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ABSTRACT 
Due to the development of energy performance 
contracting and the needs for peak electric demand 
reduction, the interest for optimal building control is 
renewed. In this context, the real time prevision and 
optimization of building heat demand can help the 
manager to reduce the energy bill and to propose 
peak shaving offers. Our study aims to illustrate such 
heat control strategies on a one floor elementary 
school. The building is modeled through a second 
order inverse “grey box” model. The inverse model 
identified during a short learning period is first 
validated on its ability to forecast heat load and 
indoor temperature. Then it is used for optimal 
control and for that purpose two strategies are 
proposed. The first one consists in optimizing the 
night setback period with a constant electricity price. 
The second one aims to set a varying indoor 
temperature set point in a context of peak and off 
peak hours. The results show about 5% off electricity 
consumption for the first strategy and 4% off 
electricity bill for the second strategy. For a very cold 
week it appears that the optimization could lead to an 
over-consumption to improve the comfort. 

INTRODUCTION 
Buildings represent 43% of final energy consumption 
in France (ADEME, 2011) and electrical heating 
systems are accountable for a large part of this 
consumption. Today’s standards are low-energy 
buildings but the buildings’ renewal rate is very low 
(1% a year, INSEE, 2012) and in 2011 the average 
annual energy consumption was 209 kWh/m² 
(ADEME, 2011). Therefore, it is still actual to work 
on some solutions to reduce consumption on high-
energy buildings. 
Another concern with electrical heating systems is 
their impact on the national peak demand of 
electricity. Indeed, building’s thermal inertia and 
time-of-use electricity tariffs can be used to reduce 
energy bills and the stress level on the electricity 
network. 
In this article we propose to use a second order grey 
box model to represent the thermal behaviour of an 
elementary school and to use two strategies to 
manage heating systems. The first strategy intends to 
optimize the night set back period to minimize the 

energy consumption and respect the comfort criteria. 
The second strategy aims to optimize the set point 
temperature for 24 hours in a context of off-peak and 
on-peak energy prices in order to minimize the 
energy bills while maintaining comfort criteria. 
 
Grey box models are well known and often used to 
make simple but physical and accurate building 
models. In the literature, we found many forms of 
grey box models; most of them are mono-zone and 
have between one (Fux et al., 2012) and 8 orders 
(Braun, 2002). These models are particularly well 
adapted to perform optimization because they run 
quickly and are liable to constraints (i.e. maximal 
power constraints). Three types of optimization 
objectives can be identified in the literature. The first 
one is consumption reduction by flux optimization 
(Oestreicher et al., 1996), (Palomo et al., 2000), 
(Mossoly and Ghali, 2009), (Morosan and Bourdais 
2010), (Hazyuk et al., 2012). Flux optimization 
allows to minimize consumption by anticipating set 
point variation (optimal trajectory between each set 
point). The second strategy identified aims to reduce 
consumption peaks (Reddy et al., 1990), (Lee and 
Braun, 2008). This strategy is very useful to reduce 
stress on the electricity network but can generate 
additional costs for consumers.  The last strategy 
identified in the literature is the global cost 
minimization by flux or set point optimization 
(Henze et al., 2007), (Verhelst et al., 2012). This 
strategy can be interesting for both the consumer and 
the owner of the network, but needs variable energy 
prices to be established. 
In this study, measured data from an elementary 
school are used to identify a grey box model 
(“R6C2”). Then, two control strategies are assessed 
based on the identified R6C2 model. 
With these strategies (i.e. optimization of set-point 
temperature), we assume that the multi-zone building 
can be driven by a mono-zone model while reducing 
the discomfort risk. 
First, the tested building is described. Secondly, the 
grey box model is explained and validated. Finally, 
the two strategies are tested and discussed. 
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TEST BUILDING 
Description of the building 
The studied building is a one-floor elementary school 
built in 1975 in the east of France (continental 
climate). The walls are composed of 15 cm of 
concrete and do not contain any insulation. The 
windows are double glazed panels (renovation in 
2010). The roof is well insulated with 15 cm of glass 
wool (renovation in 1986). The building is square 
with a heated surface of 800 m². The heating demand 
is provided by electrical heaters and AHU systems 
(Air Handling Unit with electric resistances). 

Measurement setup 
The indoor temperature is measured with 11 sensors, 
one in each room. The electrical power is measured 
with three clamp ammeters, one for all electrical 
heaters and one for each AHU system. The heating is 
ensured by the AHU system and electrical heaters 
during occupancy period and AHU are switched-off 
during vacant period. Electrical heaters ensure the 
peak needs during the day and the night setback. All 
devices are on/off and controlled with a set point 
temperature. The ventilation airflow is constant and 
has the same schedule as AHU systems. 
Table 1 summarises all the data obtained from the 
building every 10 minutes. 

Table 1 
List of recorded data 

NAME UNIT SOURCE 
Outdoor 
temperature (Te) 

°C Measured 

Indoor 
temperature (Ti) 

°C Measured 

Set-point 
temperature (Tc) 

°C Controlled data   

AHU and 
electrical heater 
power (P) 

W Measured 

Electrical heater 
power 

W Measured 

Ventilation set-
point (Ve) 

0 or 1 Deduced from AHU Power 

Domestic Water 
consumption 

litre Measured 

We assume that the electrical heaters and the AHU 
systems have an efficiency of 100%. Therefore, the 
heating power is equivalent to the electrical power. In 
addition, we assume that secondary HVAC systems 
are entirely convective. 

MODEL DESCRIPTION AND 
VALIDATION 
 Building model description 
The building is modelled by a nonlinear second order 
differential equation (“R6C2”). The non-linearity 
comes from the heating power’s upper bound. We 

use an electrical analogy to represent the set of 
equations (figure 1). The model has been built to 
have a little number of parameters, simple enough to 
be identifiable but complex enough to represent all 
physical phenomena. Hazyuk (Hazyuk et al., 2011) 
proposes to use a two-order model. The 
representation of solar gains can be improved by 
separating the solar flux arriving on the external wall 
from the solar flux reaching the internal wall. Bacher 
(Bacher and Madsen, 2011) also proposes a two-
order model where internal gains and variable 
ventilation are not taken into account. 
The particularities of our R6C2 model are double. 
First, the solar radiation reaching the building is 
divided in two parts, one hits directly the outdoor 
surface wall (Th), and the second goes on the indoor 
surface wall node (Ts). We introduce a node (Ts) 
between the indoor temperature node and the wall 
node. 
Secondly, the model can handle changes in 
mechanical ventilation thanks to the variable 
resistance Rv (Rv is proportional to the airflow rate). 
Table 2 describes the sources of not measured inputs 
of the R6C2 model and Table 3 describes all 
identified physical parameters of the R6C2 model. 

Table 2 
List of other data 

NAME UNIT SOURCE 
Cloud cover okta Professional meteorological 

data (from Meteo France) 
Occupancy ratio 
(OCC) 

% Standard profile (validated 
with domestic water 
consumption data) 

Table 3 
Model parameters description 

NAME DESCRIPTION 
Ci (J/K) Internal air capacity 
Cw (J/K) Wall capacity 
Ri (K/W) Interior convective 

resistance 
Rs and Rw 
(K/W) 

Wall conductive resistance 

Re (K/W) External convective 
resistance 

Rg (K/W) Infiltration and glazing 
equivalent resistance 

Rv (K/W) Mechanical ventilation 
equivalent resistance 
(variable) 

G (W) Maximum heat gain due to 
occupancy 

α (%) Radiative ratio of internal 
gains 

All identified parameters have a lower bound and an 
upper bound. Their values are based on the French 
thermal standard (CSTB, 2005) or on geometrical 
observations. 
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Figure 1: R6C2 model presented as an electrical analogy 

 
Figure 2 : Heat power measured (black) and predicted (red) compared during 1 week in December 

 
Figure 3: Indoor temperature measured (black) and predicted (red) compared on 1 week in December. The 
green and the blue curves represent the calculated wall temperature and the measured outdoor temperature, 
respectively. 
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Solar flux calculation 
The direct and global solar radiations are calculated 
with the well-known Kasten model (Kasten and 
Czeplak, 1980), which has been adopted by Scharmer 
(Scharmer and Greif, 2000) in the European Solar 
Radiation Atlas. 
Makovicka (Makovicka and Berthou, 2012) 
developed an original dynamical method specially 
designed for simple physical models. The main 
function of this algorithm is to calculate the solar flux 
on the façade of the building while taking into 
account the shading effect. It is based on the use of a 
clinometer to measure the surrounding obstacles’ 
shadows on windows and geometrical considerations 
for solar protection. A simplified representation of 
the solar gain model is presented in figure 4. This 
algorithm aims to calculate the solar flux on indoor 
walls (Φsint) and the solar flux on outdoor walls 
(Φsext).  
This solar flux calculation method was validated 
during summer when the building is empty and the 
indoor temperature is not controlled. In these 
conditions only the outdoor temperature and the solar 
flux affect the building (the wind and night sky 
radiation are neglected). The model was tested for 
two months during summer 2012. The model fits 
very well the measured data and is adapted to R6C2 
modelling. 
 

 
Figure 4: Simplified representation of solar radiation 
model 

Identification method 
The Interior Point algorithm is well adapted to handle 
nonlinear constrained minimization problems (Byrd 
et al, 2000), (Waltz et al., 2006). Two weeks of 
December (winter 2012) were used to identify the 10 
parameters. The initial value of each parameter is 
approximated with values of the French thermal 
standards (CSTB, 2005) and the Interior Point 
algorithm is used to minimize heating power and 
mean indoor temperature prediction error. The 
objective function is mono-objective (equation 1). 
 

( )∑∑ −×−= 1))²(())²(()( xTTxPPxf ihih  

• f(x)  is the minimized function 

• x is the vector of identified parameters  

• Ph et Tih are the predicted heat power and 
mean indoor temperature, respectively. 

• P et Ti are the measured heat power and 
mean indoor temperature, respectively. 

For identification, we tried several levels of maximal 
power (corresponding in theory to the installed 
heating power). Finally, we use a limitation of 
heating power corresponding to maximum power 
observed during the learning period (76 kW), which 
gives the best results. 

Model validation 
The R6C2 model is validated ex-post with the 
following week data. All model inputs are known and 
we compare the calculated outputs (Ph and Tih) with 
the measured data (P and Ti). We use the fitting 
formula (equation 2) as a likelihood criterion. 

( )2)1(100(%)
yy
yy

fit h

−

−
−×=  

 
Where y is the reference vector and yh is the vector of 
calculated data. 
Figure 2 compares one week of calculated heating 
power (red) and measured heating power (black). 

(1) The model cannot predict high frequency 
oscillations due to on-off control strategies 
on each electrical heater.  

(2) The saturation phenomenon is not well 
modelled because the mono-zone model 
cannot handle local saturation. Indeed the 
R6C2 model is mono-zone and the 
regulation is supposed perfect. 

(3) The energy balance is well respected since 
there is less than 2% error during the tested 
week. 

(4) The fitting reaches 66% which is quite good 
given the previous remarks 

Figure 3 compared one week of calculated indoor 
temperature (red) and measured indoor temperature 
(black).  

(1) The dynamic variation of indoor 
temperature is very well respected 

(2) The fitting reaches 84% 
 
Considering these tests, the R6C2 model gives a 
good representation of the building’s thermal 
behaviour. We assume R6C2 model is well adapted 
to handle optimization strategies. 

PRESENTATION OF OPTIMIZATION 
STRATEGIES 
Reference case 
The building is occupied all weekdays except 
Wednesday. The first occupants start arriving at 8 
a.m. and leave no later than 5:30 p.m. Therefore, 
thermal comfort must be reached from 8 a.m. to 5:30 
p.m.. Since the inertia of the studied building is high 
and the installed power is quite low, it is necessary to 
switch on the heater a few hours before the occupants 

Φsint (t) 

Φsext (t) 

Building static 
information 
(localization, 
orientation, solar 
protection, obstacle…) 
  

solar 
radiation 
algorithm 

Cloud 
cover N(t) 
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arrive. For this purpose, the set point temperature is 
raised from 17 to 21 °C at 4 a.m.  This schedule was 
chosen by a trial and error process by the building 
manager. The night setback starts at 5:30 p.m. (with a 
set point temperature of 17°C) when all occupants 
have left. The ventilation schedule is linked to the 
AHU schedule and works from 4 a.m. to 5:30 p.m. 

Algorithm used 
For the strategies presented hereafter, the vector to 
optimize is the set point temperature. We use same 
optimization algorithm as the one for the 
identification process (Interior Point Algorithm). In 
case of a non-converged calculus, a Genetic 
algorithm is employed since the previous algorithm 
used for identification did not converge all the time 
(only for optimal strategy study). Genetic Algorithms 
are well adapted for complex non-linear models but 
have high CPU costs (Mitchell, 1999).   

Strategy 1: Energy minimization 
The first strategy aims to reduce 24h energy 
consumption and guarantee an indoor temperature of 
19 °C at 8 a.m. when the first occupants arrive. To 
achieve this objective, the set point temperature 
vector (Tc) can be modified between a lower bound 
of 15 °C and an upper bound of 22°C. 
The objective function (equation 3) is written so as 
not to penalize indoor temperature above Tset (i.e. 19 
°C) at 8 a.m.. 

( )3)1))(,0(max(
))(()(1

..8 +−×

=∑
mpihset

h

xTT

xPxS
 

In this strategy, we suppose the electricity prices 
constant. Experiments show that the comfort 
condition is always respected with this objective 
function and under the tested weather data. 
Table 3 sums up strategy 1. 

Table 3 
Presentation of strategy 1 

Variables to  be 
optimized : 

- Set point temperature (Tc) 
between 0 and 8 a.m. 

Constraints :  - Tc can vary between 15 °C 
and 22°C 

Objectives : - to minimize the 24h  heating 
energy consumption 
- to reach  the indoor 
temperature of 19°C at 8 a.m. 

 

Strategy 2: Cost minimization 
Since the price of energy varies during a day, it is 
possible to reduce the energy bills by modifying the 
building set point. The principle is to anticipate the 
price peaks by loading the building walls with 
thermal energy. To illustrate this strategy, an 
electricity ‘green price” will be used. The “green 
price” varies from 4.23 c€/MWh to 6.91 c€//MWh 
and contains on-peak/off-peak periods. This structure 
price is valuable from December to February in 
France. 

The objective function (S2) is presented below in 
equation 4. 

( )4)()(2 ∑ ×= pricexPxS h  
To allow load shedding during high price periods we 
authorize a limited discomfort during a short period. 
For that, we impose a discomfort surface limit. This 
is equivalent to assume that reducing indoor 
temperature by 1°C during 8 hours creates the same 
discomfort as reducing the indoor temperature by 2 
°C during 4 hours. 
So as not to complexify the objective function, the 
indoor temperature is constraint-free. To guarantee 
19°C at 8 a.m the set point temperature variation is 
limited to 0.5°C per hour. In this way the indoor 
temperature follows the set point temperature and 
constraints are applied on optimized variables. 
Table 4 sums up strategy 2. 

Table 4 
Presentation of strategy 2 

Variables to be  
optimized : 

- Set point temperature (Tc) 
between 0 a.m. and 5:30 p.m. 

Constraints :  - Tc can vary between 15 °C 
to 22°C from 0 to 8 a.m. 
- Tc can vary between 19 °C 
and 22°C from 8 a.m. to 5:30 
p.m. 
- The maximum set point 
temperature variation is 0.5°C 
in one hour 

Objectives : - to minimize the energy bill 
on 24h 
- to limit the discomfort 
surface of 8 °C.h 

 

RESULTS AND ANALYSIS 
Strategy 1 
The results of strategy 1 are presented through two 
examples. A given week of data is the base of each 
example.  The first  week is relatively warm with an 
average outdoor temperature of 7.4 °C. The 
optimized solution (figures 5&6) shows that it is not 
necessary to rise the set point temperature at 4 a.m.: 
doing it later is better. Strategy 1 is able to reduce the 
weekly energy consumption by 5%. On the other 
hand, the second week studied is very cold with an 
average outdoor temperature of -6°C. The comfort 
temperature is not reached with the reference set 
point. In such conditions, strategy 1 ensures an 
indoor temperature of 19°C at 8 a.m. every working 
day, but causes a weekly overconsumption of 1%. 

Strategy 2 
The reference case is designed to have the same 
discomfort surface as the optimized case. Therefore, 
the set point temperature during occupancy periods 
becomes 20.16 °C instead of 21 °C in order to have a 
discomfort surface of 8 °C*h. 
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Strategy 1, warm week : Strategy 2 : 

  
Figure 5: Comparison between the reference heating power (black) 
and the optimized heating power (red) with strategy 1, during one 
day of December.  
 

Figure 7: Comparison between the reference heating power (black) 
and the optimized heating power (red) with strategy 2, during one 
day of December. The electricity price structure is presented below 
in blue. 

  
Figure 6: Comparison between the reference indoor temperature 
(black) and the optimized indoor temperature (red) with strategy 1, 
during one day of December. The doted curves are the set point 
corresponding to both indoor temperatures. 

Figure 8: Comparison between the reference indoor temperature 
(black) and the optimized indoor temperature (red) with strategy 2, 
during one day of December. The doted curves are the set point 
corresponding to both indoor temperatures. 
 

Results of  24 h optimization with strategy 1 : 
• 24 h energy saving : 6.4% 
• Indoor temperature at 8 a.m. : 19.1 °C 

Results of  24 h optimization with strategy 2 : 
• 24 h energy saving : 5.6% 
• Indoor temperature at 8 a.m. : 20.7 °C 
• 24 h economic gain : 10.6% 
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The cost optimization enables to reduce monthly 
energy bills by 4% in December. During the same 
period, the energy consumption remains the same.  
 
We observe load shedding during high price periods 
and load shedding during the last hours of occupancy 
periods. Stopping heaters a few hours before 5:30 
p.m allows to use building inertia to keep the indoor 
temperature above 19 °C. Figures 7&8 illustrate 24h 
of optimized temperature and power. They allow to 
view the load shedding during the first electricity 
peak and a second one during the last hours of the 
day. Warm and cold weeks have been tested and 
whatever the outdoor temperature, the percentage of 
cost reduction with strategy 2 is almost the same. 
It is interesting to measure the impact of price ratio 
on energy bill reduction. Table 5 shows that cost 
savings increase with price ratio. With low price 
ratio, the gain is in order of magnitude of the model 
error, but with higher price ratio, the gains are quite 
certain. Moreover, with a high price ratio, this 
strategy creates an overconsumption. 

Table 5 
Price ratio influences on strategy 2 gains 

PRICE 
RATIO 

MONTHLY 
COST 

REDUCTION 

 MONTHLY 
ENERGY 

OVERCONSUMTION 
1.6* 4% 0% 
2.1 12% 1% 
2.7 18% 4% 

*Actual ratio price 

CONCLUSION 
An R6C2 building model was developed to represent 
an elementary school’s thermal behaviour. After an 
identification process, the model is assessed on its 
capacity to predict heat power and average indoor 
temperature. Apart a few non-modelled phenomena, 
the model gave full satisfaction with 66% and 84% of 
fitting for power prediction and indoor temperature 
prediction, respectively. The R6C2 model allows to 
test two optimization strategies. The first strategy 
optimizes the set-point temperature in order to reduce 
energy consumption during night setback and the 
morning restart of heating. On this particular 
building, this strategy could save 5% of energy 
during cold weeks and guarantee a comfortable 
indoor temperature every morning on workdays. The 
second strategy optimizes 24h set-point temperature 
vector during workdays with variable electricity 
prices to minimize the energy bill. On this particular 
building, this strategy could reduce the heating bill 
by 4% during a winter month. 
 
To go further, we will optimize the building in live 
and run optimization with predicted input. 
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