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ABSTRACT 
This paper presents dynamic sensitivity analysis as a 
novel design analysis tool for dealing with time-
varying performance aspects in the built 
environment. We highlight some of the limitations of 
conventional sensitivity analyses in building design 
and present dynamic sensitivity analysis as an 
alternative solution. The first part of this paper 
introduces the basic principles of dynamic sensitivity 
analysis. In the second part, we illustrate its potential 
in a simulation-based case study of a typical office 
zone with external solar shading. The results stress 
the relevance of taking time-dependent factors into 
account in performance-based building design and 
operation. Dynamic sensitivity analysis can be a 
valuable tool to uncover such effects. 
 

INTRODUCTION 
Designing high-performance, low-energy buildings 
needs to become a mainstream activity to keep up 
with requirements prescribed in international 
environmental policies. The design option space for 
such buildings is large, and keeps on increasing with 
e.g., (i) the advent of innovative building envelope 
components, (ii) new integrated building and systems 
concepts, and (iii) more options for onsite renewable 
energy generation. These developments call for an 
integrated design approach and the application of 
performance-based strategies (Kolokotsa, Rovas, 
Kosmatopoulos, & Kalaitzakis, 2011). In this 
process, building performance simulation (BPS) has 
become the de facto standard as a design support tool 
for sustainable building design (Hensen & Lamberts, 
2011). To adapt the design problem at hand to site-
specific conditions and the  clients’ interests and 
requirements, it is important that the design team has 
the ability to navigate through the design option 
space in an effective way (Clevenger & Haymaker, 
2011). Given the large number of alternative 
solutions, this task may not be straightforward. 

Sensitivity analysis 
Recently, a range of studies has identified the value 
of BPS-based sensitivity analysis (SA) as a powerful 
tool to support generation and assessment of design 
alternatives in the conceptual (Struck, 2012), as well 

as more detailed phases of the building design 
process (Hopfe, 2009; Tian, 2013). SA can be used 
for parameter screening; it helps in understanding 
relationships and the relative importance of design 
features, and allows the design team to focus their 
efforts on the subset of most influential parameters.  
The mathematical basis for SA has been well-
established (Saltelli et al., 2008), and because of 
ongoing developments in algorithms and user 
interfaces, SA is now able to bring much richer 
information to the design team, compared to the 
pioneering SA studies in the domain of buildings 
(e.g.(Lam & Hui, 1996; Lomas & Eppel, 1992)).   
In typical applications, SA is used to generate 
parameter rankings based on the magnitude of 
sensitivity coefficients. The interpretation of the 
results is intuitive: parameters with highest 
sensitivity coefficients have the greatest influence on 
the selected performance indicator, and therefore 
deserve special attention throughout the design 
process. An additional feature of SA is that it can 
offer quick guidance in the search for (combinations 
of) design parameters that tend to lead to high 
performance buildings (Struck, De Wilde, Hopfe, & 
Hensen, 2009). 
In building design applications, SA indices are 
usually calculated for scalar features like annual 
integrated energy demands (e.g. (Eisenhower, 
O’Neill, Fonoberov, & Meziü, 2012; Mechri, 
Capozzoli, & Corrado, 2010; Tian, 2013)) or peak 
loads (e.g. (Domínguez-Muñoz, Cejudo-López, & 
Carrillo-Andrés, 2010)). Building performance, 
however, is not a constant, and also the sensitivity in 
the mapping between input parameters and 
simulation output changes over time (Eisenhower & 
Meziü, 2012). The usual, consolidated, SA metrics 
are therefore insufficiently capable of providing 
insights into the evolution of sensitivity over time. 

Dynamic performance aspects 
Understanding the causes and effects of dynamic 
factors, however, is becoming more important, as it 
plays a prominent role in many of the unfolding 
performance-based trends in the built environment. 
The importance of transient effects is for example 
manifested in the following applications: 
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- Performance indicators: Dynamic utility tariff 
structures, requirements on the long-term balance 
in thermal energy storage systems, mismatch 
penalties  between consumption and renewable 
production of energy; 

- Building and system integration: minimizing 
peaks and duration of part-load operation, taking 
advantage of knowledge about variation in 
(seasonal) system COPs;  

- Building concepts: Climate adaptive building 
shells, demand-side management applications. 

Apart from these trends, time-dependent effects are 
also important in design cases with non-typical 
building operation. Examples include the strong 
intermittent operation in e.g., conference rooms, and 
the clear on- and off-peak periods in e.g., schools and 
buildings in the recreational sector. It is worthwhile 
to take advantage of this type of knowledge by 
adapting the building design and operation to the 
dynamic conditions. 
Considering the relevance of these dynamic effects, 
we argue that it will become increasingly important 
to evaluate building performance not only on an 
annual basis, but to consider time-dependent effects 
such as the shape of load curves already in an early 
stage of the design process. Conventional SA 
techniques can support this type of analysis only to a 
limited extent (Perumal & Gunawan, 2011). 
The objective of this paper is to describe dynamic SA 
as a method that is able to communicate how input-
output sensitivity in BPS evolves over time. In the 
next Section, we introduce the principles of dynamic 
SA. After that, the use of dynamic SA is illustrated in 
a case where we analyze the impact of exterior solar 
shading.  

 

DYNAMIC SENSITIVITY ANALYSIS 
The concept of dynamic SA has been applied with 
success in various engineering disciplines, including 
the fields of modeling and simulation for nuclear 
reactor design (Auder, De Crecy, Iooss, & Marquès, 
2012), agriculture (Lamboni, Makowski, Lehuger, 
Gabrielle, & Monod, 2009), biological processes 
(Sumner, 2012) and greenhouse design (Vanthoor, 
Van Henten, Stanghellini, & De Visser, 2011). In the 
buildings domain, (Lam & Hui, 1996) used 
conventional, local SA techniques to study the 
sensitivity of design attributes with respect to time-
varying load profiles. They observed that sensitivity 
varies throughout the year, and hint at the potential of 
controlling individual parameters at different times of 
the year, but did not present a detailed analysis to test 
this assumption. To the best knowledge of the 
authors, the application of dynamic global SA in 
combination with detailed BPS models has not been 
investigated before. 
The general methodology for SA of dynamic BPS 
output consists of six steps: 

1. Select the performance indicators (PI) of 
interest, and identify the p design parameters 
and corresponding ranges as the subject of 
investigation. 

2. Use an appropriate sampling strategy to create 
ܰ input sets for the p design parameters. 

3. Run ܰ simulations in the selected BPS tool by 
varying the p input parameters. Within each 
simulation, the values for the perturbed 
parameters are kept constant. Save the 
simulation output ݕሺݐሻ�as time-series data.  

4. Assemble all outputs in one matrix per 
performance indicator, such that: 

  

ঀ ൌ

ۉ

ۈ
ۇ
ଵሺͳሻݕ ڮ
ڭ

ሻݐଵሺݕ ڮ ଵሺܶሻݕ
ڭ ڭ

ሺͳሻݕ
ڭ

ேሺͳሻݕ

ڮ

ڮ

ሻݐሺݕ ڮ ሺܶሻݕ
ڭ

ሻݐேሺݕ
ڭ

ڮ یேሺܶሻݕ

ۋ
ۊ

. 

 
Each row in ঀ�represents the time-series output 
from ݐ ൌ ሼͳǡʹǡ ǥ ǡ ܶሽ; each column contains the 
output at a given time for the ܰ different input 
sets. 

5. Perform SA for each individual column in ঀ by 
computing global sensitivity indices. For each 
PI and design parameter, this results in a 
sensitivity vector ॺ, such that: 
ॺ ൌ ሺݏሺͳሻ���ǥ ሻ���ǥݐሺݏ���   .ሺܶሻሻݏ���

6. Plot the sensitivity indices versus time and 
analyze the results. 

In principle, the use of dynamic SA does not 
presuppose a certain sensitivity index. Nevertheless, 
it is important to note from step 5 that a global SA is 
preferred for effective analysis in support of high-
performance building design. 
The outcome of dynamic SA is a vector rather than a 
scalar. As such, its contents are richer in information, 
but it also makes the representational challenge of 
dynamic SA outputs more complex (Helton, Johnson, 
Sallaberry, & Storlie, 2006). The common use of if-
then-else logic and discrete operation schedules in 
BPS models adds further complexity to the post-
processing phase. An example of this is the on/off 
switching of heating and cooling equipment, which 
tends to lead to sudden changes in energy demand. 
Such effects may cause interpretation problems in the 
analysis phase, because they lead to a non-smooth 
evolution of sensitivity. To smooth out such short-
term fluctuations, it is useful to analyze the results 
after calculating a moving average of the raw output 
(Vanthoor et al., 2011). This method is preferred 
above the use of discrete (e.g., daily or monthly) 
averaging or integration intervals because it better 
preserves the building dynamics. An additional 
benefit of using moving averages is the fact that it 
can highlight longer-term trends in the data. Doing so 
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offers additional pieces of design information that 
would otherwise go unnoticed.  
The case study presented in the next Section will 
demonstrate dynamic SA and the purpose of the 
smoothing technique in more detail. 
 

DEMONSTRATION EXAMPLE 
Exterior shading systems, like overhangs and shading 
fins, are effective design features for managing the 
role of solar heat gains in a building’s energy balance 
(Lee, Selkowitz, Bazjanac, Inkarojrit, & Kohler, 
2002). The effects of fixed solar shading, however, 
are not positive all year long, because it also reduces 
the use of passive solar contributions in colder 
periods (Hastings, 1995). The application of 
permanent exterior shading moreover limits the 
exposure to positive non-energy related aspects of 
daylight utilization. Larger shading elements are not 
by definition better, and careful dimensioning is 
therefore an essential step in the process of achieving 
high-performance building design.  

Case study details 
The method for dynamic SA will be illustrated in a 
case study where we analyze the impact of exterior 
solar shading design on the energy performance of a 
typical office zone. The room is located on an 
intermediate floor, and is surrounded by similar 
spaces and a corridor at the back. The external façade 
of the zone faces southeast. Energy demand for 
heating and cooling is assessed in this study by using 
the TMY2 weather data for Boulder, CO, USA. 
Details of the case study building are presented in 
Table 1. 

Table 1: Case study details 

Occupancy 1 person: 8 – 17 h 
Internal heat gains Lighting: 10 W/m2 

Equipment:  15 W/m2 
Orientation Southeast (45˚) 
Location Boulder, CO, USA. 
Dimensions (LxWxH) 4.5x3x2.9 m 
Heating set point Day: 20 ˚C, Night: 15 ˚C 
Cooling set point Day: 25 ˚C 
 
Figure 1 shows an isometric view of the solar 
shading geometry. The shading system consists of 
two vertical shading fins (A and C) and a horizontal 
overhang (B). The length of each shading element 
(perpendicular to the façade) is varied independently 
between 0 and 1 meter, with uniform probability. 

 
Figure 1: Façade geometry of the building model 

Simulation strategy 
The Latin Hypercube sampling method was selected 
to generate descriptions for thirty different shading 
configurations, because it ensures good coverage of 
input space (Tian, 2013). A UNIX script was written 
to perform annual ESP-r simulations for each case in 
the sample. In ESP-r, the effect of exterior shading 
was modeled by defining obstructions in the *.geo 
files and activating the ish shading module (Clarke, 
2001). At each simulation time step, the 
instantaneous heating and cooling energy demand 
was recorded. Post-processing of the simulation 
output was carried out with the help of the ‘Statistics 
Toolbox’ in Matlab. The standardized regression 
coefficient (SRC) (Tian, 2013) was selected as 
sensitivity index in this study. 

Results 
Figure 2 shows the output frequency distribution for 
the thirty different design variants. The large spread 
in results suggests that the design of exterior shading 
has a significant impact on building energy demand, 
and that a well-informed design process is required to 
achieve good energy performance. 
 

 
Figure 2: Frequency distribution of the sum of 

annual heating and cooling energy demand 

A “conventional” SA was carried out to evaluate the 
individual impact of each of the three shading 
elements on energy performance. The standardized 
regression coefficients were calculated and are 
presented as a tornado plot in Figure 3. The Figure 
shows that the length of the horizontal overhang (B) 
has a very significant impact on energy performance. 
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The sensitivity indices for the vertical fins are almost 
equal and much lower than for the overhang. 

 
Figure 3: Result of conventional SA 

The sign of the sensitivity index for all three design 
parameters in Figure 3 is negative. This finding 
implies a negative correlation between shading 
length and energy demand, and therefore indicates 
that increasing the shading length will lead to a 
decrease in annual energy demand, and vice versa. 
To gain more insights into the temporal aspects of 
sensitivity, we performed a dynamic SA by following 
the methodology presented in the previous Section. 
The graphs in Figure 4 show the evolution of 
sensitivity over the year for each of the three shading 
elements (A-C).  

 
Figure 4: Results of dynamic SA for shading fin A, 

overhang (B) and shading fin C. 

From the graphs in Figure 4, it becomes immediately 
clear that the sensitivity indices are not constant, but 
a function of time. Some longer-term, seasonal 
effects can be observed, but the graphs are mainly 
dominated by the high degree of short-term 
fluctuations. On the one hand, insight into these high-
frequency fluctuations is desired as it contains useful 
information about the variations that occur from time 

step to time step. On the other hand, however, these 
diurnal fluctuations contain irrelevant side-effects 
that arise from discontinuities in the model set-up, 
and the fact that it is not possible to calculate 
sensitivity indices at time steps with zero energy 
consumption.   Distinguishing between these effects 
and interpreting the results by visual inspection of the 
raw output data only, is difficult. As a consequence, 
the results in Figure 4 have only limited value in 
extracting useful design information for decision 
support in the design process.  
To aid in the further analyses, we calculated the 24-
hour moving average of the sensitivity indices. Doing 
this introduces a smoothing effect that allows us to (i) 
disregard (sub-)hourly variations, and (ii) shift the 
focus of attention to day-to-day changes. The results 
are presented in Figure 5.  

 
Figure 5: Results of dynamic SA – 24-hour moving 

average. 

The results in Figure 5 partly correspond with what 
was found in Figure 3, but also show some notable 
differences. During most parts of the year, the 
absolute value of the sensitivity index for shading fin 
C is significantly lower than the values for shading 
fin A. This effect can be explained by the building 
orientation: the external façade faces southeast. As a 
consequence, shading fin C is only effective in 
preventing the morning sun from entering the 
building. The effect of shading fin A on the other 
hand can be noticed during more of the occupied 
hours. This period happens later during the day, 
when not only the average intensity of solar 
radiation, but also the influence of solar gains on 
energy demand, is relatively high. 
Compared to Figure 4, the results in Figure 5 feature 
milder fluctuations and no longer include 
discontinuous jumps. The variations in Figure 5 
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resemble the type of natural variability in sky 
conditions that is also present when one calculates a 
24-hour moving average of direct solar radiation. In 
winter, spring and autumn, the usefulness of solar 
shading is determined by the complex interplay 
between ambient boundary conditions and the 
building’s momentary energy balance.  During a 
series of cloudy days, for example, it is desired to 
allow solar radiation into the building as much as 
possible. In Figure 5, such an interval is 
characterized by a relatively long period of positive 
sensitivity indices. The opposite effect, in sunny 
conditions also becomes evident from Figure 5. 
For improving building performance, the results in 
Figure 5 suggest that it would be worthwhile to 
consider the use of movable shading devices or 
awnings rather than permanent systems studied here.  
Even more information on longer-term trends can be 
obtained by ignoring day-to-day variations. This was 
achieved by calculating the ten-day moving average 
of the sensitivity indices. The results are shown in 
Figure 6  
 

 
Figure 6: Results of dynamic SA – ten-day moving 

average. 

In ‘summer’ months, approximately from April to the 
end of September, the horizontal overhang appears to 
be the only sensitive variable. In this period, cooling 
needs are high and dominant in the building’s energy 
balance. At the given latitude (40˚N), the solar 
altitude angle in summer is high and as a result, the 
amount of solar radiation that is intercepted by the 
vertical shading fins is relatively low. A horizontal 
overhang on the other hand is very effective in 
reducing energy demand, as Figure 6 shows. 
Around the end of January and the end of November, 
a sudden change in the sensitivity indices for shading 
fin A and overhang B is observed.  Especially the 
sign change is an interesting finding, because it 
clearly signals the potential for seasonal shading 
modes (Lorenz, 1998). In summer, energy 
performance benefits from large shading elements; in 
winter it is preferable to have no shading 
obstructions. Considering these longer-term dynamic 
effects, it seems worthwhile to investigate the 
possibility of designing solar shading as an adaptable 
add-on façade element. This finding fits well in the 

philosophy of long-term climate adaptive building 
shells (Loonen et al, 2011; 2013), and offers 
opportunities for innovative design solutions (Bitrou, 
2006; Kassab & Love, 2005) 
Perhaps even more important than the previous 
finding is the fact that dynamic SA can also be useful 
to support the operational decision for the best 
transition moment between winter and summer 
mode. The subtlety of this problem is illustrated by 
the relatively cold and cloudy period in March which 
causes a steep shift of sensitivity indices in the 
opposite direction. These effects may be missed by 
conventional shading design tools, which usually 
only consider boundary conditions as input, instead 
of the feedback about the actual interaction between 
climate and building load characteristics.   

DISCUSSION 
Solar shading design 
This paper illustrated the basics of dynamic SA by 
means of a relatively simple example: only three 
design parameters were varied, and the effects of 
solar shading are only noticeable during daytime. 
The results show that the application of dynamic SA 
offers additional benefits, compared to conventional 
SA. Using conventional SA, Figure 3, for example, 
indicates overhang length (B) as the only sensitive 
parameter. Dynamic SA verifies that the design of 
shading fin C is indeed relatively insignificant for 
energy performance. For shading fin A, however, this 
is not invariably true. The significant negative effect 
of shading in winter is counterbalanced by the 
positive effects in summer. Such effects are easily 
noticed in the output of dynamic SA, but are masked 
in annually-integrated sensitivity metrics. 
Compared to basic (Etzion, 1992) as well as more 
advanced (Sargent, Niemasz, & Reinhart, 2011) solar 
shading design analysis tools, the application of 
dynamic SA also offers advantages. Dynamic SA is 
able to effectively visualize the interrelated time-
varying effects between control of the amount of 
solar gains and the building’s thermal response. The 
conventional tools tend to be based on solar 
conditions only, and cannot provide this type of 
information.  

Application area for dynamic SA 
The scope and level of detail of the demonstration 
example is relatively limited compared to the type of 
design challenges that is usually faced in high-
performance building design. The case was devised 
to illustrate the potential of SA, and also because it 
allowed for relatively straightforward representation 
of the results. In principle, we see no reasons why the 
method cannot be applied to design studies with 
more complexity. However, when the number of 
design variables and interactions increases, it may 
become challenging to rank different design 
parameters, especially when their effects are 
conflicting. In addition, it still needs to be tested how 

Shading fin A 
Overhang (B) 
Shading fin C 
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the method behaves in the presence of e.g. multiple 
performance indicators, or detailed HVAC system 
simulation.  
The added value of dynamic instead of conventional 
SA is most pronounced in “non-typical” cases. The 
biggest contributions are expected in designs where 
building or system components can be actuated in 
response to dynamic conditions throughout the 
operational phase (e.g. adaptable façades or advanced 
systems control).  
As a potential drawback of the method presented in 
this work, the effects of high thermal inertia should 
be mentioned. It is well-known that thermal mass 
causes both attenuation and time-shifts in the 
building’s energy balance. When the influence of 
thermal mass becomes large (e.g. in thermally 
activated building systems), the instantaneous effects 
are typically spread over multiple time-steps. This 
may cause too much interference in the analysis of 
the different energy flow paths and may prevent 
dynamic SA from being useful in such applications.  

Possible extensions 
The analyses in this study employed the standardized 
regression coefficient as the metric for assessing the 
level of sensitivity. This SA index is particularly 
useful here. Apart from information about the 
relative importance of each parameter, the sign of the 
coefficient also provides valuable guidance to the 
design team as it points to the most favorable subset 
of the design option space. A limitation of this 
approach is that the results are only reliable when the 
model response is monotonic and approximately 
linear. In more complex settings with wide parameter 
ranges, these conditions may not apply. Recent 
studies have shown that variance-based uncertainty 
and sensitivity techniques (e.g. ANOVA or Sobol 
methods) can provide superior results compared to 
other methods (Saltelli et al., 2008; Tian, 2013). 
Especially the use of nonparametric regression 
techniques seems promising for strategic exploration 
of the design option space in high performance 
building design (De Wilde & Tian, 2010; Storlie, 
Swiler, Helton, & Sallaberry, 2009). Future research 
should investigate how these methods can be 
deployed in the frame of dynamic SA.  
Although the application of dynamic SA in the 
building domain is relatively new, it can build upon 
solid research work from other engineering fields. 
One promising line of research aims at further 
exploiting of (periodic) patterns in the dynamics of 
time-series output (Auder et al., 2012; Campbell, 
McKay, & Williams, 2006; Lamboni, Monod, & 
Makowski, 2011; Sumner, 2012). Statistical 
techniques like principal component analysis (PCA) 
can be used to identify a reduced set of composite 
variables which explains the majority of variation in 
the output. Such an approach is mainly attractive 
because it can greatly reduce dimensionality of the 
output, and thereby produce results that are easier to 

interpret without loss of information. Transferring 
these principles to the domain of building design, and 
finding solutions that circumvent the problems 
related to the discontinuities underlying most BPS 
models, is not yet done, and therefore a valuable 
direction for future research. 
 

CONCLUSIONS 
While traditional parametric SA provides a powerful 
tool for studying input-output relationships in 
building design, its suitability in inferring the 
dynamic aspects of building performance has not 
been properly addressed. In this study, we present a 
method for dynamic SA of BPS output that is able to 
communicate how sensitivity evolves over time. 
Results from a case study demonstrate how dynamic 
SA in combination with a smoothing technique can 
be used to identify which design parameters are 
influential at particular times of the year. This can 
deliver a new type of performance information to the 
design process, and also provides useful cues 
regarding which operational actions can improve 
building performance. This study concludes that 
dynamic SA has the potential to become a valuable 
addition in the range of decision support tools to cope 
with the growing design option space in the search 
for high-performance buildings. A logical next step 
would be to test the potential of dynamic SA in a 
case with more real-world complexity. 
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