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ABSTRACT 

Building performance simulation is being 
increasingly deployed beyond the building design 
phase to support building operation. Specifically, the 
predictive feature of the simulation-assisted building 
systems control strategy provides distinct advantages 
in view of building systems with high latency and 
inertia. Such advantages could be exploited only if 
model predictions could be relied upon. Hence, it is 
important to calibrate simulation models based on 
monitored data. In the present paper, we report on the 
use of optimization-aided model calibration in the 
context of an existing university building. Thereby, 
our main objective was to deploy data obtained via 
the monitoring system to both populate the initial 
simulation model and to maintain its fidelity through 
an ongoing optimization-based calibration process. 
The results suggest that the calibration can 
significantly improve the predictive performance of 
the thermal simulation model. 

INTRODUCTION 
Building performance simulation tools are conven-
tionally used to predict the future performance of 
building designs. More recently, however, the 
potential for the deployment of simulation in the 
buildings' operation phase is being explored. 
Needless to say, the quality of any simulation-based 
building operation system greatly depends on the 
reliability of the deployed simulation model 
(Mahdavi 2001).  
Thus, to ensure that predictions are dependable, 
applied simulation models must be calibrated. 
Moreover, given the dynamic nature of building 
operation, some input parameters of the model may 
have to be subjected to calibration on a recurrent 
basis (Mahdavi and Tahmasebi 2012). This 
circumstance implies that the calibration task cannot 
be approached as an ad hoc or one-time activity. 
Rather, it needs to be conducted on a systematic 
basis. Consequently, the entire calibration process 
should be preferably automated to ensure efficiency 
and consistency (Tahmasebi et al. 2012). Given this 
background, the present contribution reports on a 
case-study of monitoring-based optimization-aided 
thermal performance model calibration. 

METHODOLOGY 

The monitored building 
An existing office building in Vienna, Austria, was 
selected as a case study to evaluate the potential of an 
optimization-aided thermal simulation model 
calibration. This building was equipped with a 
monitoring infrastructure in the course of a previous 
research project. Thus, various streams of data are 
gathered from three offices within the building, 
including time-varying parameters such as the state 
of windows (open/closed), blinds (open/closed), 
lights (on/off), occupancy (absence/presence), and 
heat emission of the radiators. Figure 1 shows the 
floor plan of the building and the thermal zoning in 
the simulation model. The Figure includes also the 
location of the installed sensors. 

 
 
 
 

Figure 1 Building floor plan, thermal zones and 
installed sensors  

The building model 
The whole-building simulation engine EnergyPlus 
7.0 (EnergyPlus 2012), was used in the case study. In 
order to create the initial model, first building 
geometry and thermal properties of components were 
specified. Each monitored room was modeled as a 
separate thermal zone (zones 2, 3, 4 in Figure 1). 
Moreover, the adjacent non-monitored zones were 
included in the model, because they are used in a 
number of calibration scenarios to control the 
boundary conditions of the monitored spaces. 
As the second step in developing the initial model, 
we populated the model with the above-mentioned 
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streams of data provided by the monitoring system. 
Incorporating the values of time-varying input 
parameters into the model was accomplished with the 
aid of a Matlab script (Matlab 2012). This program 
calls different streams of monitored data from 
building management system database and converts 
them to compact schedules using EnergyPlus input 
file syntax. These schedules are later assigned to the 
corresponding input parameter in the model. 

Run periods 
The model calibration and validation process 
involved a monitoring period of five months 
including two summer and two winter periods.  
Table 1 demonstrates these run periods.  
 

Table 1  Run periods 

PERIODS START DATE END DATE 

1. 1st summer period 10.06.2011 23.07.2011 

2. 2nd summer period 24.07.2011 26.08.2011 

3. 1st winter period 15.02.2011 24.03.2011 

4. 2nd winter period 15.02.2012 24.03.2012 
 

Optimization-aided calibration 
In an optimization-aided simulation model 
calibration, the objective function addresses the error 
in simulated output (in this case zone mean air 
temperature). A number of input parameters of the 
model are systematically varied within specified 
ranges, in order to minimize the objective function. 
To execute the optimization process, the generic 
optimization tool Genopt (LBNL 2012) was selected. 
This tool supports the efficient inclusion of 
simulation data from applications such as EnergyPlus 
in the course of the optimization (Wetter 2001). 
The optimization algorithm was the hybrid 
generalized pattern search with particle swarm 
optimization algorithm. This is one of the 
recommended generic algorithms for problems, 
where the cost function cannot be explicitly stated, 
but can be approximated numerically by a thermal 
building simulation program (LBNL 2012). 

Calibration studies 
To arrive at a calibrated simulation model of the 
offices under study, a sequence of simulation and 
calibration studies was conducted in terms of the 
following steps: 
1. A single zone model (zone 3, Figure 1) was 

generated based on available information about 
the building and the monitored data. The 
monitored air temperature of the adjacent 
offices was used as boundary conditions of the 
zone. This model was simulated for all specified 
run periods (Table 1). The model evaluation 
statistics were derived based on the monitored 
and simulated zone mean air temperature. 

2. The single zone model was calibrated for the 
first run period (1st calibration). In this 
calibration, eight input parameters of the model 
were subjected to the optimization-based 
calibration (Table 2). Subsequently, the 
calibrated single zone model was evaluated for 
all run periods. 

3. A three-zone model of the building was 
developed (zones 2, 3 and 4, Figure 1). This 
model was fed with the optimized values of the 
eight input parameters that were calibrated in 
step 2. The model was simulated and evaluated 
for entire run periods. 

4. The three-zone model was calibrated for the 
first summer period (2nd calibration) and 
validated for the second summer period. In this 
calibration step, only the infiltration and 
ventilation rates were subjected to optimization.  

5. The three zone model was calibrated for the 
first winter period (3rd calibration) and validated 
for the second winter period. Similar to step 4, 
this calibration had two variables, namely 
infiltration and ventilation rates. 

6. A five-zone model was generated by adding the 
adjacent unmonitored spaces (zones 1 and 5, 
Figure 1). The mean air temperature of these 
two zones during the 1st summer period was 
subjected to the 4th calibration. The resulting 
model was validated for the 2nd summer period. 

7. Using the five-zone model, the mean air 
temperature of the adjacent zones (zones 1 and 
5, Figure 1) during the 1st winter period was 
subjected to the 5th calibration. The resulting 
model was validated for the 2nd winter period. 

Calibration variables 
As thermal performance simulation models involve 
numerous input parameters, subjecting all these 
variables to an optimization-based calibration is 
computationally expensive. Methods such as 
sensitivity analysis can be deployed to find to most 
influential parameters, thereby limiting the number of 
variables in the optimization process (Reddy et al. 
2007, Tahmasebi and Mahdavi 2012). For the 
purposes of the present study, the calibration 
variables and their associated variation ranges were 
selected based on the authors' previous experiences.  
For the first calibration, eight input variables were 
selected (see Table 2), which address the heat 
transfer processes in the building, namely 
conduction, convection (air infiltration and 
ventilation), and solar radiation. For the second and 
third calibrations, only the infiltration and ventilation 
rates were subjected to calibration. The next two 
calibrations only tune the average indoor temperature 
of the adjacent zones during summer and winter. 
Table 2 demonstrates the included calibration 
variables together with their initial values and 
variation ranges. 
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Table 2  
Initial values (together with lower and upper limits) of the variables subjected to calibrations 

Calibration variables Units Lower 
limit 

Initial 
value 

Upper 
limit 

Calibration 

1st 2nd 3rd 4th 5th 

Solar transmittance                   
  Green 6mm glass   - 0.34 0.48 0.62 ×         
  Clear 6mm glass - 0.54 0.78 0.85 ×         
Thermal conductivity                    
             Mineral wool W.m-1.k-1 0.031 0.039 0.047 ×         
  XPS W.m-1.k-1   0.03 0.05 0.07 ×         
Density                    
  Ceiling concrete kg.m-3 1260 1800 2340 ×         
  Wall concrete kg.m-3 980 1400 1820 ×         
Infiltration rate                   
  Summer h-1 0.1 0.2 0.4 × ×       
  Winter h-1 0.1 0.2 0.4     ×     
Ventilation rate                   
  Summer h-1 0.5 1.0 3.0 × ×       
  Winter h-1 0.5 1.0 3.0     ×     
Mean air temperature               
  Zone 1  Summer oC 23.6 26.7 28.3      ×   
     Winter     oC 19.6 24.2 26.3        × 
  Zone 5  Summer oC 23.6 26.6 28.3      ×   
     Winter oC 19.6 23.9 26.3        × 

 
 
Cost function 
In an optimization-aided calibration, the cost function 
addresses the difference between the measured and 
simulated values. In the present study this was 
calculated for the zone mean air temperature.  
To address the error in the cost function two model 
evaluation statistics were used. The first statistic is 
the "Coefficient of Variation of the Root Mean 
Squared Deviations" (Equations 1 & 2). CV(RMSD) 
aggregates the runtime individual time step errors 
into a single dimensionless number (Polly et al. 2011, 
Tahmasebi et al. 2012).  
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The other deployed statistic is the "coefficient of 
determination" denoted by R2. R-squared describes 
the proportion of the variance in measured data 
explained by the model (Moriasi et al. 2007). The 
coefficient of determination ranges from 0 to 1. An 
R2 of 1.0 indicates that the regression line perfectly 
fits the data. Therefore, R2 value is to be maximized 
in the optimization process. Van Liew, et al., 2003 

concluded that the values more than 0.5 can be 
counted as acceptable. R2 was calculated via 
Equation 3: 
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In Equations 1 to 3, �� is the measured air 
temperature at each time step, �� is simulated air 
temperature at each time step, � is the total number 
of time steps, and m  is the mean of the measured 
values.  
The defined cost function  f  takes into account the 
CV(RMSD) and R2 in an equally weighted manner 
(Equation 4). 
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In Equation 4, CV(RMSD)i is the coefficient of 
variation of the RMSD at each optimization iteration, 

2
iR  is the coefficient of determination at each 

optimization iteration, CV(RMSD)ini is the 
coefficient of variation of the RMSD of the initial 
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model, and 2
iniR  is the coefficient of determination of 

the initial model. 
In case of models with multiple thermal zones, the 
statistics are calculated for each zone and the cost 
function is calculated based on the averaged 
statistics. 
To efficiently manage the repetitive process of 
varying the input parameters’ values, the calculation 
of the cost function was tightly integrated with the 
simulation application. To accomplish this, the 
monitored indoor air temperatures were incorporated 
into the model input stream. EnergyPlus runtime 
language (DOE 2011) was used to calculate the cost 
function after each run of the model. 

RESULTS 
As shown in Table 2, six variables, which are related 
to physical properties of the building, were calibrated 
in the course of the first calibration (first run period).  
Table 3 includes the respective results. Note that 
these values were not changed in the course of later 
calibration runs.  

 

Table 3 
The optimized values of physical properties of the 

model in the first calibration 

Calibration variables Units Optimized 
Value 

Solar transmittance     
  Green 6mm glass   - 0.34 
  Clear 6mm glass - 0.54 
Thermal conductivity      
             Mineral wool W.m-1.k-1  0.031 
  XPS W.m-1.k-1   0.03 
Density      
  Ceiling concrete kg.m-3 1260 
  Wall concrete kg.m-3 980 

 

However, the infiltration and ventilation rates, as 
time-varying input parameters, were calibrated in the 
single-zone model in summer conditions (1st 
calibration), as well as in the three-zone model in 
summer and winter conditions (2nd and 3rd 
calibration). The mean air temperature of the 
adjacent zones was also calibrated separately for 
summer and winter conditions (4th and 5th 
calibration). The respective calibrated values are 
summarized in Table 4. 
Table 5 includes the model evaluation statistics used 
in the weighted cost function, for the initial and 
calibrated models during different run periods. 

DISCUSSION 
The results suggest that the 1st calibration exercise 
(single-zone model) significantly improved model 
predictions (see Table 5, STEP 2, 2nd to 4th run 
periods): CV(RMSD) values for the calibrated model 
are smaller than their non-calibrated counterparts, 
whereas R2 values are higher. The initial three-zone 
model did not perform very well, even though it 
inherited calibrated variable values derived in the 1st 
calibration run (see STEP 3, Table 5). The reason for 
this may be the uncertainty regarding the boundary 
zone assumptions. Internal walls separating zones 1 
and 2 as well as zones 4 and 5 were assumed to be 
adiabatic. Calibration of infiltration and ventilation 
assumptions did not improve the model's 
performance in a noteworthy manner (see Table 5, 
STEP 4 and 5). Only when assumptions regarding 
indoor temperature of zones 1 and 5 were subjected 
to calibration, a better model performance could be 
achieved (Table 5, STEP 6 and 7).   
The performance of optimization-based calibration 
approach could be improved via more case studies. 
Moreover, to further rationalize the calibration 
process, methods like sensitivity analysis could be 
deployed to identify a subset of the input variables 
most likely to influence the simulation results. 
 

Table 4 
The optimized values of time-varying input parameters in performed calibrations 

 

Calibration variables Units 
Performed calibrations 

1st 2nd 3rd 4th 5th 

Infiltration rate             
  Summer h-1 0.40 0.12  - 0.12  - 
  Winter h-1  - - 0.28 - 0.28 
Ventilation rate             
  Summer h-1 0.50 0.59 -  0.59 -  
  Winter h-1  - - 0.50 - 0.50 
Mean air temperature        
  Zone 1  Summer oC -­‐ -­‐ -­‐ 28.0  - 
     Winter     oC -­‐ -­‐ -­‐  - 25.4 
  Zone 5  Summer oC -­‐ -­‐ -­‐ 26.9 -  
     Winter oC -­‐ -­‐ -­‐  - 26.0 
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Table 5 
Model evaluation statistics of the initial and calibrated models in different run periods 

 

Step Models 
1st run period 2nd run period 3rd run period 4th run period 

CV(RMSD) R2 CV(RMSD) R2 CV(RMSD) R2 CV(RMSD) R2 

1 Initial single-zone  4.5% 0.77 4.9% 0.94 15.1% 0.26 16.3% 0.69 

2 1st calibrated single-zone 1.4% 0.88 2.2% 0.96 4.4% 0.35 5.5% 0.81 

3 Initial three-zone  7.6% 0.69 7.3% 0.89 19.4% 0.50 13.2% 0.61 

4 2nd calibrated three-zone  5.1% 0.68 4.4% 0.86 - - - - 

5 3rd calibrated three-zone  - - - - 12.0% 0.48 7.3% 0.60 

6 4th calibrated five-zone  3.8% 0.68 3.8% 0.89 - - - - 

7 5th calibrated five-zone  - - - - 6.6% 0.48 6.1% 0.63 
 

 
 
CONCLUSION 
A case study of an optimization-based calibration 
method for a thermal performance model of a building 
was presented. In the course of multiple simulation 
and calibration steps, ten simulation input variables 
were subjected to calibration, using monitored data 
(measured room temperatures). The optimization-
based calibration process utilized a cost function that 
considered both the goodness of fit of the model and 
error minimization (difference between monitored and 
simulated values). The results suggest that the 
predictive performance of simulation models can be 
noticeably improved, given monitored data to support 
an optimization-supported simulation model 
calibration.  
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