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ABSTRACT 
A framework entitled Evolutionary Energy 
Performance Feedback for Design (EEPFD) was 
developed to mobilize the potential of 
multidisciplinary design optimization (MDO) 
towards solving current obstacles between design and 
energy performance feedback. However, EEPFD 
needs to be applicable to the early stage design 
process where it has the potential for the greatest 
impact on the overall building lifecycle performance. 
This paper focuses on examining two criteria 
identified as necessary components to confirming the 
validity of EEPFD prior to EEPFD’s application to 
the actual design process: 1) the ability to 
accommodate varying degrees of geometric 
complexity; and 2) the ability to provide a continuing 
improved solution space. Through 12 hypothetical 
cases, the research confirms that EEPFD meets these 
criteria and therefore is suitable for further 
exploration in application to the early design process. 
Effective applications of EEPFD to the early stages 
of design are also explored and discussed. 

INTRODUCTION 
With the advancement of current technology, 
Computer-Aided Design and Engineering 
(CAD/CAE) tools enable architects and engineers to 
pursue higher performance in building design by 
simulating different aspects of building performance, 
such as  financial, structural, energy, and lighting 
efficiencies. However, due to tool interoperability, 
design cycle latency and domain expert 
disconnection, these performance feedbacks rarely 
can support design decision making during the early 
stage of design where such decisions have a 
disproportionate impact on the overall building 
performance versus later design stages.  
The use of multidisciplinary design optimization 
(MDO) to provide performance feedback for 
assisting with design decision making has 
demonstrated a potentially effective means to 
overcome the limitations of current performance-
based design processes. This approach has shown 
reductions in design cycle latency, resolutions of 
interoperability issues, and an ability to provide 
designs with improved performance results. 
However, current attempts have yet to fully explore 

the applicability of this approach regarding the 
unique demands of early stage design where rapid 
exploration of variety and alternatives within 
designated time constraints is necessary for the 
pursuit of “designing-in performance.”  
The concept of “designing-in performance” is 
defined in this research as the idea of utilizing 
performance feedback information for design 
exploration and subsequent decision making under 
the assumption of pursuing higher performing design. 
In order to evaluate the suitability of applying MDO 
to this concept for the purpose of early stage design 
decision making a design framework, Evolutionary 
Energy Performance Feedback for Design (EEPFD), 
was established. EEPFD utilizes the two key 
components of MDO, a multi-objective optimization 
algorithm and parametric design methods, to pursue 
improvement in the performance of energy, financial, 
and program qualities of a design.   The intent of 
EEPFD is for designer use during the conceptual 
stage of design where geometric components and 
massing have not been finalized.  
In order for EEPFD to be considered a valid method 
of incorporating MDO to pursue “designing-in 
performance,” for early stage design, it must first be 
able to provide a solution space with an improved 
performance in a timely manner. In addition, EEPFD 
must also be adaptable to a wide spectrum of design 
scenarios while continuing to provide an improved 
performance solution space as desired. The objective 
of this paper is to explore EEPFD’s ability to meet 
these two prerequisites.  

PRECEDENTS & POINT OF 
DEPARTURE 
In this section, the research presents current issues 
and obstacles between the design and energy 
simulation domains while synthesizing the needs of a 
“designing – in performance” environment. The 
research then moves on to review precedents’ 
potential solutions and summarize the gaps of current 
attempts. Finally, the point of departure of this 
research is identified. 
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Current Barriers  towards  Designing-in-
Performance between Design & Energy 
Simulation Domains 
While the overall performance of buildings is greatly 
impacted by design decisions made during the early  
stages of design, unfortunately, design professionals 
are often unable to adequately explore design 
alternatives and their impact on energy consumption 
upfront (Crawley et al., 2008). Conventionally 
adopted performance based analysis methods have 
been shown by prior studies to be ill suited in their 
ability to support early stage design decisions due to 
time limitations (Flager and Haymaker, 2007). In 
addition there is often the issue of environmental 
simulation software needing to be operated by 
experts due to the typically specialized nature of 
these tools. Other issues are also presented repeatedly 
in precedents, such as tool interoperability, intensive 
analysis time requirements, and limitations of design 
cognition and complexity can be considered as 
contributing factors to design cycle latency (Oxman, 
2008, Augenbroe, 2002, Attia et al., 2012). 
Consequently, performance assessments are typically 
made after the initial design phase, where the 
analysis is performed on a very limited set of design 
alternatives rather than to support early stage design 
decisions where a broader range of possibly more 
optimal solutions may exist (Radford and Gero, 
1980). In addition, designers must often balance the 
needs of multiple competing objectives and there is 
currently a deficit in providing the means of assisting 
in identifying the best fit through an understanding of 
trade-offs across energy performance and other 
necessary domains. 
To address these issues it has been identified that a 
design framework and tool should provide 1) rapid 
generation of design alternatives; 2) rapid evaluation 
of design alternatives; 3) trade-off analysis for 
competing criteria; and 4) a search method to identify 
design alternatives with better fit performance 
(Augenbroe, 2002). These requirements are reflected 
in a trend of recent development efforts regarding the 
domains of design and performance feedback.   

Potential Solutions through MDO Precedents  
Recently, multidisciplinary design optimization 
(MDO) has drawn the attention of the AEC industry 
as being capable of providing potential solutions to 
overcome obstacles existing between design and 
other performance analysis domains. The original  
MDO methodology intent is to “exploit the state of 
the art in each contributing engineering discipline 
and emphasizes the synergism of the disciplines and 
subsystems (Sobieszczanski-Sobieski, 1993).” After 
years of development, “MDO methodology evolved 
means by which such concerted action may be 
implemented in a systematic and mathematically-
based manner (AIAA, 1991).”  This approach has 
been successfully adopted by the aerospace industry 
and other engineering fields, but has only just begun 

to be explored in its applicability to the AEC field. 
Current MDO precedents in the AEC industry have 
two main foci: multidiscipline collaboration and 
multi-objective optimization (MOO) procedures.  A 
focus on the collaboration aspects of the MDO 
method between multiple disciplines explores the 
actual collaboration method among various domain 
experts (Toth et al., 2011, Holzer, 2010). The other 
focus is on the application of MDOs’ procedure to 
explore multiple, and often competing, objective 
optimization  through the incorporation of parametric 
modelling and multi-objective optimization 
algorithms. This research focuses on this latter aspect 
of MDOs. While the collaborative component is not 
explicitly addressed, or excluded, by this research 
there is an assumption that through later development 
the collaborative component can be re-emphasized. 
Other representatives of research in this second area 
of MDO focus include a building design precedent 
investigatig the application of a multi-objective 
genetic algorithm for finding the optimal in the trade-
offs between capital expenditure, operation cost and 
occupant thermal comfort in building design (Wright 
et al., 2002) and  a MDO in a building design setting 
with thermal, structural, financial and environmental 
performance evaluation by integrating all the 
platforms via an IFC scheme (Geyer, 2009). Other 
applications of MDO can be found in optimizations 
of structures and energy performance for classrooms 
(Flager et al., 2009),  energy and thermal confort in 
residential buidings (Magnier and Haghighat, 2010) 
(Asadi et al., 2012) , and window sizing and 
placement for maximizing indoor comfort (Suga et 
al., 2010). These precedents all demonstrate the 
potential ability of MDO to assist in identifying 
higher performance solution sets among multiple 
competing criteria.  

Gap Analysis and Point of Departure 
Research precedents have demonstrated the potential 
of adopting MDO to provide a performance feedback 
loop for supporting early design stage decision 
making.  However, precedents exploring MDO in the 
AEC field have typically employed simplified 
geometry and have placed more emphasis on 
structural or mechanical systems. Where the energy 
performance domain has been included for 
optimization the relationship between design form 
and energy performance has been largely excluded. 
Furthermore, the application of these precedents’ 
subject of interest to the overall design process 
remains largely unexplored. 
In response to this gap in existing research an early 
stage design framework, EEPFD, was developed.. 
EEPFD incorporates both conceptual energy analysis 
and exploration of varying degrees of design forms 
for providing early stage design performance 
feedback. EEPFD utilizes a prototype tool (H.D.S. 
Beagle) which enables the coupling of parametric 
design with multi-objective optimization (Gerber et 
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al., 2012). Also included in the multi-objective 
optimization process are spatial programing and 
financial performances for consideration in 
performance trade-off studies. 
The paper focuses on exploring the validity of 
EEPFD as a means of pursuing “designing-in 
performance” for the early stage of design prior to a 
full design process case study. The two identified 
critical criteria are 1) the ability to provide a solution 
space with an improved performance, as defined by 
this research, in a timely manner; 2) the ability to be 
adaptable to a wide spectrum of design scenarios 
while continuing to provide improved performance 
solution spaces as desired. 
Success in this research is not defined as the reaching 
of an optimal solution providing the mathematically 
defined ideal convergence as typically intended in 
other MDO applications. This is due to the issue of 
time constraints usually dominating the stopping 
point of the early design exploration process and the 
inherent nature of design decision making being 
based on trade off and often subjective choice. 
Considering this issue of time the goal of EEPFD is 
to provide a design alternative pool with improved 
performance by which to support informed design 
decision making. Therefore, success in this research 
is defined as the observation that EEPFD consistently 
provides a design alternative solution pool with 
measurable performance improvement within the 
time allowed.  

INTRODUCTION OF EEPFD 
EEPFD stands for Evolutionary Energy Performance 
Feedback for Design and is a MDO based design 
framework that  was developed in concert with to the 
prototype tool, entitled H.D.S. Beagle, to implement 
a customized GA-based multi-objective optimization 
(MOO) algorithm. H.D.S. Beagle was developed as a 
plugin for Autodesk® Revit® (Revit) (Autodesk, 
2013b) which integrates Autodesk® Green Building 
Studio® (GBS) (Autodesk, 2013a) and Microsoft® 
Excel® (Excel) (Microsoft, 2013) to generate the 
desired automation and optimization routine.  

H.D.S. Beagle Introduction  
Revit is a building information modeling platform 
with parametric capabilities enabling designers to 
define their geometry while providing a series of 
parameters that impact the development of varying 
geometric configurations. This platform also serves 
as an insertion point for the energy settings necessary 
for a conceptual energy analysis through GBS. GBS 
is a web-based energy analysis service that serves as 
the energy simulation engine for the prototype. Excel 
provides not only a means of containing the financial 
parameters and formula, but also as a user interface 
proxy in which designers can set up design parameter 
ranges of interest, constraints, spatial program 
parameters, and the spatial programing compliance 

formula. The three objective functions can be 
formulaically expressed as Equation 1 - 3: 

Sobj = Max. SPCS (1) 

Eobj = Min. EUI (2) 

Fobj = Max. NPV (3) 

Where 
Sobj = Spatial Programming Compliance 
Objective Function 
Eobj = Energy Performance Objective Function 
Fobj = Financial Performance Objective 
Function 
SPCS = Spatial Programing Compliance Score 
EUI = Energy Use Intensity 
NPV = Net Present Value 

 

The spatial programing compliance (SPC) score 
evaluates the meeting of the project defined program 
requirements by a generated design option. This is 
defined by the user as the desirable amount of 
specific types of programming in square feet. The 
energy use intensity (EUI) value evaluates the 
estimated energy performance of the generated 
design option. This is provided directly through the 
schematic energy analysis done by GBS. Finally, the 
financial performance, net present value (NPV), is 
calculated according to the definition of the financial 
pro forma for each generated design option from  
relevant information extracted from both the 
generated geometry and the produced energy 
simulation analysis. Construction costs are derived 
from combining calculated material quantities from 
the generated geometry with their respective user 
provided per unit prices. Operation costs are 
calculated by combining expected fuel and electricity 
usage from the energy simulation results with per 
unit costs provided by the user. Finally, prospective 
income is derived from a user defined value for each 
square foot of specified program combined with the 
calculated program quantities from the generated 
geometry. 
After the SPC, EUI, and NPV objective scores are 
calculated for each design iteration H.D.S. Beagle 
proceeds to rank all design iterations according to the 
Pareto ranking method based on their scores. In the 
Pareto ranking method, the Pareto-Dominance (p<) 
concept is used to compare two individuals. The 
superiority of one individual over another is decided 
by comparing the two individuals’ performance 
across the multiple objectives. Equation 4 is the 
definition of the Pareto-Dominance as applied to the 
previously defined three objective functions of this 
research: 

א׊ ൛ܵ௢௕௝ ௢௕௝ܧ, (ଵ݊݋݅ݐݑ݈݋ݏ)݂ ௢௕௝ൟܨ, ൑  (4) (ଶ݊݋݅ݐݑ݈݋ݏ)݂

൛ܵ௢௕௝׌ ௢௕௝ܧ, (ଵ݊݋݅ݐݑ݈݋ݏ)݂ ௢௕௝ൟܨ, <   (ଶ݊݋݅ݐݑ݈݋ݏ)݂

՜ ݌ ଵ݊݋݅ݐݑ݈݋ݏ <   ଶ݊݋݅ݐݑ݈݋ݏ 
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According to this definition, if solution1 has superior 
performances than solution2 in all three objectives 
(denoted by solution1 p< solution2), then solution1 
dominates solution2 in the order of rank. For 
example, if individual A has the objective scores of 
(94, 160, 65) and individual B has the scores (97, 
102, 82) then individual B would be considered 
dominant, or more “fit.”, . However, if individual C 
has the objective scores of (90, 104, 85) and 
individual D has the scores (98, 153, 90) then 
individual C and D would be considered 
incomparable or unable to dominate each other. In 
this case the ranking of an individual implies the 
number of individuals within the same pool which 
are considered dominant to the individual in 
question. Therefore, the fittest individual in a set of 
offspring would be assigned the ranking of 1 with all 
other offspring following in suit. Consequently, 
higher ranked individuals have a higher probability to 
be selected as a parent for the reproduction process. 
The specific Pareto ranking method adopted by this 
research can be found in Fonseca and Fleming’s 
Pareto ranking method and expressed as Equation 5 
(Fonseca and Fleming, 1993). 

ܴܽ݊ ௝݇ = 1 +  (5) (ௗ௢௠௜௡௔௧௘ௗ݈ܽݑ݀݅ݒ݅݀݊ܫ)݉ݑܰ

A more detailed description of the adopted method 
which drives EEPFD and the automated engine of 
H.D.S. Beagle can be found in previously published 
research (Gerber et al., 2012). 

EEPFD Simulation Process  
EEPFD can be described through the six steps 
commonly observed in a simulation process, as 
illustrated in Figure 1. The implementation of these 
six steps are described in the following: 
1. Step 1 Generate Design: For this process there 

are two subcategories: the generation of the 
initial design and the generation of design 
alternatives. The initial design is developed 
through the preparation of the initial executable 
design and constraints file according to the 
designer driven project requirements. At this 
point the initial geometry, applicable parameters, 

site information, parametric ranges of interest, 
program requirements, and available financial 
information are provided by the user. Design 
alternatives are then automatically generated by 
H.D.S. Beagle according to the manipulation of 
the specified parameters within the user defined 
ranges. 

2. Step 2 Transfer Model: The integrated platform 
enables the direct translation of the design 
geometry and related energy settings into the 
energy simulation engine provided by GBS. As a 
result, an analyzable energy model can be 
obtained directly thereby proceeding with the 
energy simulation without additional 
modification of geometry or energy related 
attributes. In this process H.D.S. Beagle 
automatically converts and sends the design 
alternative to the GBS server to request and 
obtain a conceptual energy analysis.  

3. Step 3 Modify Energy Model: This step is 
bypassed since the model transfer to GBS is 
automated by Revit, which is unavailable 
through most non-integrated platforms. 

4. Step 4 Run Analysis: In this step the energy 
model of the design alternative is sent to GBS for 
analysis. When automated through H.D.S. 
Beagle this step is automatically performed 
through Revit. 

5. Step 5 Evaluate Results: This step has 2 stages. 
The first stage is the calculation of the objective 
function scores for each alternative once the 
energy analysis is available. H.D.S. Beagle 
automatically extracts relevant information from 
the energy analysis results along with relevant 
information from the design model to calculate 
the SPC and NPV scores of the design 
alternative. The EUI score is provided directly 
from GBS. The second stage is to Pareto rank 
each design alternatives according to the 
calculated objective scores. 
 

 

 
Figure 1 EEPFD’s six-step process for integrating design and energy simulation  
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6. Step 6 Execute Decision: In this step, there are 
two aspects of the necessary decision making. 
First, is with regards the decision making 
mechanism encoded within H.D.S. Beagle during 
the automated loop.  During a GA run the Beagle 
utilizes tournament selection to identify and 
select parents from a pool of design alternative to 
breed the next generation of design alternatives, 
cycling through the process until the stopping 
criteria met. Second, once the automated 
decision making is completed there are two ways 
to proceed: 1) the user manually implements 
changes in the initial design or constraints file of 
the executable design file based on acquired 
simulated results, which would also suggest 
another optimization run; or 2) a design 
alternative is selected based on the multi-
objective trade off analysis provided by the 
Beagle and the design proceeds to the next stage 
of development. 

EXPERIMENT DESCRIPTION  
As previously established, any framework being 
considered as a potential solution for implementing a 
GA based MOO method for the purpose of 
“designing-in performance” must be versatile enough 
in nature to be adaptable to a wide range of design 
problems. The purpose of the validation process 
described here is to determine whether EEPFD meets 
this criterion and can provide improved  performing 
results in greater numbers in a timely manner to 
support design decision making. To pursue this, a 
series of design scenarios were generated by the 
research to represent the varying complexity in both 
geometry and program requirements that may be 
encountered though real world design problems or in 
a design studio setting.  

For this experiment, 12 design scenarios were 
prepared for testing by EEPFD. In this research, a 
design scenario is defined as a hypothetical design 
problem consisting of parametrically defined 
characteristics that include but are not limited to 
space programing type, driving parameters, driven 
parameters, project size, and project requirements. 
Geometric complexity is explored through a range 
from a simple orthogonal box to towers with double 
curvature and twisting factors. The program 
complexity range explored includes scenarios with 
single use requirements, such as an office building, to 
mixed-use space including underground parking, 
retail, hotels, etc. Each scenario utilized the same 
hypothetical site located in West Hollywood, CA 
thereby providing consistent site related information 
and climate data to each hypothetical scenario. The 
comparison of the full spectrum of geometric, 
program, and design complexity explored is provided 
in Figure 2. 
This research proceeds to categorize the types of 
measurements to be collected into three categories: 
design problem, process, and product. Measurements 
falling into the design problem category are values 
collected regarding the physical aspects of the design 
and are further divided into two subcategories: 
project complexity and design complexity. Project 
complexity refers to the project size as measured in 
square feet and the number of types of program 
spaces, such as parking, commercial or residential, 
that are included within the design problem. Design 
complexity refers to the amount of surfaces i.e. 
tesselation required to be included in the energy 
model along with the number of available parameters 
as provided by the design problem. Process based 
measurements are divided into two subcategories: 
speed and documented GA settings. 

 

 
Figure 2 The summary of the 12 hypothetical design scenarios tested by EEPFD. 
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Speed is in reference to the measured time 
experienced in running the energy analysis. The GA 
settings refer to the values documented for a series of 
user adjustable characteristics of the GA including 
the initial population size, crossover ratio, mutation 
ratio, population size, selection size, and maximum 
iterations. Product measures focus on evaluating the 
quantity and quality of the resulting solution space. 
Quantity refers to the number of design iterations 
generated over an 8 hour work period. Quality is in 
reference to performance ranges of the resulting 
solution space as defined by EUI, NPV, and SPC. 
The performance of the initial design for each 
scenario is used as the benchmark by which all 
generated design alternatives are compared. 

EXPERIMENT RESULTS & ANALYSIS 
Table 1 provides a summary of the recorded data, 
including the design problem, process and product 
measurements of each scenario as previously defined.  
From these results, an improvement in the 
performance of the generated Pareto solution pool for 
every scenario can be observed for each design 
scenario, despite the varying stopping points. In 
addition, though not included in the data set provided 
here, it was observed that in each subsequent 
generation new Pareto solutions were established, 
resulting in a continuous improvement in the 
performance of the generated design alternatives.  
Therefore, it can be confirmed that if time constraints 
dictate a discontinuing of generated design 
alternatives that the Pareto solutions of the latest 
generation will provide improvement over the 
previous generation. As a result, regardless of the 
determined stopping point, EEPFD provides a 
solution pool with improved performance for 
consideration during the decision making process.  
Analysis of the best performance range of each 
generation’s generated solution space revealed that 
the quantity of improvement over the previous 
generation decreased rapidly over extended 
generations eventually converging to zero. As Figure 
3 illustrates using scenarios 4, 5 and 8 as examples, 
the most significant percentage improvement was 
typically observed in the first 5 generations.  This 
implies that limits on the solution space’s potential 
range may be identified prior to reaching the 
mathematically convergent criteria which typically 
requires run times of up to 100 to 1000 generations. 
This is significant as it begins to suggest a validated 
interactive influence in early stage design decision-
making i.e. designing-in performance as this research 
conceptually pursues. However, further research is 
needed to confirm this observation and to negate 
issues regarding local optimal concerns. 
There was also an initial observation that for 
scenarios with identical design requirements, but 
varying geometric properties, there was a wide 
variety in the resulting performance ranges of the 
solution space. In Figure 4 the 4 scenarios presented 

possessed identical design requirements, energy 
parameters, and financial properties. The only 
varying elements were the geometric properties of 
the initial design before EEPFD was engaged. As 
illustrated, there is a significant difference in the 
resulting performance ranges for each scenario as 
documented after 6 generations. Further implications 
of this are discussed in the following section. 
 

 
Figure 3 The percentage improvement trend of 

scenarios 4, 5, 8’s solution space range over each 
generation. Percentage improvement is calculated 

according to the prior generation.  
 
 

 
Figure 4 Resulting solution space ranges of four 
identical design problems but with varying initial 

parametric designs.  
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Table 1 Summary of the hypothetical cases measures 
Categories/ 
Measures 

Scenario No. 

1 2 3 4 5 6 7 8 9 10 11 12 
Design Problem Measures 
Project complexity 
Project Size (sqft) 167680 84680 167680 16500 31220 51000 3000 86000 
Space type no. 4 4 4 4 1 2 4 1 1 3 1 1 
Design complexity  
Energy model 
surface count i 794 1587 1042 824 7517 2451 270 1060 28 2086 197 338 

Explored parameter 
# (Design/Energy) 6/61 12/3 16/2 23/3 7/27 8/0 10/3 13/3 0/12 7/4 9/1 6/21 

Process Measures 
Speed  
Time spent to run 
energy analysis 
(minutes)ii 

1.46 3.25 2.95 2.96 28.64 8.36 1.01 2.90 0.53 4.15 0.91 1.70 

GA Setting 
Initial Population 20 10 10 10 20 10 10 10 40 10 10 20 
Crossover Ratio 0.5 0.5 0.5 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 
Mutation Ratio 0 0 0 0 0 0.006 0 0 0.006 0 0 0.006 
Population Size 40 30 20 20 40 10 40 20 40 20 20 40 
Selection Size 30 30 20 20 30 10 30 20 20 20 20 10 
Maximum Iteration  20 6 13 20 1 10 40 20 20 6 5 10 
Product Measures 
Feedback quantity             
Feedback number 
per day (8 hours) 240 34 30 30 5 6 120 80 240 40 240 60 

Feedback quality: (Initial/Solutions’ range) 

NPV (Million 
Dollars) 

528 
155~ 
754 

71 
0~111 

150 
21~ 
247 

132 
74~52

5 

538 
142~ 
555 

(-94) 
(-516) 
~84 

738 
76~ 
741 

565 
113~ 
769 

(-73) 
(-74)~ 
(-71) 

(-41) 
(-40)~ 

834 

(-3) 
(-4)~ 
(-2) 

34 
(-57)~ 

178 

EUI (kBtu/sqft/yr)  55 
45~68 

56 
49~79 

55 
43~67 

62 
43~83 

65 
55~88 

57 
52-67 

48 
42~88 

61 
49~79 

56 
53~ 
104 

173 
56 

~233 

64 
51~99 

54 
47~99 

SPC 75 
24~94 

6 
(-4) 
~68 

3 
(-47) 
~76 

5 
5~88 

88 
38~99 

54 
(-76)~ 

71 

31 
31~95 

83 
3~100 

100 
N/A 

10 
(-404) 
~88 

99 
46~ 
100 

99 
48~99 

Note: 
i. The surface count is according to the energy model of the initial design geometry. During the GA process varying design options will 

have varying surface counts. 
ii. These time measurements were according to generating the initial masses’ energy models and include the time required to both transfer 

to and receive results from Green Building Studio through the Internet.   

CONCLUSION & DISCUSSION 
Through the discussed experimental runs, EEPFD 
was able to successful demonstrate the ability to 
adapt to a wide spectrum of design scenarios while 
providing a solution space with an improved 
performance as defined by this research for each. 
Therefore, this research determines that EEPDF can 
be considered a valid approach eligible for future 
study. Another subject of interest for future study 
was identified through an analysis of the performance 
improvements in the solution space from generation 
to generation. It can be observed through this data 
that the optimal performance boundary can be 
obtained after a few generations of GA runs. After 
these boundaries have been established the Pareto 
curve is then more densely populated over the 
subsequent generations. Through this observation, 
there is the implication that the performance potential 
for each design scenario could be identified prior to 
reaching mathematical convergence. This could 
result in providing the context in which to gauge any 
individual solution by the designer in a more rapid 
manner than otherwise available. In addition, the 

ability to use these boundaries to gauge the potential 
of a design alternative may possibly be more relevant 
to supporting early design decision making than 
providing the often over populated Pareto defined 
solution pool. 
Another possible application of EEPFD in need of 
further study stems from observations of distinct 
needs of early stage design versus other industries or 
later design phases. When provided identical design 
requirements and energy parametric settings, but with 
significantly varying conceptual designs, a wide 
range in resulting performance boundaries was 
observed. This implies a direct relationship between 
the initial conceptual design with its set variations 
and the resulting performance boundaries outlying 
the potential performance levels of generated design 
iterations. While the application of MDO to other 
fields may be with the intent of optimizing a single 
design, early conceptual architectural design 
demands diversity. Therefore, the ability of EEPFD 
to rapidly determine the performance potential of 
multiple competing conceptual designs for the same 
design requirements may be more applicable than 
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pursuing a single optimized solution space. However, 
the full impact of this observation on EEPFD is in 
need of further study. 
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