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ABSTRACT 
In existing buildings, monitored data can support the 
process of simulation model calibration and 
validation. Such calibrated models could be 
effectively applied in building management and 
systems operation processes. The present 
contribution focuses on a specific problem faced by a 
monitoring-based optimization-assisted simulation 
calibration: In many realistic circumstances, it is not 
possible to install monitoring systems with full 
building coverage. To address this issue, we explore 
the potential of simulation model calibration based 
on monitored data obtained from a selected sub-set of 
building zones. Thereby, we demonstrate that the 
resulting calibrated simulation model can provide, 
via virtual sensors, information from building zones, 
which are not actually monitored. 

INTRODUCTION 
In the past few years, research and development 
regarding the deployment of building performance 
simulation in the building operation phase has gained 
on momentum. Specifically, simulation routines have 
been successfully applied in the conception and 
implementation of predictive methods for building 
systems control (Mahdavi 2001). As we have argued 
in previous publications (Mahdavi et al. 2012), the 
quality and effectiveness of such a predictive control 
system depends on the reliability of the integrated 
simulation models. Thus, to ensure that predictions 
are dependable, the incorporated simulation models 
need to be calibrated. Moreover, given the dynamic 
nature of building operation and the boundary 
conditions (e.g., weather, occupancy), the calibration 
task cannot be approached as a kind of ad hoc 
activity. Rather, it needs to be conducted on a 
systematic and regular basis. In previous publications 
(see, for example, Tahmasebi et al. 2012), we 
examined the potential of an optimization-based 
simulation model calibration to maintain the model’s 
fidelity through a recurrent calibration process.  
The present contribution focuses on a specific 
problem faced by a monitoring-based optimization-
assisted simulation calibration: In many realistic 
circumstances, it is not possible to install monitoring 
systems with full building coverage. To address this 
issue, we explore the potential of simulation model 

calibration based on monitored data obtained from a 
selected sub-set of building zones. Thereby, we 
demonstrate that the resulting calibrated simulation 
model can provide, via virtual sensors, information 
from building zones, which are not actually 
monitored. 
To explore the possibility of using a calibrated 
thermal performance simulation model for virtual 
building zone monitoring, a university campus office 
area with existing monitoring infrastructure was 
selected.  

METHODOLOGY 

The building model 
To explore the potential of monitoring-based 
optimization-assisted calibration in a realistic setting, 
we selected an actual office in a building of the 
Vienna University of Technology, which is equipped 
with a monitoring infrastructure (see Figure 1).  
The building was modeled in the building energy 
simulation tool EnergyPlus v7.0 (EnergyPlus 2012). 
In order to create the initial model, first building 
geometry and thermal properties of building 
components were specified. In the zoning scheme, 
the open-plan south and north-oriented spaces were 
separated from the central corridor. However, using 
the network-based multi zone airflow model of 
EnergyPlus (Gu 2007), the airflow between these 
connected spaces was simulated. Figure 1 illustrates 
the building floor plan and the thermal zoning of the 
building model. Zones 1, 2, 3, 5 and 6 represent the 
offices of building and zone 4 is a seminar room. 
As the second step in developing the initial model, 
the monitored data was incorporated in the model in 
terms of schedules for time-varying input parameters, 
namely occupancy, lighting, electric equipment, and 
state of the windows. The heat delivery rate of the 
hydronic heating system was also calculated based on 
the measured radiator surface temperatures 
(Tahmasebi et al. 2012).  

Use of moniored data  
The data from the building's weather station (see 
Table 1) was used to create a real-year weather data 
file based on local data instead of using a typical 
meteorological year weather data file.  
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Next, we populated the initial model with various 
streams of data from selected monitored spaces 
(Table 1). Thereby, we deployed monitored data only 
from zones 1, 4 and 5 (actual monitored zones). For 
other offices of the building, namely zones 2, 3, and 
6, we used the monitored input data from adjacent 
zones (Zone 1 data was used for zones 2 and 3, 
whereas zone 5 data was used for zone 6). 
For model calibration purposes, the measured indoor 
temperature from the actual monitored zones was 
used. Available measured temperatures for other 
zones were only used to evaluate the performance of 
the calibrated model's virtual sensors. 

Run periods 
The model calibration and validation process 
involved a monitoring period of nearly three months 
consisting of two 44-day periods (Table 2). The 
sensitivity analysis was also performed for the 
calibration period. 

Optimization-based calibration approach 
In an optimization-based simulation model 
calibration, the objective function addresses the 
difference between measured and simulated values 
(in this case zone air temperature). A number of input 
parameters of the model (selected via sensitivity 
analysis) are then systematically varied within 
specified ranges, in order to minimize the objective 
function.  To execute the optimization process, the 
generic optimization tool Genopt (LBNL 2012) was 
selected. This tool supports the efficient inclusion of 
simulation data from applications such as EnergyPlus 
in the course of the optimization (Wetter 2001). 
Algorithm used for the optimization was the hybrid 
generalized pattern search algorithm with particle 
swarm optimization algorithm. This is one of the 
recommended generic algorithms for problems, 
where the cost function cannot be simply and 
explicitly stated, but can be approximated 
numerically by a thermal building simulation 
program (LBNL 2012). 

Sensitivity analysis of calibration variables 
The problem of large search space and multiple 
possible solutions has been addressed in previous 
research (see, for example, Reddy et al. 2007). As 
examined in a previous publication (Tahmasebi & 
Mahdavi 2012), to identify a subset of the input 
variables most likely to influence the simulation 
results, first, the large number of candidate model 
parameters was reduced to a certain extent via 
heuristically-based considerations. This subset 
included 23 model input variables (Table 3). 
Secondly, these variables were subjected to a Monte 
Carlo-based sensitivity analysis.  
The performed sensitivity analysis included four 
steps. In the first step a range was selected for each 
variable (Table 3). Secondly, a sample of points was 

generated from the distribution of the inputs using 
the Latin hypercube sampling method, which is a 
particular case of stratified sampling (Saltelli et al. 
2011). The result was a sequence of 690 sample 
elements (for all variables). In the third step, the 
model was populated with the sample elements and a 
set of model outputs (building heating load) was 
produced. 
 

 
Figure 1  Floor plan and thermal zoning of the model 

 
Table 1 

Monitored data used in the calibration process 
 

Use of data Data point Unit 

Creating 
real-year 

local 
weather 
data file 

Global horizontal radiation W/m2 

Diffuse horizontal radiation W/m2 

Outdoor dry bulb temperature oC 

Outdoor air relative humidity % 

Wind Speed m/s 

Wind direction degree 

Atmospheric pressure Pa 

Creating 
the initial 

model 

Electrical plug loads W 

Occupancy (presence/absence) - 

State of the lights (on/off) - 

State of openings (open/closed) - 

Radiators' surface temperature oC 

Calibration Indoor air temperature oC 
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Table 2 
Specification of run periods 

 

Run periods Start date End date 

Calibration  15.02.2011 30.03.2011 

Validation  27.04.2011 09.06.2011 

 

Running the generated models with randomly 
selected input parameters’ values, a mapping was 
created from the space of the inputs to the space of 
the results that was used in the fourth step as the 
basis for sensitivity analysis. By solving a multiple 
linear regression model using least squares (Saltelli et 
al. 2011), the absolute value of Standard Regression 
Coefficient (SRC) was calculated for the variables as 
a quantitative sensitivity measure. Table 4 shows the 
variables in order of the absolute value of SRC.  
Based on these results, the first four variables, which 
have SRC values higher than 0.1, were chosen to be 
subjected to optimization-based calibration in the 
next stage. Three additional calibration variables 
were defined due to the circumstance that the surface 
temperatures of radiators in virtual monitored zones 
were assumed to be related to those in the actual 
monitored zones. Hence, we defined three correction 
factors in terms of calibration variables. The 
calibration variables, their initial values, and their 
allowed calibration ranges can be seen in Table 5. 

Calibration cost function 
For the purpose of building performance analysis, 
error can be defined as the difference between a 
predicted value and a measured value (Polly et al. 
2011). In the present case, the error was calculated 
and accumulated for the indoor air temperature of the 
actual monitored zones (zones 1, 4, and 5).  
Two model evaluation statistics were used to address 
the error in the cost function. The first statistic, 
CV(RMSD), aggregates time step errors over the 
runtime into a single dimensionless number:  
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The other model evaluation statistics used in the cost 
function is the "coefficient of determination" denoted 
by R2. Coefficient of determination describes the 
proportion of the variance in measured data 
explained by the model (Moriasi et al. 2007). The 
coefficient of determination ranges from 0 to 1. An 
R2 of 1.0 indicates that the regression line perfectly 
fits the data. Therefore, R2 value is to be maximized 
in the optimization process. R2 has been calculated 
via Equation 3. 

Table 3  Variables subjected to SA and their ranges 

Variables Min. 
Value 

Max. 
Value 

White painted gypsum - Thermal conductivity 0.336 0.504 

White painted gypsum - Density 960 1440 

White painted gypsum - Thermal absorptance 0.82 0.93 

White painted gypsum - Solar absorptance 0.24 0.36 

White painted stucco - Thermal conductivity 0.576 0.864 

White painted stucco - Density 1485 2227 

White painted Stucco - Thermal absorptance 0.82 0.93 

White painted Stucco - Solar absorptance 0.24 0.36 

External walls brick layer - Thermal conductivity 0.56 0.84 

External walls brick layer - Density 1360 2040 

Wood parquet - Thermal absorptance 0.664 0.996 

Wood parquet - Solar absorptance 0.48 0.72 

Glazing - Solar transmittance  0.56 0.84 

Glazing - Front side infrared emissivity 0.837 0.898 

Glazing - Back side infrared emissivity 0.837 0.898 

Glazing – Thermal conductivity 0.72 1.08 

Windows frame - Thermal conductance 1.816 2.724 

Outside windows discharge coeff. when open  0.64 0.96 

Inside windows discharge coeff. when open 0.64 0.96 

Outside closed openings air mass flow coeff. 0.00011 0.00017

Outside closed openings air mass flow exponent  0.52 0.78 

Inside closed openings air mass flow coeff. 0.016 0.024 

Inside closed openings air mass flow exponent  0.56 0.84 

 
 

Table 4  Variables in order of absolute value of SRC 

Variables | SRC | 

External walls brick layer - Thermal conductivity 0.7735 
Outside windows discharge coefficient when open 0.4128 

Glazing - Solar Transmittance at Normal Incidence 0.3660 

Outside openings air mass flow coeff. when closed 0.1132 

Glazing - Front Side Infrared Emissivity 0.0831 

Inside openings air mass flow coeff. when closed 0.0760 

Inside openings air mass flow exponent when closed 0.0663 

Glazing - Back Side Infrared Emissivity 0.0626 

White-painted Stucco - Solar absorptance 0.0592 

Glazing - Thermal conductivity 0.0374 

White painted gypsum - Thermal conductivity 0.0369 

White painted Stucco - Thermal absorptance 0.0314 

Brick - Density 0.0314 

Windows frame - Thermal conductance 0.0285 

White painted stucco - Thermal conductivity 0.0218 

Outside openings air mass flow exponent when closed 0.0152 

White painted gypsum - Thermal absorptance 0.0145 

Inside  windows discharge coefficient when open 0.0104 

Wood parquet - Solar absorptance 0.0090 

White painted gypsum - Solar absorptance 0.0058 

Wood parquet - Thermal absorptance 0.0038 

White painted gypsum - Density 0.0015 

White painted stucco - Density 0.0010 
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Table 5  The calibration variables 

Variables Unit Initial 
value 

Lower 
band 

Upper 
band 

Thermal conductivity 
of external walls (brick layer)  W.m-1.K-1 0.70 0.56 0.84 

Discharge coefficient 
for windows when open - 0.80 0.00 1.0 

Glazing solar transmittance 
at normal incidence - 0. 837 0.56 0.85 

Air mass flow coefficient 
for windows when closed kg.s-1.m-1 1.4×10-4 1.4×10-5 0.003 

Correction factor of radiator’s surface 
temperature in zone 2 (CF1-2) 

- 0.5 1 2.0 

Correction factor of radiator’s surface 
temperature in zone 3 (CF1-3) 

- 0.5 1 2.0 

Correction factor of radiator’s surface 
temperature in zone 6 (CF5-6) 

- 0.5 1 2.0 
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In Equations 1 to 3, �� is the measured air 
temperature at each time step, �� is simulated air 
temperature at each time step, � is the total number 
of time steps, and m  is the mean of the measured 
values. The defined cost function f  takes into 
account the CV(RMSD) and R2 in an equally 
weighted manner (Equation 4). 
 
 

)1(
)()1(5.0)(5.0 2

2

ini

ini
iii R

RMSDCV
RRMSDCVf


     (4) 

 
In Equation 4, CV(RMSD)i is the coefficient of 
variation of the RMSD at each optimization iteration, 

2
iR  is the coefficient of determination at each 

optimization iteration, CV(RMSD)ini is the 
coefficient of variation of the RMSD of the initial 
model, and 2

iniR  is the coefficient of determination of 
the initial model. 

RESULTS 
The optimized values of the calibration variables are 
given in Table 6. Table 7 presents the values of 
evaluation statistics for the initial and calibrated 
models in the calibration period. Table 8 shows the 
evaluation statistics in the validation period. 

DISCUSSION AND CONCLUSION 
As it can be seen from Table 7, the calibration 
process improves the model performance (calibration 
period) both for actual and virtual monitored zones. 
More importantly, the calibrated model shows for the 
validation period (Table 8) a considerably better 
performance as compared to the initial model, again 
for both actual and virtual monitored zones. In this 
period, the calibrated model has an error of less than 
7.7% in actual monitored zones and less than 6.4% in 
virtual monitored zones. The coefficient of 
determination is between 0.60 and 0.83 in the actual 
and virtual monitored zones. 
The results thus point to the promise of a two-step 
(sensitivity analysis, optimization) simulation model 
calibration process toward establishing virtually 
monitored building zones. Thereby, partial 
monitoring results can be harnessed toward 
effectively calibrated models that can provide 
reliable predictions of performance indicators (e.g., 
room temperatures) even for those zones where no 
monitored data exist. Ongoing studies further probe 
and document the potential of the proposed approach 
in providing a set of virtual sensors for salient 
building performance indicators towards application 
scenarios in building management and simulation-
based building systems control.   

NOMENCLATURE 
Coeff. = coefficient 
CV(RMSD) = coefficient of variations of root mean 

squared deviations 
RMSD   =  root mean squared deviations 
R2    = coefficient of determination 
SRC   = Standard Regression Coefficient 

Proceedings of BS2013: 
13th Conference of International Building Performance Simulation Association, Chambéry, France, August 26-28

- 611 -



Table 6  The optimized values of the model variable. 

Variables Unit Optimized value 

Thermal conductivity 
of external walls (brick layer)  W.m-1.K-1 0.778 

Discharge coefficient 
for windows when open - 0.153 

Glazing solar transmittance 
at normal incidence - 0.677 

Air mass flow coefficient 
for windows when closed kg.s-1.m-1 4.0×10-5 

Correction factor of radiator’s surface 
temperature in zone 2 (CF1-2) 

- 0.97 

Correction factor of radiator’s surface 
temperature in zone 3 (CF1-3) 

- 0.80 

Correction factor of radiator’s surface 
temperature in zone 6 (CF5-6) 

- 0.95 
 

 
Table 7  The evaluation statistics of the initial and calibrated models for the calibration period 

Models Evaluation 
Statistics 

Actual monitored zones Virtual monitored zones 

Zone 1 Zone 4 Zone 5 Zone 2 Zone 3 Zone 6 

Initial model 
CV(RMSD) 4.1% 11.0% 5.4% 9.9% 5.5% 5.4% 

R2 0.40 0.17 0.34 0.32 0.28 0.27 

Calibrated model 
CV(RMSD) 3.0% 5.4% 4.4% 9.9% 3.9% 4.6% 

R2 0.78 0.62 0.56 0.41 0.52 0.46 

 
Table 8  The evaluation statistics of the initial and calibrated models for the validation period 

Models Evaluation 
Statistics 

Actual monitored zones Virtual monitored zones 

Zone 1 Zone 4 Zone 5 Zone 2 Zone 3 Zone 6 

Initial model 
CV(RMSD) 7.6% 10.4% 7.5% 6.3% 7.5% 8.0% 

R2 0.35 0.46 0.33 0.35 0.43 0.33 

Calibrated model 
CV(RMSD) 6.3% 7.7% 5.7% 5.4% 5.9% 6.4% 

R2 0.66 0.83 0.72 0.71 0.69 0.60 
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