻ (20)ݐ

In eq. (20), uĳ(0,t) and uu(0,t) represent the solutions 
calculated at the position x=0 with the φ-based and 
the u-based form, respectively. 
The values of ǻu after one hundred hours (t=100 h) 
are reported in Figure 7 as function of the mesh 
element number M. Linear and quadratic shape 
functions have been employed. 
The deviation between the two models can be 
reduced by refining the mesh. However, it remains 
significant also using fine meshes (M = 20 → 
Δu > 40 Kg/m3, for linear elements).  
 

 

 
 
Figure 6 water content distribution after 100h for a 
fine (100 elements) and a coarse mesh (5 elements) 

 

This can be explained, considering that the derivative 
of the moisture retention curve assumes extremely 
high values when u approaches the saturation (see 
Figure 2) leading to a high numerical approximation 
error in both the φ-based and u-based models. We 
can conclude that, for a precise prediction of the 
water content on the left surface an extremely fine 
mesh is required, independently of the employed 
PDE-form. 
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Mass conservation 
In this subsection, the aim is to investigate the 
conservation of total mass and energy for both the 
implemented PDE forms, giving a measure of the 
solution quality.  
For the cases presented in this study, the energy 
results are necessary conservative since the effective 
heat capacity is supposed to be constant. 
In general, it can be shown that, if the coefficients of 
the time derivatives are constants (in COMSOL: the 
damping/mass coefficient da), the solution results 
conservative. Therefore, here, the u-based form 
results conservative for both energy and mass 
whereas the φ-based form only for the energy. 
Notice that the water content distribution calculated 
with the φ-based form over a coarse mesh 
overestimates the fine mesh solution (lower part of 
Figure 6). Assuming that the fine mesh solution 
approaches, with good approximation, the exact 
solution, we can deduce that the φ-based form does 
not conserve the mass, since the total mass in the 
domain is overestimated. 
In order to quantify the deviation from the 
conservative solution, we introduce a mass balance 
ratio MB, as suggested by (Celia et al., 1990): 

ሻݐሺܤܯ ൌ  ǡݔሺݑ ሻݐ
 ݔ݀ െ ݆ ή ݐ
 ǡݔሺݑ Ͳሻ
 ݔ݀

 
(21) 

The numerator represents the total moisture in the 
domain at a given time t minus the total flux into the 
domain up to that time. The denominator represents 
the total initial moisture content. Thus, for a perfectly 
conservative solution, the parameter MB has to be 
equal to one. 
 

 
Figure 7 ǻu(0,t*) as a function of the number of 

mesh elements M (t*=100h) 
 

The upper part of Figure 8 shows the evolution of the 
mass balance ratio calculated with the ĳ-based form 
for different mesh refinements using Lagrange linear 
elements.  
Significant deviations from the conservative solution 
can be observed at the end of the simulation when the 

left side of the layer becomes saturated. Smaller 
deviations are also present in the first part of the 
simulation (for the dry material).  
This behaviour can be explained, considering again 
the form of the moisture retention curve (see Figure 
2). 
A mesh refinement improves the solution quality 
obtained with linear Lagrange elements (Figure 8, 
bottom). It is also obvious that the finer the mesh, the 
less is the improvement with a further refinement. (in 
the considered case, more than twenty elements do 
not lead to any significant furter improvement of the 
mass conservation). 
The solution calculated with quadratic Lagrange 
elements is almost conservative, independently from 
the number of mesh elements. However, in some 
cases quadratic elements lead to oscillations in the 
solution. This has been investigated on the basis of a 
second test problem (see test problem 2). 
 

 

 
Figure 8 Mass balance ratio as a function of time for 

different numbers of grid elements calculated with 
the ĳ-based form (top). Mass balance ratio vs.  

number of grid elements (M) after 100h (bottom) 
 

Notice that the u-based form solution on a coarse 
mesh in part overestimates and in part underestimates 
the fine solution (lower part of Figure 6). However, 
the mass balance ratio results to be exactly equal to 
one for every mesh refinenment. This prooves that 
this solution is conservative. 
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Solver performance 
In COMSOL the time step is variable and determined 
by the internal software algorithm. The φ-based form 
leads to fewer time steps if compared with the u-
based form, and thus, to a lower solution time. This 
can represent a drawback of the u-based form, 
especially for large models. 
No significant difference concerning the number of 
Jacobian matrices which have to be evaluated has 
been observed between the two variants for the 
considered cases. 
In Table 3 and in Table 4 the solver performance 
statistics for both the φ-based and the u-based forms 
are reported for linear Lagrange elements (processor: 
intel™ Core™ i7 CPU M, 620 @ 2.67GHz, one core, 
RAM: 4.00GB). 
 

Table 3 
Solver performance ĳ-based form linear Lagrange 

elements 
 

M Time steps Number of 
Jacobians 

Solution 
time [s] 

3 97 21 0.91 
5 113 26 1.037 

10 126 22 1.089 
20 128 19 1.111 

100 154 17 1.3 
 

Table 4 
Solver performance u-based form linear Lagrange 

elements 
 

M Time steps Number of 
Jacobians 

Solution 
time [s] 

3 853 15 4.134 
5 955 16 4.893 

10 1012 17 5.191 
20 1043 18 5.566 

100 1058 30 5.851 
 

Similar results are obtained also using quadratic 
Lagrange elements (Table 5 and Table 6). 
 

Table 5 
Solver performance ĳ-based form quadratic 

Lagrange elements 
 

M Time steps Number of 
Jacobians 

Solution 
time [s] 

3 102 22 0.967 
5 129 19 1.207 

10 135 17 1.23 
20 148 16 1.268 

100 172 17 1.511 
 

 

 

 

 

Table 6 
Solver performance u-based form quadratic 

Lagrange elements 
 

M Time steps Number of 
Jacobians 

Solution 
time [s] 

3 949 17 4.678 
5 997 16 4.869 

10 1021 18 5.052 
20 1058 28 5.527 

100 1030 35 5.6 
 

TEST PROBLEM 2 
Since the φ-based form leads to a lower number of 
time steps and to faster solutions, it is in general 
advantageous to use it instead of the u-based form. 
Despite the non-conservative solution, the errors 
concerning the conservation of mass and energy 
remain in an acceptable range in many tested cases. 
Higher errors can occur in case of steep gradients or 
at saturation conditions.  
In this section, the φ-based form is tested, employing 
a second 1D-problem presenting these critical 
conditions. 
We consider a layer (5 cm) closed on the boundaries 
to both the energy and the mass transfer. The initial 
temperature inside the layer is uniform (20 °C), 
whereas the initial relative humidity is a step-
function (100% on the left and 20% on the right side 
of the layer). 
In this case, realistic transfer and storage parameters, 
depending on both temperature and moisture content 
are employed. The diffusion coefficients are defined 
as follows according to (Janetti, 2012): 
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RESULTS FOR TEST PROBLEM 2 
In Figure 9, Figure 10 and Figure 11 the results 
calculated with COMSOL are compared with those 
of the simulation program (“Delphin Software,” 
2011).  
The software Delphin, developed specifically for 
modeling heat and moisture transfer in constructions, 
is based on the Finite Volume Method and is 
conservative. The performances of this software 
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concerning numerical accuracy and computational 
effort have been investigated by (Nicolai, 2008). 
The chosen constants and material parameters used 
for this example are reported in the following table: 
 

Table 7 
Parameters for the test problem 2 

 

Parameter Dimension Value 
λ W/(m K) 1.774 ρ kg/m3 2452.91 c J/(kg K) 702.156 µ - 53.798 Kl s 1e-15 uf kg/m3 54.052 cp,v J/(kg K) 2050 hlv kJ/kg 2445 Dv m2/s 2.662e-5 Rv J/(kg K) 462 
The solutions show a good agreement on the right 
side of the layer, whereas on the left side (saturated 
side) the COMSOL solution presents oscillations 
(Figure 10). Thus, even if the error concerning the 
mass conservation remains always under 3% (Figure 
12), the solution quality is not adequate in case of 
saturation. 
Notice that this simulation is performed with linear 
elements. Using quadratic elements, even larger 
oscillations occur and the calculation crashes. 
The model can be improved modifying the solver 
parameter (linear solver, time stepping), anyway this 
leads to longer calculation time. Further optimization 
work should be performed in this direction. 
Further tests have shown that with lower relative 
humidity on the left hand side (99%), the quality of 
the solution is satisfactory and the mass conservation 
error becomes negligible. Thus, the use of COMSOL 
is already profitable for calculations in this moisture 
range. 
 

 
Figure 9 distribution of relative humidity in the 
layer; comparison between COMSOL (C) and 

Delphin (D) 
 

 
Figure 10 distribution of water content in the layer; 
comparison between COMSOL (C) and Delphin (D) 

 

 
Figure 11 Temperature distribution in the layer; 

comparison between COMSOL (C) and Delphin (D) 
 

 
Figure 12 Development of mass balance ratio for the 

Test problem 2  

CONCLUSION 
The use of COMSOL Multiphysics as solver for 
modeling heat and moisture transfer problems is 
profitable. The mathematical model can be easily 
modified and adapted by the user, allowing high 
flexibility. Moreover, coupling with other programs 
and multidimensional simulation are possible. 
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However the quality of the numerical solution has to 
be evaluated, with respect to different possible forms 
of the PDE system.  
In this paper we consider the numerical performance 
of the φ-based form and of the u-based form. 
The u-based form leads always to a conservative 
solution but in general presents higher numerical 
effort. 
The quality of the φ-based form solution is in general 
acceptable, with exception of calculations at 
saturation conditions. In this case, oscillations occur. 
The influence of solver type and setting and time 
stepping parameters will be investigated in future 
works. Moreover, the results may be extended to 2D 
and 3D cases. 
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NOMENCLATURE 
C [J/(m3 K)] Equivalent heat capacity 
c [J/(kg K)] Heat capacity 
Dm,φ [kg/(m s)]  
Dm,T [kg/(m s K)] Transport 
De,φ [W/m] Coefficients 
De,T [W/(m K)]  
D [m2/s] Diffusivity 
h [J/kg] Enthalpy 
j [kg/(m2 s)] Mass flux 
K [s] Conductivity 
k1 [Pa] Water retention  
k2 [-] function parameters 
L [m] Layer thickness 
M [-] Number of mesh elements 
MB [-] Mass balance ratio 
p [Pa] Pressure 
R [J/(kg K)] Gas constant 
t [s] Time 
T [K] Temperature 
θ [°C] Temperature 
u [kg/m3] Volumetric water content 
x [m] Position 
λ [W/(m K)] Thermal conductivity 
µ [-] Vapour diffusion resistance 
ρ [kg/m3] Density  
φ [%] Relative humidity 

Subscripts 
c capillary 
f Free saturation 
l Liquid 
lv Liquid-vapour 
p Constant pressure 
ref Reference 
u u-based form 
v Vapor  
w Liquid water 
φ ĳ-based form 

COMSOL coefficients 
c Diffusion coefficient 
a Absorption coefficient 
f Source term 
ea Mass coefficient 
da Damping/Mass coefficient 
α Conservative flux convection coefficient  
β Convection coefficient 
Ȗ Conservative flux source term 
q Boundary condition coefficient 
g Boundary condition coefficient 
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