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ABSTRACT 
The objective of this paper is to present a general 
methodology for the calculation of thermal response 
factors, known as g-functions, of vertical borehole 
fields. The methodology accounts for the time 
variation of the heat extraction rates of individual 
boreholes. In addition, the original concept of the 
g-functions is extended to include variable borehole 
lengths and buried depths. Finally, the methodology 
is implemented into MATLAB with a convenient 
graphical user interface which pre-processes the 
hourly values of the thermal response factors for use 
in energy simulation programs.  

INTRODUCTION 
Ground source heat pump (GSHP) systems offer a 
significant potential for reducing the energy 
consumption associated with heating and cooling in 
buildings. In one of the most popular system, the heat 
carrier fluid from the heat pump circulates into an 
array of U-tube loops inserted into vertical boreholes. 
Heat is first transferred from the ground to the fluid 
and then to the building by the heat pump. 
The simulation of GSHP systems relies on the 
prediction of the heat transfer in the bore field. The 
correct number of boreholes, their length and the 
spacing between boreholes need to be identified to 
ensure proper operation of the system. While 
simulation of GSHP systems is available in various 
building simulation software, the users are often 
limited to a finite amount of bore field layouts, 
usually in regular grid patterns. This limits the 
possibilities when deciding the positions of the 
boreholes in the bore field. 

Long-term g-function 
Simulation programs typically use thermal response 
factors, or g-functions (Eskilson, 1987), to model the 
transient heat transfer between the boreholes and the 
ground. g-functions give the time variation of the 
borehole wall temperature due to a constant total heat 
extraction rate in the bore field. The g-function is 
defined by the relation : 

𝑇௕ = 𝑇௚ −
𝑄ത

2𝜋𝑘௦
∙ 𝑔(𝑡 𝑡௦⁄ , 𝑟௕ 𝐻⁄ , 𝐵 𝐻⁄ ) (1) 

where Tb is the borehole wall temperature, Tg is the 
undisturbed ground temperature, 𝑄ത  is the total heat 
extraction rate per borehole length, ks is the ground 
thermal conductivity, g is the g-function, t/ts is the 
non-dimensional time, with ts = H2/9αs the 
characteristic time of the bore field, αs is the ground 
thermal diffusivity, rb/H is the borehole radius to 
length ratio and B/H is the borehole spacing to length 
ratio. 
The original g-functions were obtained by Eskilson 
(1987). They result from the simulation of the ground 
heat transfer around the boreholes using an explicit 
finite difference method. Each borehole is modelled 
in a separate 2D radial-axial mesh. The temperature 
distributions around the boreholes are superposed 
spatially to obtain the total temperature variation at 
the borehole walls. The heat extraction rate of each 
cell along the lengths of the boreholes is calculated at 
each time step to obtain a uniform temperature at the 
borehole walls, and equal for all boreholes. 
Each g-function is unique to one bore field layout 
and one combination of the non-dimensional 
parameters rb/H, B/H. A third parameter D/H, the 
buried depth to length ratio, was not included in 
Eskilson's original g-functions. The g-functions are 
documented in a series of non-dimensional graphs 
such as the one shown on Figure 1 (for a 3 × 2 bore 
field). g-functions are included within databases in 
simulation programs such as EnergyPlus 
(Fisher, 2006). 

 
Figure 1 g-function of a 3 × 2 bore field 
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Analytical solutions may be preferred over 
numerically generated g-functions since they are 
often more easily obtained than numerical solutions. 
The infinite line source (Ingersoll and Plass, 1948) 
and the cylindrical heat source (Carslaw and Jaeger, 
1959; Bernier, 2000) were originally used to model 
heat transfer around boreholes. However, such 
solutions do not account for axial heat transfer and 
overestimate the temperature response for large 
values of time (t ≳ 3 years). 
Eskilson (1987) proposed the use of the finite line 
source (FLS) solution to approximate the g-function. 
Eskilson obtained the solution by integrating the 
point heat source solution over the length of the 
borehole and of a mirror source of opposite sign. The 
solution was evaluated at the borehole mid-length 
and at a radius 𝑟 = √1.5𝑟௕. 
Zeng (2002) used the FLS solution to calculate the 
integral mean temperature over the length of the 
borehole. The solution is presented as a double 
integral. The use of the integral mean temperature 
results in a lower temperature response when 
compared to the FLS evaluated at mid-length. The 
solution is however more difficult to obtain since it 
requires the evaluation of a double integral. 
Lamarche and Beauchamp (2007a) simplified the 
double integral formulation of the FLS solution and 
obtained a solution involving a single integral for the 
specific case D = 0. The thermal response of bore 
fields of 2 and 4 boreholes were presented and 
compared to Eskilson's g-functions for a borehole 
spacing-to-length ratio B/H = 0.1. Claesson and 
Javed (2011) later obtained a solution for the case 
D ≥ 0. 
Fossa (2011) compared the thermal response factors 
obtained using the FLS solution to Eskilson's 
g-functions for fields of 3 × 3 and 8 × 2 boreholes. It 
was shown that the FLS tends to overestimate the 
g-functions for small values of B/H and large values 
of time. 
Malayappan and Spitler (2013) studied the impact of 
the overestimation of the g-functions on the sizing of 
bore fields. The results indicate that the 
overestimation of the g-functions leads to an 
oversizing of the bore fields. The oversizing 
increases with the number of boreholes and the sizing 
period, and decreases when the length of the 
boreholes and the spacing between boreholes 
increase. 
Cimmino et al. (2013) used the FLS solution to 
obtain thermal response factors of bore fields while 
accounting for the time variation of the heat 
extraction rates of individual boreholes. Results were 
presented for fields of 3 × 2, 6 × 4 and 10 × 10 
boreholes. The new methodology was shown to 
reduce the differences between the FLS solution and 
Eskilson's g-functions. The remaining differences are 
attributed to the boundary condition at the borehole 

wall, which differs from the condition used by 
Eskilson. 

Temporal superposition 
Simulation of GSHP systems consists in calculating 
the time variation of the borehole wall and fluid 
temperatures in the bore field due to a varying total 
heat extraction rate. The varying borehole wall 
temperature is obtained from the temporal 
superposition of the thermal response factor : 

T௕(𝑡௞) − 𝑇௚ =෍ −𝑞ത൫𝑡௣൯
2𝜋𝑘௦

∙ 𝑔൫𝑡𝑘 − 𝑡𝑝൯
௞

௣ୀଵ
 

(2) 

where 𝑞ത൫𝑡௣൯ = 𝑄ത൫𝑡௣൯ − 𝑄ത൫𝑡௣ିଵ൯ is the total heat 
extraction rate increment per borehole length. 
As the number of time steps increases, the temporal 
superposition of the thermal response factor is 
increasingly difficult to calculate (i.e. the number of 
terms in the sum increases) and the simulations 
become increasingly time consuming. The 
calculation time can be decreased using load 
aggregation (Yavuzturk and Spitler, 1999; Bernier, 
2004; Liu, 2005). Load aggregation consists in 
averaging parts of the heat extraction rate history to 
reduce the number of terms to be superposed. As a 
result, the calculation time can be significantly 
reduced at the cost of small errors in the predicted 
borehole wall temperatures. 
Lamarche and Beauchamp (2007b) and Lamarche 
(2009) introduced a new algorithm for the temporal 
superposition of the thermal response factor. The 
new algorithm is able to further reduce the 
calculation time while increasing the precision of the 
solution when compared to load aggregation. 
Marcotte and Pasquier (2008) used fast Fourier 
transforms (FFT) to calculate the temporal 
superposition of the thermal response factors. This 
method does not cause any error in the calculation of 
the temporal superposition since it does not modify 
the heat extraction rates or the thermal response 
factor. 
The objective of this paper is to present a simplified 
methodology for the approximation of g-functions 
based on the FLS solution as explained by Cimmino 
et al. (2013). The FLS solution is expanded to cover 
boreholes of unequal lengths. The new methodology 
is simpler and more efficient than the methodology 
presented by Cimmino et al. (2013) while giving 
equivalent results. 
The methodology is implemented into MATLAB 
with a convenient graphical user interface (GUI). The 
GUI generates the hourly g-function for the bore 
field specified by the user. The boreholes can be 
placed into any position and can also have different 
individual lengths.  
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METHODOLOGY 
The calculation of the g-function is separated into 
three steps. First, the FLS solution gives the 
temperature distribution around individual boreholes 
and thus the temperature variation at the borehole 
walls due to heat extraction from any borehole. Then, 
spatial superposition is used to calculate the total 
temperature variation at the borehole walls by 
superposing the contribution of all boreholes. Finally, 
temporal superposition is used to account for the time 
variation of the heat extraction rates of individual 
boreholes. A system of equations is built at each time 
step to calculate the heat extraction rates of the 
boreholes and the borehole wall temperature 
common to all boreholes. 
The ground thermal properties are assumed to be 
uniform, isotropic and constant. The ground is 
initially at a temperature Tg and the ground surface is 
maintained at the initial ground temperature. Each 
borehole i has a length Hi, is buried at a depth Di 
from the ground surface and is positioned at 
coordinates (xi, yi). All boreholes have the same 
radius rb and the same borehole wall temperature Tb. 
As an example, a field of 3 arbitrarily sized and 
positioned boreholes is shown on Figure 2. 

 
Figure 2 Field of 3 arbitrarily sized and positioned 

boreholes 

Finite line source 
The temperature variation Δ𝑇௜→௝ at the wall of the jth 
borehole due to the extraction of heat by the ith 
borehole, at a rate per unit length Qi uniform along its 
length, is obtained from the FLS solution. The FLS 
solution is obtained from the integration of the point 
heat source solution over the length of the extracting 
borehole, superposed with a mirror line source of 
opposing heat extraction rate above the ground 
surface as shown on Figure 3. 

 
Figure 3 Illustration of the finite line source solution 
The temperature variation Δ𝑇௜→௝ is obtained by 
averaging the FLS solution over the length of the jth 
borehole. 

Δ𝑇௜→௝(𝑡) =
−𝑄௜
2𝜋𝑘௦

∙ ℎ௜→௝(𝑡) (3) 

ℎ௜→௝(𝑡) =
1
2න 𝑒𝑥𝑝൫−𝑟௜௝ଶ𝑠ଶ൯

ஶ

ଵ ඥସఈೞ௧⁄

∙ 1𝐻௝
න න ቂ𝑒𝑥𝑝 ቀ−൫𝑧௝ − 𝑧௜൯

ଶ𝑠ଶቁ
஽೔ାு೔

஽೔

஽ೕାுೕ

஽ೕ

− 𝑒𝑥𝑝 ቀ−൫𝑧௝ − 𝑧௜൯
ଶ𝑠ଶቁቃ 𝑑𝑧௜ 𝑑𝑧௝ 𝑑𝑠 

(4) 

where ℎ௜→௝(𝑡) is the borehole-to-borehole response 
factor, ks is the ground thermal conductivity,  αs is the 
ground thermal diffusivity, 

𝑟௜௝ = ට൫𝑥௜ − 𝑥௝൯
ଶ + ൫𝑦௜ − 𝑦௝൯

ଶ
 is the radial distance 

between borehole i and borehole j and rii = rb. 
The triple integral in Equation 4 was simplified to a 
single integral by Claesson and Javed (2011) for the 
case Di = Dj, Hi = Hj. The same methodology is used 
here to simplify Equation 4 and obtain a new solution 
for the general case Di ≠ Dj, Hi ≠ Hj. 

ℎ௜→௝(𝑡)

= 1
2න 𝑒𝑥𝑝൫−𝑟௜௝ଶ𝑠ଶ൯

𝑌൫𝐻௜𝑠, 𝐷௜𝑠, 𝐻௝𝑠, 𝐷௝𝑠൯
𝐻௝𝑠ଶ

𝑑𝑠
ஶ

ଵ ඥସఈೞ௧⁄
 

(5) 

𝑌(ℎଵ, 𝑑ଵ, ℎଶ, 𝑑ଶ)
= 𝑖𝑒𝑟𝑓(𝑑ଶ − 𝑑ଵ + ℎଶ) − 𝑖𝑒𝑟𝑓(𝑑ଶ − 𝑑ଵ)
+ 𝑖𝑒𝑟𝑓(𝑑ଶ − 𝑑ଵ − ℎଵ)
− 𝑖𝑒𝑟𝑓(𝑑ଶ − 𝑑ଵ + ℎଶ − ℎଵ)
+ 𝑖𝑒𝑟𝑓(𝑑ଶ + 𝑑ଵ + ℎଶ) − 𝑖𝑒𝑟𝑓(𝑑ଶ + 𝑑ଵ)
+ 𝑖𝑒𝑟𝑓(𝑑ଶ + 𝑑ଵ + ℎଵ)
− 𝑖𝑒𝑟𝑓(𝑑ଶ + 𝑑ଵ + ℎଶ + ℎଵ) 

(6) 

𝑖𝑒𝑟𝑓(𝑋) = 𝑋 ∙ 𝑒𝑟𝑓(𝑋) − 1
√𝜋

(1 − 𝑒𝑥𝑝(−𝑋ଶ)) (7) 

where erf is the error function. 
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The temperature variation and the heat extraction rate 
per unit length are expressed as non-dimensional 
parameters: 

ΔΘ௜→௝(𝑡) =
Δ𝑇௜→௝

−𝑄ത 2𝜋𝑘௦⁄ = 𝑄෩𝑖 ∙ ℎ௜→௝(𝑡) 
(8) 

where ΔΘ௜→௝ is the non-dimensional temperature 
variation at the wall of the jth borehole due to the 
extraction of heat by the ith borehole, 𝑄෨௜ = ொ೔

ொത  is the 
normalized heat extraction rate per unit length of the 
ith borehole. 

Spatial superposition 
The total non-dimensional temperature variation at 
the borehole wall Θb, which corresponds to the 
g-function of the bore field, is obtained from the 
spatial superposition of the non-dimensional 
temperature variations due to heat extraction from all 
boreholes: 

Θ௕(𝑡) =෍ 𝑄෨௜ ∙ ℎ𝑖→𝑗(𝑡)
௡್

௜ୀଵ
 (9) 

Since the borehole wall temperature is equal for all 
boreholes, Equation 9 can be evaluated for any 
borehole j. 

Temporal superposition 
The heat extraction rate of individual boreholes 
varies in time. For a succession of normalized heat 
extraction rates 𝑄෨௜൫𝑡௣൯ starting at time tp-1 up to time 
tp, the borehole wall temperature at time tk is obtained 
from the temporal superposition of the normalized 
heat extraction rate increments: 

Θ௕(𝑡௞) = ෍ ෍ 𝑞෤௜൫𝑡௣൯ ∙ ℎ𝑖→𝑗൫𝑡𝑘 − 𝑡𝑝൯
௞

௣ୀଵ

௡್

௜ୀଵ
 

(10) 

where 𝑞෤௜൫𝑡௣൯ = 𝑄෨௜൫𝑡௣൯ − 𝑄෨௜൫𝑡௣ିଵ൯ is the normalized 
heat extraction rate increment of the ith borehole. 
The non-dimensional temperature at the borehole 
wall is evaluated one time step at a time. As such, 
only the normalized heat extraction rates at time tk 
are unknown and are therefore separated from the 
rest of the sum in Equation 10: 

Θ௕(𝑡௞) =෍ 𝑄෨௜(𝑡௞) ∙ ℎ𝑖→𝑗(𝑡𝑘 − 𝑡𝑘−1)
௡್

௜ୀଵ
+ Θ௕,௝

∗ (𝑡௞) 

(11) 

Θ௕,௝
∗ (𝑡௞)

=෍ ෍ 𝑞෤௜൫𝑡௣൯ ∙ ℎ𝑖→𝑗൫𝑡𝑘 − 𝑡𝑝൯
௞ିଵ

௣ୀଵ

௡್

௜ୀଵ
− 𝑄෨௜(𝑡௞ିଵ) ∙ ℎ𝑖→𝑗(𝑡𝑘 − 𝑡𝑘−1) 

(12) 

Equation 11 can be evaluated for any borehole j and 
therefore forms a set of nb equations with nb+1 
unknowns, i.e. all Θb and 𝑄෨௜. One last equation is 
required to complete the set, which sets the total heat 
extraction rate in the field as constant. 

𝑄ത ∙ 𝐻ഥ ∙ 𝑛௕ =෍ 𝑄௜(𝑡௞) ∙ 𝐻௜
௡್

௜ୀଵ
 (13) 

where 𝐻ഥ is the average length of the boreholes in the 
field. 
In non-dimensional form: 

𝑛௕ =෍ 𝑄෨௜(𝑡௞) ∙
𝐻௜
𝐻ഥ

௡್

௜ୀଵ
 

(14) 

Solution of the system of equations 
The system of equations is solved for all times tk, 
starting at time t1. As shown by Marcotte and 
Pasquier (2008), the temperature response to a 
constant heat extraction is a smooth and 
monotonically increasing function. It can therefore be 
calculated at a few selected times and later 
interpolated using a cubic spline. 
A time step of 1 h is used for the first 48 time steps 
t1-t48, the time step is doubled for each subsequent 
time step after t48 (e.g. t49 = 50 h, t50 = 54 h, 
t51 = 62 h) up to a time of 1000 years for a total of 
71 time steps. 
The borehole-to-borehole response factors ℎ௜→௝ are 
pre-calculated for all times tk prior to the calculation 
of the g-function. The values of the borehole-to-
borehole response factors for times in between times 
tk are obtained through spline interpolation for use in 
Equation 11. 

IMPLEMENTATION AS A MATLAB GUI 
The methodology was implemented in a graphical 
user interface (GUI) using Matlab's GUI 
development environment. The GUI is compiled into 
an executable application and requires only the 
installation of Matlab Component Runtime 2012a 
(available for free1). The GUI is shown on Figure 4 at 
the end of the paper. 
The ground thermal diffusivity and borehole radius 
are specified on the Parameters panel (A). The 
borehole positions, length and buried depth are 
specified in the Borehole positions panel (C). The 
field can be visualized on the bottom right hand side 
graph (E). The g-function is generated and visualized 
on the top right hand side graph (D). The g-function 
is exported into a text file at a time step of one hour 
up to a time set in the File export panel (B). 
The g-function is exported in a two-column text file. 
The first column lists the hourly values of the non-
dimensional time ln(t/ts) and the second column lists 
the hourly values of the calculated g-function. The 
g-function can later be used for the simulation of the 
bore field. Knowing the hourly ground heat 
extraction rate in the bore field and the g-function, 
the borehole wall temperature is obtained through 
temporal superposition (Equation 2). 
                                                           
1 http://www.mathworks.com/products/compiler/mcr/ 
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RESULTS 
The g-function of a field of 7 × 3 equally spaced 
boreholes generated with the preprocessor is 
compared to the g-function generated using the 
methodology of Cimmino et al. (2013) and with 
Eskilson's g-function. All boreholes have a length 
H = 140 m, a radius rb = 0.075 m and are buried at a 
distance D = 2 m from the ground surface. The 
spacing between boreholes is B = 7 m. The ground 
thermal diffusivity is αs = 1 × 10 -6 m2/s. 
As shown on Figure 5, the g-function obtained with 
the preprocessor is equivalent to the g-function 
obtained with the methodology of Cimmino et al. 
(2013). However, the preprocessor overestimates 
Eskilson's g-function for greater values of time. 
These differences were also observed by Cimmino et 
al. (2013) for fields with numerous boreholes and are 
attributed to the differences in the boundary 
condition at the borehole walls used by each model : 
Eskilson's model uses a condition of uniform 
temperature along the length of the boreholes while 
the methodology presented in this work uses a 
condition of uniform heat extraction rate along the 
length of the boreholes.  
The difference between the g-function calculated by 
the preprocessor and the g-function obtained using 
Eskilson's model increases with the value of ln(t/ts). 
The differences at times t = 5, 10, 20, 30, 40 and 
50 years are presented in Table 1. 

 
Figure 5 g-function of a 7 × 3 bore field 

 
Table 1 

Difference with Eskilson's g-function 
 

t (years) ln(t/ts) Difference (%) 
5 -2.625 0.25 
10 -1.932 2.6 
20 -1.239 5.6 
30 -0.834 7.7 
40 -0.546 9.4 
50 -0.323 10.6 

APPLICATION 
The preprocessor allows for fields of boreholes of 
different lengths and uneven spacings between 
boreholes. The g-function of a field of 9 boreholes 
with lengths and positions presented in Table 2 was 
calculated using the preprocessor. The radius of the 
boreholes is rb = 0.05 m, the buried depth of the 
boreholes is D = 2 m, the ground thermal diffusivity 
is αs = 1 × 10 -6 m2/s and the ground thermal 
conductivity is ks = 2 W/m-K. The undisturbed 
ground temperature is Tg = 10°C. The positions of the 
boreholes are illustrated on Figure 6 and the resulting 
g-function is presented on Figure 7. The g-function is 
presented as a function of the non-dimensional time 
ln(t/ts), with 𝑡௦ = ுഥమ

ଽఈೞ
 the characteristic time of the 

bore field calculated based on the average borehole 
length 𝐻ഥ = 91.11 m. 
The g-function is linear up to a time ln(t/ts) = -5 
(72 days), when thermal interaction becomes 
significant and the slope of the g-function increases. 
The g-function starts to stabilize towards its steady-
state value near time ln(t/ts) = 0 (29 years), when 
axial effects (i.e. thermal interaction with the ground 
surface and the ground below the bore field) become 
significant. 

Table 2 
Borehole lengths and positions 

 

i Hi (m) xi (m) yi (m) 
1 100 0 12 
2 95 5 9 
3 90 10 6 
4 85 15 3 
5 80 20 0 
6 85 25 3 
7 90 30 6 
8 95 35 9 
9 100 40 12 

 
Figure 6 Positions of the 9 boreholes 
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Figure 7 g-function of the field of 9 boreholes 

The g-function exported by the preprocessor can be 
used to simulate the bore field and obtain the hourly 
variation of the borehole wall temperature due to heat 
extraction in the bore field. For a variable total heat 
extraction rate per borehole length, as shown in the 
example on Figure 8, the borehole wall temperature 
is calculated by temporal superposition of the 
g-function (Equation 2). 

 
Figure 8 Hourly heat extraction rate 

 
Cimmino et al. (2012) demonstrated how to use fast 
Fourier transforms (FFT) to simulate bore fields with 
g-functions, as proposed by Marcotte and 
Pasquier (2008). Temporal superposition 
(Equation 2) is expressed in the Fourier domain: 

T௕(𝑡) − 𝑇௚ = ℱିଵ ൭ℱ ቆ−𝑞ത(𝑡)2𝜋𝑘௦
ቇ ∙ ℱ൫𝑔(𝑡)൯൱ 

(15) 

where ℱ and ℱିଵ are the direct and inverse Fourier 
transforms, calculated using a FFT algorithm. 
The calculation of the temporal superposition using 
Fourier transforms is done in 5 steps. (1) The 
g-function is evaluated at each time-step of the 
simulation and (2) the total heat extraction rate 
increment per borehole length 𝑞ത is calculated from 
the total heat extraction rate per borehole length 𝑄ത . 
(3) The Fourier transforms of the g-function and the 
ratio ି௤ത(௧)ଶగ௞ೞ

 are calculated using a FFT algorithm. (4) 
The two Fourier transforms are then multiplied for 

each term in the Fourier domain. Finally, (5) the 
inverse transform of the result of the multiplication is 
calculated using an inverse FFT algorithm and added 
to the undisturbed ground temperature to obtain the 
borehole wall temperature. The variation of the 
borehole wall temperature in the bore field described 
in Table 2, due to a variable heat extraction rate 
shown on Figure 8 for 1 year of simulation, is shown 
on Figure 9. 

 
Figure 9 Hourly borehole wall temperature 

CONCLUSION 
A new finite line source (FLS) solution is presented 
and used to calculate thermal response factors, called 
g-functions, for fields of arbitrarily sized and 
positioned boreholes. Heat extraction rates vary from 
borehole to borehole as well as in time in order to 
obtain a borehole wall temperature equal for all 
boreholes. Spline interpolation is used to reduce the 
number of evaluations of the analytical solution and 
the number of time steps in the temporal 
superposition. 
The methodology is implemented into a graphical 
user interface (GUI) in Matlab. Thermal response 
factors calculated using the presented methodology  
are equivalent to those obtained using the 
methodology of Cimmino et al. (2013). The 
g-function of a 7 × 3 bore field calculated by the 
preprocessor was also compared to Eskilson's 
g-function. The differences between the two 
g-functions was inferior to 2.6 % for times 
t ≤ 10 years. The differences are attributed to the 
boundary condition at the borehole walls, which is 
different for each method. Future work will introduce 
a new solution for the calculation of the g-function 
using the same boundary condition as Eskilson. 

NOMENCLATURE 
αs =  ground thermal diffusivity 
Di =  buried depth of the ith borehole 
g =  g-function 
Hi =  length of the ith borehole 
𝐻ഥ =  average borehole length in the bore field 
hi→j =  borehole-to-borehole response factor 
ks =  ground thermal conductivity 
nb =  number of boreholes 
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Qi =  heat extraction rate per unit length of the ith 
borehole 
𝑄෨௜ =  normalized heat extraction rate per unit 
length of the ith borehole 
𝑞෤௜ =  normalized heat extraction rate increment per 
unit length of the ith borehole 
𝑄ത  =  total heat extraction rate per unit length in 
the bore field 
𝑞ത =  total heat extraction rate increment per unit 
length in the bore field 
rb =  borehole radius 
rij =  radial distance between the ith and jth 
boreholes 
Tb =  borehole wall temperature 
Tg =  undisturbed ground temperature 
∆Ti→j =  temperature variation at the wall of the jth 
borehole caused by the ith borehole 
Θb =  non-dimensional borehole wall temperature 
∆Θi→j =  non-dimensional temperature variation at 
the wall of the jth borehole caused by the ith borehole 
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Figure 4 Graphical user interface (GUI) of the preprocessor 
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