
EVALUATION OF CALIBRATION EFFICACY UNDER DIFFERENT LEVELS OF 
UNCERTAINTY 

 
Yeonsook Heo1, 2, Diane Graziano2, Leah Guzowski2, and Ralph T. Muehleisen2 

1Department of Architecture, University of Cambridge, Cambridge, UK 
1Decision and Information Sciences Division, Argonne National Laboratory, Lemont, USA 

 
 
 
 

ABSTRACT 
This paper examines how calibration performs under 
different levels of uncertainty in model input data. It 
specifically assesses the efficacy of Bayesian 
calibration to enhance the reliability of EnergyPlus 
models. A Bayesian approach can quantify 
uncertainty in uncertain parameters while updating 
their values given measurement data. We assess the 
efficacy of Bayesian calibration under a controlled 
virtual-reality setup, which enables researchers to 
rigorously validate the accuracy of calibration results 
in terms of both calibration parameter values and 
calibrated model predictions. Case studies 
demonstrate the performance of Bayesian calibration 
of base models developed from audit data with 
differing levels of detail in building design, usage 
and operation. 

INTRODUCTION 
The objective of calibrating building energy models 
is to calculate feasible values for uncertain model 
parameters that are typically unattainable from a pool 
of available data. Typically, calibration of energy 
simulation models has been applied to reliably 
evaluate energy-savings potentials from energy 
efficiency measures (EEMs) (Pan, 2007; Zhu, 2006; 
Pedrini et al., 2002). Also, current standards, 
including the international performance measurement 
and verification protocol (IPMVP, 2010) and 
ASHRAE guideline 14 (ASHRAE, 2002), endorse 
the whole-building calibrated simulation approach 
for measuring and verifying energy savings achieved 
from EEMs implemented for existing buildings.   
For energy retrofit projects, analysts use audit data to 
develop and calibrate building energy models for 
predicting energy savings from EEMs. Indeed, 
attaining correct values for model parameters 
depends on the level of data available for 
constructing an energy model, which is tightly 
related to the audit level. The ASHRAE research 
project 1051-RP summarizes six levels of calibration, 
depending on the building description and 
performance data, which can cover the majority of 
calibration cases for retrofit projects (Reddy et al., 
2006). The audit level directly determines the amount 
of data available for modeling. As a result, the audit 
level impacts the accuracy of the base model and 

consequently the reliability of the calibrated model in 
capturing actual building behavior with high 
confidence. Hence, the efficacy of calibration should 
be scrutinized under different levels of uncertainty 
residing in the base models.  
For energy retrofits of individual buildings, 
ASHRAE Guideline 14 provides a standard analysis 
procedure for the calibrated simulation approach. 
From data collected from a detailed audit, one 
constructs a building simulation model. Then, one 
estimates uncertain parameter values by comparing 
model outcomes with measured data until 
discrepancies between predicted and monitored 
energy use meet an acceptable tolerance. ASHRAE 
Guideline 14 stipulates that the coefficient of 
variation of the root mean square error (CVRMSE) 
should be within 15% and 30% with use of monthly 
and hourly energy-use data, respectively, in order for 
the model to be validated.  
In practice, standard calibration techniques have two 
major drawbacks. First, the calibration process is 
often   subject   to   experts’   judgment,   especially   for  
selection of calibration parameters and manual 
testing of parameter values. High dependency on 
expertise has been recognized as a major problem 
that undermines the quality of calibration results 
(Reddy et al., 2006). Second, the calibration 
techniques follow a deterministic approach, and 
accordingly compute a single set of parameter values 
that minimizes the discrepancy while ignoring 
uncertainty in the model inputs and the model itself.. 
In order to quantify uncertainty in calibrated models, 
Heo et al. (2012a, 2012b) applied Bayesian 
calibration to building energy models, which resulted 
in probabilistic distributions of calibration parameters 
and demonstrated the importance of uncertainty 
information for retrofit decision-making, especially 
in the context of performance-based contracts.  
Beyond retrofit projects for individual buildings, 
recent research attempts to apply calibration to derive 
unknown model parameter values for developing 
building stock models. A major challenge for 
building stock modeling is that detailed information 
about the building portfolio is not available, and 
accordingly large uncertainties reside in most model 
parameters. In order to overcome this challenge, Tian 
and Choudhary (2012) developed a representative 
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EnergyPlus model for school buildings in London, 
and applied Bayesian inference to obtain probability 
distributions of the four main parameters that can 
cover diversity across different school buildings, 
using published summaries of energy-use data. 
Following the same approach, Zhao (2012) derived 
building design and operational parameter values to 
replicate an example building stock with use of 
building energy models and the Commercial 
Buildings Energy Consumption Survey (CBECS) 
2003 database.  
This paper scrutinizes the efficacy of calibration 
under different levels of uncertainty in the model 
associated with the level of available data. It 
specifically assesses the efficacy of Bayesian 
calibration to enhance the reliability of building 
energy models. A Bayesian approach can quantify 
uncertainty in uncertain parameters while updating 
their values given measurement data. Case studies 
are conducted to evaluate the performance of 
Bayesian calibration with base models constructed 
from different levels of detail in available data.  

BAYESIAN CALIBRATION 
We apply Bayesian inference as a new approach to 
calibrate uncertain parameters in energy models 
while accounting for uncertainty in the calibration 
process. Bayesian calibration is an alternative to 
traditional, expert-intensive approaches that require 
“tweaking”   of   energy   model   input   parameters   to  
match measured data. Typically, traditional 
approaches deterministically search for a single 
solution that minimizes the discrepancy between 
predicted and measured energy use while ignoring 
many feasible solutions that may have higher 
likelihoods. Instead, the Bayesian approach derives 
the most likely distributions, referred to as posterior 
distributions, of uncertain parameters in the building 
energy model. The resulting calibrated model is able 
to compute probabilistic outcomes while accounting 
for uncertainty in the model inputs. The comparison 
between the deterministic and Bayesian calibration 
has been well summarized by Heo et al. (2012a).   
The Bayesian paradigm treats a probability as a 
numerical estimate of the degree of belief in a 
hypothesis. Under this paradigm, our prior belief in 
true values of calibration parameters, 𝜃, is quantified 
as prior density functions 𝑝(𝜃). The prior 
distributions are updated, given measured data on 
building   performance,   through   the   Bayes’   theorem  
defined in Equation 1. 𝑝(𝑦|𝜃) refers to a likelihood 
function that drives the updating process by 
comparing how closely model outcomes created with 
testing parameter values match the measured data, y. 
The likelihood function is derived from the 
mathematical formulation developed by Kennedy and 
O’Hagan  (2001).   

𝑝(𝜃|𝑦) ∝ 𝑝(𝜃) × 𝑝(𝑦|𝜃)                  (1) 

Since the posterior distributions, 𝑝(𝜃|𝑦), cannot be 
analytically derived for nonlinear energy models, 
they are numerically approximated from one joint 
multivariate distribution through the Metropolis-
Hastings method (one of the Markov Chain Monte 
Carlo methods). The method iteratively explores the 
parameter space by sampling a proposed point based 
on the current point, and accepts the proposed point 
when it meets an acceptance criterion (Gelman et al., 
2004). As a result, the method provides a set of 
accepted parameter values that approximate 
theoretical posterior distributions. Detailed 
information about the Bayesian calibration setup has 
been provided by Heo et al. (2012b). 
Bayesian calibration is deployed in a formal process 
designed to minimize the role of expert judgment in 
the calibration process. In the proposed process, 
expert judgment for selecting calibration parameters 
and their parameter space is replaced with two pre-
steps: (1) prior-uncertainty quantification and (2) 
parameter screening. First, uncertainties in model 
input parameters are quantified from evidential 
knowledge collected from a pool of sources (e.g., site 
surveys, technical papers, industry reports and 
standards). Then, a parameter screening method, 
specifically the Morris method, is applied to identify 
the most influential parameters with respect to their 
effects on energy use. The Morris method draws 
samples in the parameter space by changing one 
parameter value at a time and computes an 
elementary effect per parameter that explains the 
average change in the model output resulting from 
the change in the parameter value (Morris, 1991). 
The method efficiently evaluates the sensitivity of 
many uncertain parameters with a small number of 
samples, and can still explain the effects of individual 
parameters on the model output in a global sense. 
The most dominant parameters identified by the 
parameter screening are calibrated by the Bayesian 
calibration module with three types of inputs: (1) 
prior density functions of calibration parameters, (2) 
a set of model inputs and outputs exploring the 
parameter space, and (3) measured energy use 
(monthly utility bills, in our analysis). 

EVALUATION FRAMEWORK 
This paper evaluates the efficacy of Bayesian 
calibration in enhancing the reliability of a baseline 
energy model under different levels of energy audit. 
Table 1 summarizes three levels of data available for 
modeling depending on the audit level, modified 
from the ASHRAE research project 1051-RP (Reddy 
et al., 2006). Level 1 provides information about 
building geometry and thermal properties from as-
built drawings, but provides no information about 
HVAC system characteristics, operational states, 
building use and operation strategies. In addition to 
as-built drawings, Level 2 obtains HVAC system 
inventory/specifications and building use/operation 
strategies from walk-through site visits. For instance, 

Proceedings of BS2013: 
13th Conference of International Building Performance Simulation Association, Chambéry, France, August 26-28

- 1691 -



at this level, lighting and appliance power densities 
are estimated from equipment inventory. In addition 
to the information noted above, Level 3 provides 
measured data on system operational states and end-
use energy data. These measured data enable 
accurate estimation of control state variables and 
lighting and appliance power densities with much 
reduced uncertainty arising only from measurement 
errors.  
Table 1 Levels of data available for three audit levels 

DATA LEVEL 1 LEVEL 2 LEVEL 3 
Utility bills (1 yr) X X X 
As-built drawings X X X 
Walk-through site 
visits 

 X X 

Detailed audit   X 
Monitored end-
use data 

  X 

 

Applying the three audit levels, we evaluated the 
efficacy of Bayesian calibration of EnergyPlus 
models for three types of office buildings constructed 
before 1980, located in Chicago: (1) small office 
building, (2) medium office building, and (3) large 
office building. We used the U.S. Department of 
Energy (DOE) commercial reference buildings and 
associated EnergyPlus models developed by the 
National Renewable Energy Laboratory for this study 
(DOE, 2012). The efficacy of Bayesian calibration is 
assessed under a controlled virtual-reality setup. For 
each   type   of   office   building,   we   generated   a   “real”  
building by quantifying uncertainty in model 
parameters from Audit Level 3, randomly selecting 
model input values from the ranges of quantified 
uncertainties, and adding random measurement errors 
ranging between -2% and 2%. Then, the energy 
consumptions  predicted  by  the  “real”  building  model  
became  the  “utility  bills”  against  which  base  models  
were calibrated. Calibrated models were evaluated 
against  “real”  buildings  under two evaluation criteria: 
(a) the accuracy of calibration parameter values and 
(b) the accuracy of calibrated model predictions. We 
used CVRMSE, specified in Equation 2, as a 
statistical measure: 

𝐶𝑉𝑅𝑀𝑆𝐸 =   
∑ ( ) /

    ,           (2) 

where 𝑃  denotes a predicted variable value for 
period 𝑖, 𝑂  an observed value for period 𝑖, and 𝑂 the 
mean of all observed variable values. CVRMSE 
quantifies the discrepancy between testing values and 
targeting values in a normalized manner; where a 
value of 1.0 indicates that the discrepancy is 
equivalent to the average targeting value. The first 
criterion compares posterior distributions against true 
values   from   the   “real”   buildings, while the second 
criterion compares model predictions against utility 
bills.  

CASE STUDIES  
Calibration of accurate-level model (Level 3) 
For Level 3, the base models are constructed from 
audit data that provide accurate estimates for most 
model parameters except infiltration and HVAC 
system efficiency. As a result, infiltration rate is the 
most dominant parameter, followed by heating 
system efficiency, infiltration rate reduction (while 
the mechanical system is on), and fan system 
efficiency. Although heating setpoint temperature 
during occupied hours is one of the top four 
parameters for the large office building, the three 
office buildings yield similar rankings of uncertain 
parameters; infiltration rate is by far the most 
dominant parameter, while the system-related 
parameters have much smaller effects on energy use. 
For all the cases at Level 3, since the top four 
parameters have a much greater effect on energy use 
than the other parameters, we naturally selected them 
for calibration. We also selected the top four 
parameters for calibration at the other levels to 
equivalently compare the effect of Bayesian 
calibration across different model levels. 
CVRMSE values in Table 2 compare the posterior 
distributions of the top four parameters against true 
values   from   the   “real”  buildings.  All the parameters 
selected for calibration except infiltration rate already 
have quite low CVRMSE values, ranging between 
0.01 and 0.20 before calibration. For these 
parameters, calibration does not noticeably improve 
the accuracy of parameter values compared to the 
prior distributions. However, for infiltration rate, 
calibration greatly reduces the discrepancy between 
the parameter values and the true value. As shown in 
Figure 1, Bayesian calibration greatly narrows the 
range of feasible values while updating the posterior 
distribution to move toward the true value regardless 
of where it is located.  
Table 2 Evaluation of calibration parameter values 

against true parameter values at Level 3 
 CVRMSE IN PARAMS DIFF. 

Uncalibrated Calibrated 
Small Building 
Infiltration  
Heating sys. eff. 
Infiltration reduc. 
Fan sys. eff.  

 
1.08 
0.19 
0.20 
0.16 

 
0.34 
0.19 
0.21 
0.15 

 
0.74 
0.01 
-0.00  
0.00 

Medium Building 
Infiltration 
Fan sys. eff. 
Heating sys. eff. 
Infiltration reduc. 

 
6.35 
0.09 
0.08 
0.17 

 
0.80 
0.06 
0.07 
0.17 

 
5.56 
0.04 
0.01 
0.00 

Large Building 
Infiltration  
Heating sys. eff. 
Heating setpoint T. 
Infiltration reduc. 

 
0.65 
0.08 
0.01 
0.20 

 
0.19 
0.06 
0.01 
0.21 

 
0.46 
0.01 
0.00 
-0.01 
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Figure 1 Posterior distribution of infiltration rate for 

the three cases at Level 3: priors (dashed line), 
posteriors (blue bars), and true value (red point)   

Table 3 shows CVRMSE values that quantify the 
accuracy of energy consumptions predicted by the 
calibrated model and the uncalibrated model at Level 
3. Overall, calibration enhances the accuracy of 
model predictions for the three office buildings. 
Calibration significantly reduces the discrepancy 
between model predictions and utility bills for gas 
consumptions, and has a lesser effect on reducing the 
already small discrepancy in electricity 
consumptions. This trend is expected because the 
calibration significantly updates infiltration rate, 
which heavily influences gas use for heating and has 
a smaller effect on electricity use for cooling. This 
trend may be valid only for studies in cold climate 
zones, including the present studies.  

Table 3 Evaluation of model predictions (Level 3) 
against utility bills 

 CVRMSE 
(ELECTRICITY) 

CVRMSE 
(GAS) 

Uncal. Cal. Uncal. Cal. 
Small building 0.19 0.04 0.76 0.13 
Medium building 0.07 0.03 2.56 0.30 
Large building 0.02 0.02 0.52 0.13 

Calibration of intermediate-level model (Level 2) 
In comparison to Level 3, the base models for Level 
2 are constructed without measured data about 
system operation states and end-use energy use (i.e., 
lighting, appliances, and DHW). As shown in Table 
4, model parameters related to that missing 
information exhibit a much higher magnitude of 
uncertainty compared to Level 3, in which their 
uncertainty arises only from measurement errors. As 
a result, the most dominant parameters identified by 
the Morris method include outside air flow, appliance 
power density, and fan pressure rise, in addition to 
infiltration rate and heating system efficiency, 
identified as the dominant parameters at Level 3. 
Table 4 Evaluation of calibration parameter values 

against true parameter values at Level 2 
 CVRMSE IN PARAMS DIFF. 

Uncalibrated Calibrated 
Small Building 
Infiltration  
Outside air flow 
Heating sys. eff. 
Fan pressure rise 

 
1.05 
4.28 
0.19 
0.43 

 
0.32 
1.29 
0.21 
0.27 

 
0.73 
3.00 
-0.01 
0.16 

Medium Building 
Outside air flow 
Appliance power  
Infiltration 
Heating sys. eff. 

 
4.22 
0.73 
6.35 
0.08 

 
0.38 
0.24 
1.93 
0.07 

 
3.84 
0.49 
4.42 
0.01 

Large Building 
Outside air flow 
Appliance power 
Infiltration  
Heating sys. eff. 

 
4.20 
0.71 
0.65 
0.08 

 
0.43 
0.10 
0.37 
0.06 

 
3.77 
0.61 
0.28 
0.01 

In the uncalibrated models at this level, the 
CVRMSE values of parameter values for infiltration 
rate, outside air flow, and appliance power density 
are quite large, whereas CVRMSE values for heating 
system efficiency are as small as those at Level 3. 
For those parameters with large discrepancies, 
Bayesian calibration significantly reduces CVRMSE 
values by moving the posterior distributions toward 
the true values while greatly reducing uncertainty in 
the distributions (i.e., distribution width), as shown in 
Figure 2. However, for the parameters with small 
discrepancies, the posterior distributions are little 
changed from the prior distributions, an effect which 
is also observed at Level 3. This trend implies that 
calibrating these four dominant parameters may be 
sufficient to update energy models at this level, but 
the efficacy of Bayesian calibration with a larger set 
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of parameters is also investigated to confirm that 
implication. 

 

 

 

 
Figure 2 Calibration results for the medium office 

building at Level 2: priors (dashed line), posteriors 
(blue bars), and true value (red point) 

Table 5 shows CVRMSE values that compare energy 
use predicted by the calibrated model and the 
uncalibrated model against utility bills for the three 
office building models at Level 2. Overall, 
calibration significantly improves the accuracy of 
model predictions for both electricity consumptions 
and gas consumptions. The calibrated models result 
in low CVRMSE values, less than 0.25 for all the 
cases except for gas consumptions for the medium-

office building. For this particular case, the large 
discrepancy between predicted and actual gas use 
arises mainly from the large magnitude of uncertainty 
still remaining in infiltration rate in comparison to 
the other office building cases. However, for the 
same case with the building energy model at Level 3 
(shown in Figure 1), the uncertainty range of 
infiltration rate is slightly less than half of that at 
Level 2 (shown in Figure 2). This comparison 
suggests that calibration may have limitations with 
respect to updating calibration parameter values to 
accurately correspond to true values when the 
uncertainty of model inputs is large. In particular, 
this uncertainty widens the parameter space to be 
explored during calibration, thereby magnifying  
interactive effects of calibration parameters on model 
outcome and confounding the effects of model 
parameters not included in the calibration. The effect 
of parameter interactive effects on calibration results 
is a topic for future study. Nonetheless, calibration is 
still shown to enhance the reliability of model 
predictions by an order of magnitude, and the 
resulting calibrated models at Level 2 are competitive 
with the uncalibrated models at Level 3. 

Table 5 Evaluation of model predictions (Level 2) 
against utility bills 

 CVRMSE 
(ELECTRICITY) 

CVRMSE 
(GAS) 

Uncal. Cal. Uncal. Cal. 
Small building 0.18 0.12 1.79 0.25 
Medium building 0.29 0.08 10.14 1.39 
Large building 0.61 0.16 1.42 0.18 

Calibration of crude-level model (Level 1) 
For Level 1, the base models are constructed only 
from as-built drawings, which provide information 
only about building geometry and construction 
specifications. Consequently, the three office 
buildings at this level yield similar rankings; the most 
dominant parameters include outside air flow, 
appliance power density, lighting power density, 
infiltration, and heating system efficiency. Appliance 
and lighting power densities become more dominant 
at this level because their uncertainty range covers 
internal power consumptions across various office 
buildings from field surveys (Knight and Dunn, 
2003), in comparison to the Level 2 situation, in 
which they are estimated from the equipment 
inventory specific to the building being considered. 
For Level 1, these influential parameters have a 
major effect on energy use predictions, similar to that 
of the most dominant parameter at other levels.   
The CVRMSE values in Table 6 demonstrate that the 
posterior distributions coincide with the true values 
much better than the prior distributions for all the 
parameters except heating system efficiency. As 
shown in Figure 3, the posterior distributions for the 
medium office building substantially reduce 
uncertainty, while their expected values more closely 
match the true values. However, for heating system 
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efficiency, little change is observed between the prior 
and the posterior distributions. In addition, the 
calibration of crude-level models results in wider 
ranges of feasible values in the posterior distributions 
than those at Level 2 (shown in Figure 2). The larger 
uncertainty in the calibration results can be attributed 
to the large magnitude of uncertainty in model 
parameters, given the limited measurement data. 
Nevertheless, Bayesian calibration still leads to 
reasonable results that improve the accuracy of the 
baseline model.  
Table 6 Evaluation of calibration parameter values 

against true parameter values at Level 1 
 CVRMSE IN PARAMS DIFF. 

Uncalibrated Calibrated 
Small Building 
Infiltration  
Outside air flow 
Heating sys. eff. 
Appliance power 

 
1.08 
4.18 
0.29 
0.96 

 
0.39 
1.18 
0.31 
0.86 

 
0.69 
3.00 
-0.02 
0.10 

Medium Building 
Outside air flow 
Appliance power  
Lighting power 
Heating sys. eff. 

 
4.22 
0.96 
0.34 
0.13 

 
0.30 
0.49 
0.27 
0.16 

 
3.92 
0.47 
0.07 
-0.03 

Large Building 
Appliance power 
Outside air flow 
Lighting power 
Infiltration rate 

 
0.95 
4.18 
0.84 
0.65 

 
0.17 
0.48 
0.18 
0.33 

 
0.78 
3.70 
0.65 
0.32 

 
Table 7 shows CVRMSE values that compare model 
predictions against utility bills for the three office 
buildings. Overall, calibration greatly reduces 
CVRMSE values in model predictions as the result of 
correcting calibration parameter values. However, for 
the medium office building case, the calibrated 
model still results in a high CVRMSE value of 8.63 
for gas energy-use prediction, which suggests that 
calibrating four parameters at this level may not be 
sufficient to obtain reliable predictions. As expected, 
the number of influential parameters increases as the 
model level goes down, with less data collected for 
modeling. Hence, the next section explores the effect 
of a larger set of calibration parameters on enhancing 
the model reliability.  
 

 

 

 

 
Figure 3 Calibration results for the medium office 

building at Level 1: priors (dashed line), posteriors 
(blue bars), and true value (red point) 

Table 7 Evaluation of model predictions (Level 1) 
against utility bills 

 CVRMSE 
(ELECTRICITY) 

CVRMSE 
(GAS) 

Uncal. Cal. Uncal. Cal. 
Small building 1.17 0.75 5.64 0.86 
Medium building 1.56 0.57 31.47 8.63 
Large building 3.65 0.74 4.94 1.05 

Calibration of a larger set of parameters 
This section examines whether calibrating a larger 
number of uncertain parameters at lower model 
levels can help enhance the reliability of the 
calibrated models. Table 8 summarizes CVRMSE 
values of parameter values from calibrating six and 
eight parameters at Levels 1 and 2 for the medium 
office building case. At Level 2, calibrating the larger 
number of parameters does not improve the accuracy 
of posterior distributions noticeably, either for the 
four parameters in the initial strategy (as compared to 
Table 8) or for the other parameters introduced in the 
new calibration exercises. Consequently, calibrating 
a larger set of parameters does not substantially 
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improve the accuracy of model predictions, as 
observed in Table 9.  
On the contrary, at Level 1, calibrating six 
parameters significantly reduces the CVRMSE value 
for the infiltration rate (ranked as the fifth), and as a 
result significantly reduces CVRMSE values in 
model predictions, especially for the gas energy 
prediction. However, calibrating two more 
parameters does not further improve the accuracy of 
parameter values and model predictions. These 
results suggest that Model Level 1 needs to calibrate 
a larger set of parameters, including outside air flow, 
appliance power density, lighting power density, 
heating system efficiency, and infiltration rate, to 
ensure the reliability of the calibrated model. 
Nevertheless, the CVRMSE value for gas predictions 
is still high because one-year monthly utility bills are 
not able to reduce the high magnitude of uncertainty 
in uncertain parameters with high interactions. In 
order to further enhance the model reliability at Level 
1, further research is needed on developing advanced 
Bayesian calibration algorithms that utilize an 
extensive set of measurement data at different levels, 
including hourly data and submetered data.   
Table 8 Evaluation of calibration parameter values 

against true parameter values at Levels 2 and 1 
 CVRMSE IN PARAMS 

Uncal. 4Params 6Params 8Params 
Model Level 2 
Outside air flow 
Appliance power  
Infiltration 
Heating sys. eff. 
Fan pressure rise 
Fan sys. eff. 
Heating setpoint T 
Lighting power 

 
4.22 
6.35 
0.73 
0.08 
0.44 
0.09 
0.01 
0.07 

 
0.38 
0.24 
1.93 
0.07 

- 
- 
- 
- 

 
0.32 
1.83 
0.26 
0.07 
0.46 
0.09 

- 
- 

 
0.32 
1.94 
0.26 
0.07 
0.46 
0.09 
0.01 
0.06 

Model Level 1 
Outside air flow 
Appliance power  
Lighting power 
Heating sys. eff. 
Infiltration 
Fan pressure rise 
Heating setpoint T 
Fan sys. eff. 

 
4.22 
0.96 
0.34 
0.13 
6.41 
0.38 
0.03 
0.31 

 
0.30 
0.49 
0.27 
0.16 

- 
- 
- 
- 

 
0.44 
0.47 
0.27 
0.15 
2.10 
0.34 

- 
- 

 
0.45 
0.42 
0.27 
0.15 
2.04 
0.32 
0.03 
0.30 

 
Table 9 Evaluation of model predictions (Levels 2 

and 1) against utility bills 
 CVRMSE 

(ELECTRICITY) 
CVRMSE 

(GAS) 
Model Level 2 
Four params 
Six params 
Eight params 

 
0.08 
0.07 
0.07 

 
1.39 
1.18 
1.25 

Model Level 1 
Four params 
Six params 
Eight params 

 
0.57 
0.35 
0.28 

 
8.63 
1.56 
1.56 

CONCLUSION 
This paper evaluated the efficacy of Bayesian 
calibration using EnergyPlus building energy models, 
given uncertainties consistent with different audit 
levels. Case studies with three types of office 
buildings demonstrated that for all audit levels, 
Bayesian calibration yields posterior distributions 
that correspond well to true values while significantly 
reducing uncertainty in parameter values. 
Consequently, calibrated models show enhanced 
reliability in their predictions, more closely matching 
utility bills with much-reduced uncertainty compared 
to uncalibrated models.  
This research project is ongoing to extend the 
Bayesian calibration methods to OpenStudio. In 
order to enhance the practicality of Bayesian 
calibration, we will further investigate the following: 
1. Alternative algorithms and techniques for 

speeding up Bayesian calibration (e.g.; parallel 
processing algorithms for posterior simulations); 

2. In-depth guidance for applying Bayesian 
methods to calibrate EnergyPlus models for 
different levels of available data, including 
identification of uncertain parameters, selection 
of calibration parameters, and analysis of results;  

3. A database for uncertainty in building energy 
models, with the objective of significantly 
reducing the upfront effort required for 
uncertainty analysis, collaborating with Georgia 
Tech researchers who have developed a 
workbench with a database of uncertainty arising 
from both parameter uncertainty and model 
inadequacy (Sun et al., 2011). 
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