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ABSTRACT

This  paper  reports  on  how  sensitivity  analysis 

techniques,  applied  to  the  inputs  of  calculation 

engines  for  energy  certification  and  regulation 

compliance  purposes,  can provide  guidance  for 

simplifying their user interfaces.

Two different techniques were employed: the Morris 

Method, used to screen the input factors, and Monte 

Carlo  Analysis,  used  to  assess  the  effects  of 

approximations on groups of parameters.

It  is  shown that  this analysis approach  can  lead to 

useful  reductions  in  user  effort  without  significant 

loss of accuracy. 

INTRODUCTION

Energy  certification  and  regulation  compliance 

checks are now routinely required for new buildings 

and  major  refurbishments.  There  are  two  key 

requirements for the modelling tools used: they must 

give reliable predictions of energy performance and 

carbon  emissions  using  standardised  methods,  and 

the  user  interface  must  be  easy  to  use  and 

unambiguous. The software has to be used by a large 

number  of  users  without  excessive  training 

requirements.

The  assessors  who  use  the  compliance  and 

certification  tools  often  have  to  put  in  complex 

buildings with a large number of zones, and they are 

often under time constraints. Furthermore, the energy 

calculations require  the input of a large number of 

parameters  and  factors.  Often  not  all  the  required 

data  are  immediately  available  and  the  effort  to 

achieve suitable values for many of them can be very 

consuming in terms of time and resources.

Some  input  parameters,  although  necessary  for 

performing the  calculations,  may have a  negligible 

influence  on  the  model  response,  so  it  may  be 

possible  to  use  default  values,  or  lower  levels  of 

precision.

This would mean the assessors could concentrate just 

on the more important parameters. 

This paper reports on a sensitivity study of the inputs 

to provide guidance for simplifying user interfaces.

The  focus  for  the  research  is  SBEM  (Simplified 

Building  Energy  Model)  which  is  the  standard 

software used in the UK for energy certification and 

regulation  compliance  of  non-domestic  buildings 

(SBEM 2011). It was developed by BRE (Building 

Research Establishment),  based on the BS EN ISO 

13790 Standard (2008). 

Two different sensitivity techniques were applied to 

the input data required for SBEM calculations of two 

buildings: the Morris Method which is used to screen 

the input factors and the Monte Carlo Analysis which 

is used to assess the effects of groups of parameters. 

Although these  methods have been  used elsewhere 

for assessing prediction uncertainty, the distinct focus 

of  this  study  is  to  develop  recommendations  for 

simplifying model input.

The analysis identified a set  of the most important 

parameters  which  need  to  be  entered  accurately, 

another set of parameters which could be defined as 

belonging within a band rather than a precise value, 

and a further set which could be approximated with 

default  values.  The  analysis  also  quantifies  the 

uncertainty associated with these simplifications.

The Simplified Building Energy Model (SBEM) 

SBEM is  a  computer  program  that  provides  an 

analysis  of  a  building's  energy  consumption.  It 

calculates  monthly  energy  use  and  carbon  dioxide 

emissions  of  a  building  given  a  description  of  its 

geometry,  construction,  use,  HVAC  and  lighting 

equipment.  It  was  originally  based  on  the  Dutch 

methodology NEN 2916:1998 (Energy Performance 

of  Non-Residential  Buildings)  and  has  since  been 

modified to comply with the recent CEN Standards. 

Details  of  the  calculation  method,  the  algorithms 

used  and  the  assumptions  made  are  provided  in 

SBEM (2010) and  SBEM (2011).  SBEM makes use 

of  standard  data  contained  in  associated  databases 

and available with other software (iSBEM 2012).

The purpose of SBEM and its interface iSBEM is to 

produce consistent and reliable evaluations of energy 

use  in  non-domestic  buildings  for  Building 

Regulations  Compliance  and  for  Building  Energy 

Performance Certification purposes. Although it may 

assist the design process, it is not primarily a design 

tool. 
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SIMULATION

This  section  will  focus  on  the  sensitivity  analysis 

techniques applied, especially on the Morris Method, 

and the way in which the different techniques were 

combined.

Morris Method

The Morris Method (Morris 1991) is an interesting 

sensitivity technique that is being utilised in several 

fields  in order to screen model inputs and understand 

their  influence  (Alam  et  al.  2004;  Corrado  and 

Mechri 2009; Garcia Sanchez et al. 2012; Heo et al. 

2012).

It  is  basically  a  “local  method”,  even  though  the 

parameters  are  altered  with  respect  to  a  different 

starting configuration of the input variables each time 

and through the entire assumed variation ranges. The 

method  changes  one  factor  at  a  time  and 

characterises the sensitivity of a model with respect 

to  its  inputs  through  the  concept  of  elementary 

effects (ee), which are approximations of the partial 

derivatives of the model itself: 

ee=
y ( x⃗+ e⃗

i
∗Δ

i )− y ( x⃗ )

Δ
i

(1)

where  x⃗  is the input vector and  e⃗i is a zero 

vector where only the i-th position is equal to 1.

Each  parameter  has  to  be  discretised,  dividing  its 

range into a chosen number of levels corresponding 

to as many quantiles. In this way the variable space is 

represented by a p-level k-dimensional grid (where p 

and  k are  respectively  the  number  of  levels  and 

parameters).

A chosen number,  r (usually  within the range [10, 

50]), of  ee are estimated at various sampled points, 

randomly  selected  in  the  discretised  space,  except 

that the following point must differ from the previous 

one just in the value of one parameter. In this way a 

finite distribution (Fi)  of  ee is  determined for  each 

input variable. The mean of the absolute values  (μ*
i, 

Campolongo et al 2007) and the standard deviation 

(σi) of these distributions characterise the magnitude 

and  the  typology  of  each  parameter's  effect 

respectively.

One of the method's most attractive characteristics is 

the quantity of achievable information relative to the 

computational effort needed. The Morris Method can 

return information about the global magnitude of an 

effect  and  the  kind  of  influence,  with  a  basically 

linear  order  of  growth  relative  to  the  number  of 

parameters: 

N=r∗(k+1) (2)

where N is the number of runs. Unfortunately it does 

not  provide  any  distinction  about  interactions, 

quadratic or  higher order effects, although there are 

improved versions that  are able to  evaluate  second 

order effects accurately (Campolongo and Braddock 

1999; Cropp and Braddock 2002).   

The  following  sets  out  additional  specifications  of 

the Morris Method as used in this study.

The  sample  generation  was  made  following  the 

improved methodology proposed by Campolongo et 

al (2007). 

In order to get results independent of the measured 

units, the  ee have been calculated from scaled input 

and  output  values,  by  subtracting  the  mean  and 

dividing  by  the  standard  deviation,  as  in  common 

statistical practice.

The  classification  of  the  effect  typology  for  each 

parameter  has  been  done  following  the  method 

purposed by Garcia Sanchez et al. (2012):

− if σi/μ
*

i 
 ≤ 0.1 then linear effect;

− if 0.1 ≤  σi/μ
*
i  ≤ 0.5 then monotonic effect;

− if 0.5 ≤  σi/μ
*
i  ≤ 1 then quasi-monotonic effect;

− if  1 ≤  σi/μ
*
i  then non-monotonic, non-linear effect.

Finally,  the  following  heuristic  principle  has  been 

used  to  classify  the  parameters  as  most  important 

(MIP) and least important (LIP):

− MIP: the first  n parameters in order of importance 

having a Root Sum of Squares (RSS, Equation 4) of 

their singular effects  less or equal to 99% of the 

total amount;

− LIP: the remaining parameters having any sort of 

effect.

Analysed cases

In  order  to  perform  the  analysis  two  cases  from 

iSBEM's  installation  package  (iSBEM  2012)  have 

been considered:

− Approval case 1 (Case 1);

− Example building - Complete (Case 2).

A brief description of the main features  of the two 

buildings follows.

“Approval  case  1”  is  a  small  one-storey  building 

containing  offices  and  a  workshop,  with  402.6  m2 

floor area and 2.8 metres high. It has just one thermal 

zone and it is provided with some renewable energy 

system  including  a  solar  energy  system  (SES), 

photovoltaic panels (PV) and a wind turbine (WT).

Heating is provided by fan-coils and LTHW boiler 

fuelled by natural gas, while cooling is supplied by 

an  air  cooled  chiller  powered  by  grid  supplied 

electricity. The hot water system (HWS) is a stand-

alone  water  heater  which  is  also  powered  by  grid 

supplied electricity.

“Example  building  –  Complete”  is  larger  than  the 

previous case and contains many different activities. 

It is developed on two floors. On the ground floor are 

located  a  supermarket  and  coffee  shops  while  the 

first floor is dedicated to offices. The total floor area 

is 2900 m2  and each floor has a rectangular shape 

with dimensions 50x30x3 metres. It is composed of 
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Table 1

Considered macro-parameters, for Case 2, uncertainty distribution and parameters and their typology

(where s indicates the standard deviation as percentage of the mean, ±Δ the lower and upper limit of even distributions as  

percentages of the mean, MIP the most important parameters, FIXED-LIP the least important parameters to which a fixed  

value can be attributed and APPROX-LIP the least important parameters definable within ranges – as identified later in the  

paper)  

MACRO-PARAMETER  ID DISTRIBUTION UNCERTAINTY 

FACTOR SETS

CL

AS

S
% 0 1 2

External wall U-values (W/m2K) 1 normal s 15 15 15 M

I

PInfiltration at 50 Pa (m3/m2h) 20 normal s 30 30 30

Lighting circuits wattage (W) 22 even ±Δ 10 10 10

Zone area (m2) 14 log-normal s 2 2 2

External wall area (m2) 38 log-normal s 2 2 2

Hot water generator seasonal efficiency 7 even ±Δ 3 3 3

Effective thermal mass (kJ/m2K ) 2 normal s 7 7 7

HVAC cooling seasonal efficiency 11 even ±Δ 3 3 3

Specific fan power of the air distribution system (W/(l/s) ) 13 even ±Δ 3 3 3

Specific fan power of the thermal units in the zone (W/(l/s) ) 19 even ±Δ 3 3 3 F

I

X

E

D

-

L

I

P 

HVAC heating seasonal efficiency 12 even ±Δ 3 3 3

Heat recovery seasonal efficiency 10 even ±Δ 3 3 3

Lighting photoelectric control parasitic power (W/m2 ) 23 even ±Δ 3 3 3

Air flow rate for mechanical exhaust ventilation (l/sm2) 16 even ±Δ 3 3 3

Specific fan power for mechanical exhaust ventilation 

(W/(l/s) )

17 even ±Δ 3 3 3

Window frame factors 40 log-normal s 2 2 2

Window aspect ratios 41 log-normal s 4 4 4

Window areas (m2) 39 log-normal s 2 10 20  A

P

P

R

O

X

-

L

I

P 

Thermal bridge Ψ-values (W/mK) 24-36 even ±Δ 10 15 20

Glazing U-values (W/m2K) 4 normal s 5 10 15

Glazing total solar transmission 5 even ±Δ 5 10 15

Glazing total light transmission 6 even ±Δ 5 10 15

SES storage volume  (m3) 9 log-normal s 3 15 30

SES panel areas (m2) 8 log-normal s 3 10 20

External wall lengths (m) 37 normal s 1 5 10

External door areas (m2) 42 log-normal s 2 10 20

Internal wall U-values (W/m2K) 3 normal s 15 20 25

Lengths of the hot water system pipework in the zones (m) 21 normal s 1 5 10

Zone height (m) 15 normal s 1 5 10

Internal wall lengths (m) 43 normal s 1 5 10

Internal wall areas (m2) 44 log-normal s 2 10 20
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19 thermal zones, served by an HVAC system and an 

HWS.

The HVAC system is a single duct VAV, powered by 

an electric ground source heat pump, and equipped 

with a heat recovery unit, which provides heating and 

cooling.  The HWS is  a  dedicated  hot  water  boiler 

fuelled by natural gas. The building is also equipped 

with a solar hot water system.

The  parameters  characterising  the  two  building 

models have been collected and grouped in order to 

create  comparable  macro-parameters.  For  example 

all  the  areas  of  the  envelope  elements  have  been 

grouped and changed together during the simulations.

Thus,  for  Case  1,  56  parameters  were  considered 

grouped in 41 macro-parameters and for Case 2, 621 

parameters were taken into account and gathered in 

44 macro-parameters.

This paper focuses on the results of Case 2, which is 

considered the more exhaustive one.

Table 1 gives an overview of the considered macro-

parameters  for  Case  2,  which  are  discussed  in  the 

following section. 

Uncertainty analysis

A computer simulation will be subject to data input 

errors.  Errors  can  be  of  two types:  systematic  and 

random. The former can be caused by using incorrect 

data  for  the  input  parameters  or   employing  the 

wrong or incomplete model of the physical process 

(model  inadequacy).  The  latter  are  discovered  by 

measuring  the  same  quantity  repeatedly  under  the 

same conditions and,  unlike systematic errors,  they 

can not be attributed to a particular cause.

This  study  is  not  focused  on  the  accuracy  of  the 

calculation method embedded within SBEM (i.e. the 

monthly method in BS EN ISO 13790:2008) but it 

aims to estimate  the degree  of  precision needed in 

defining  the  input  variables.  Thus   the  uncertainty 

analysis  is  focused  on  the  random  errors  due  to 

measurement errors. 

Each data item has been represented through a mean 

value and another two information items: a minimum 

and a maximum value (±Δ), or a standard deviation 

(s)  and  a  probability  distribution.  This  information 

was obtained from a literature review, where it has 

been  possible to  find useful  references,  or  inferred 

through  considerations  about  the  error  propagation 

rules, driven by good sense and experience (Table 1).

The assumptions on input uncertainty will  have an 

influence  on  the  results  of  sensitivity  analysis. 

However  it  is  believed  that  the  methodology 

provided by the Morris Method is robust enough in 

that sense, although it may need confirming through 

additional analyses. 

A discussion on the uncertainty relative to the main 

parameters follows.

Dimensions can be well represented by a log-normal 

distribution with a standard deviation of 1% of the 

mean  (Corrado  and  Mechri  2009).  However,  this 

kind of distribution, for small standard deviation, can 

be  well  approximated  by  a  normal  distribution 

(Macdonald  2002),  which  is  more  manageable. 

Therefore,  dimension uncertainty has been assumed 

to be normally distributed with a standard deviation 

of 1%.

The  parameters  which  are  product  or  quotient  of 

dimensions (areas, volumes, frame factors and aspect 

ratios)  have  been  characterized  by  a  log-normal 

distribution  (Macdonald  2002) with  as  standard 

deviation the sum of the standard deviations relative 

to the parameters involved in the relationship.

Infiltration  rate  represents  a  difficult  parameter  to 

identify,  characterized  by  high  uncertainty. 

Macdonald  (2002) investigated  the  infiltration  of  a 

large  series  of  buildings  through  simulations  and 

measurements.  He  concluded  that  it  is  possible  to 

represent  this  parameter  with a  normal  distribution 

having a standard deviation equal to about 30% of 

the mean. 

To  represent  the  thermal  mass  of  a  building,  the 

calculation method uses  the effective  thermal  mass 

(CM). Its calculation follows the approach in  BS EN 

ISO 13790 (2008); further details can be  found in 

SBEM (2011).  It  can  be  represented  with  the 

following expression:

C
M
= ρ∗C

p
∗t (3)

where  ρ is the density of the material (kg/m3),  Cp is 

the  specific  heat  (J/kgK)  and  t is  the  effective 

thickness of the element (m). The physical variables 

in  the  equation  can  be  described  by  normal 

distributions. The materials have been considered dry 

and the effect  of the moisture neglected, since that, 

although  it  could  be  significant,  is  not  easy  to 

quantify. Thus it has been possible to consider errors 

equal  to  1%,  3%  and  12.5%  relatively  to  density, 

thickness and specific heat, according to Macdonald 

(2002).  Applying the error  propagation rules  it  has 

been possible to estimate a global error involved in 

the  datum equal  to  about  20%.  Thus  the  effective 

thermal  mass  has  been  represented  as  normally 

distributed with a standard deviation of 7%.

The thermal transmittance (U-value) is a function of 

the  material  conductivity,  of  the  internal  surface 

resistance (Rsi), and external surface resistance (Rse). 

Rsi can be assumed as constant since it depends on 

the  internal  environment  which  can  be  considered 

stable,  especially  in  the  quasi-steady-state  method 

within  the  Standard.  Rse,  instead,  varies  with  the 

changing  weather  conditions,  especially  wind 

velocity and direction. Hence,  it  is evident that  the 

uncertainties  related  to  material  conductivity  and 

climatic conditions should be considered. An ad-hoc 

analysis in that sense by Corrado and Mechri (2009) 

investigated  the  main  building  components  of  a 

typical house in Turin (Italy). Even though the results 

of such analysis are strictly related to that particular 
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building  they  can  be  used  to  infer  a  suitable 

distribution  and  a  standard  deviation.  Corrado  and 

Mechri (2009) found the thermal transmittances to be 

normally  distributed,  with  standard  deviation 

between 12-13% for  the external  walls,  the ground 

floor and the roof, and equal to about the 3% for the 

glazing components. In order to generalize these data 

and after having considered the results provided by 

Dominguez-Munoz  et  al.  (2010),  the  values  were 

approximated  to  15% for  walls,  ground floors  and 

roofs and to 5% for the glazing elements.

SBEM follows the methodology explained in the BS 

EN  ISO  10211  (2007)  to  calculate  the  effects of 

thermal  bridges.  The uncertainties  relative  to  these 

elements  are  great  and  of  a  different  nature. 

Furthermore very few studies have been done in that 

sense.  An  interesting  experiment  is  described  by 

Martin et al. (2012). They compared the results from 

a calculation done following the  BS EN ISO 10211 

(2007) method, against the measurements relative to 

a guarded  box experiment.  The difference  between 

the two was about 8%. This has been assumed as the 

possible  error  involved  in  the  definition  of  the 

thermal  bridge  linear  transmittances  (Ψ-values). 

These  parameters  were  represented  by  an  even 

distribution  with Δ = ±10%.  

The building services (mainly HVAC and HWS) are 

described  through  their  seasonal  efficiencies.  This 

parameter is a cumulative function of the generator 

efficiency and the distribution system losses during a 

typical heating or cooling season. The former has to 

be  input  by  the  assessor,  while  the  latter  are 

characterized by choosing the right class depicted by 

the  CEN  classification.  Therefore  only  the 

uncertainty  in  generator  efficiency  was  considered. 

Unfortunately in this case it has not been possible to 

collect  detailed  information  for  each  system. 

However  the  Standard  BS EN 303-5  (1999) states 

that, for boilers, the efficiency has to be determined 

within  a  tolerance  of  ±3  %.  This  value  has  been 

confirmed by other studies (Heo et al. 2012) and has 

been considered suitable to represent the uncertainty 

relative to the seasonal efficiency of generators.  

Simulation process

The Morris  Method and  the  Monte  Carlo Analysis 

were  implemented  in  R  and  Python  scripts  and 

applied to the two considered cases.

The work-flow followed the steps listed below:

1. The  Morris  Method  was  run  according  to  the 

defined uncertainties (Table 1: uncertainty SET-0) 

and the ee for each input parameter was calculated.

2. For  each  SBEM  output  the  variables  were 

classified and ordered following the classification 

suggested by Garcia Sanchez et al. (2012)  defined 

previously.  The  MIP  and  LIP  were  determined 

according  to  the  heuristic  principle  described 

previously.

3. By comparing the results achieved in the previous 

step, two general sets of MIP and LIP were defined 

for  each  one  of  the  two  models.  In  turn,  these 

general  lists  were  integrated  in  order  to  achieve 

sets of MIP and LIP applicable in both the cases 

(Table 1).

4. Three  Monte  Carlo  simulations  involving 

variations respectively in all the inputs, MIP and 

LIP were run, in order to confirm the findings from 

the former step (Table 1: uncertainty SET-0).

5. The  possibility  of  approximating  the  LIP  was 

investigated by dividing these parameters into two 

groups: 

a. FIXED-LIP: coefficients  mainly relative to the 

building services, for which the uncertainties are 

low and suitable approximated values could be 

easily  found  through  technical  specification  or 

literature (Table 1);

b. APPROX-LIP:  physical  properties  and 

dimensions  of  secondary  importance  for  the 

models,  which could be  defined  within certain 

ranges (Table 1).  

6. The  uncertainties  relative  to  the  APPROX-LIP 

were  increased  as  shown  in  Table  1,  obtaining 

three  sets  of  uncertainty  values  (table  1:  SET-0, 

SET-1 and SET-2).

7. Monte  Carlo  simulations  for  SET-1  and  SET-2 

were run.

In order to  verify the global linear character  of the 

calculation method, the overall standard deviation of 

the unscaled SBEM output (energy demand, energy 

consumption,  asset  rating) provided  by  the  Monte 

Carlo  simulations  were  compared  against  the  Root 

Sum of Square (RSS) of the singular effects relative 

to the parameters:

RSS=√∑i=1

n

x̄i∗s% , i∗μns,i
* (4)

where  x̄
i is  the  input  (mean)  value  of  the  i-th 

variable,  s%,i is the standard deviation as percentage 

of  the mean of the i-th variable, μ*
ns,i is the μ*

i of the 

elementary  effects  for  the  i-th  variable  calculated 

from unscaled inputs and outputs.  

RESULT ANALYSIS

In  this  section  the  results  relative  to  total  energy 

demand, consumption and building asset rating will 

be discussed. These outputs are defined as follows.

The energy demand is the energy need for  heating 

and cooling. In particular the heat to be delivered to 

or extracted from a conditioned space to maintain the 

intended temperature during a given period of time. 

The energy  consumption is  considered  as  the total 

consumption  due  to  heating,  cooling,  lighting,  hot 

water production and auxiliary energy (BS EN ISO 

13790:2008). The building asset rating represents the 

ratio  of the CO2 emission from the actual  building 

(BER), in comparison to a ”Standard Emission Rate” 
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(SER) multiplied by 50. SER is derived applying a 

fixed improvement  factor  to the emission from the 

”reference”  building  (iSBEM  2012,  NCM  2010, 

SBEM 2011).

In particular only the data achieved for Case 2 will be 

described  since  the  two  cases  were  in  substantial 

agreement and it is the most exhaustive one. 

Morris  Method:  total  energy  demand, 

consumption and building asset rating

The total  energy  demand (Figure  1)  showed linear 

and monotonic effects for most of the MIP.  The LIP 

behave  in  a  similar  manner,  with  the  majority  of 

them  having  a  monotonic  influence.  Non-linear 

effects  are  caused  by  glass  transmittances,  internal 

wall areas, zone areas (Ids: 4, 3 and 14). 

All  the  most  important  variables  relative  to  the 

energy  consumption  (Figure  2)  have  linear  and 

monotonic effects. Only the thermal transmittance of 

the  external  envelope  (Id:  1)  has  a  non-linear 

influence  on  the  output. Considering  the  least 

important inputs, these irregular influences are shown 

by the factors relative to the effective thermal mass, 

air  permeability  of  the  envelope,  efficiency  of  the 

heat  recovery  system,  glass  thermal  transmittances, 

external  wall  areas,  internal  wall  areas  and 

transmittances (Ids: 2, 20, 4, 38, 44, 3).

Table 2

Case 2, results from ALL, MIP and LIP Monte Carlo  

simulations ( x̄ : mean, s: standard deviation) 

OUTPUT INDEX ALL MIP LIP

Energy 

demand

s (MJ/m2) 3.758 3.566 0.872

s/ x̄ 0.016 0.015 0.004

RSS (MJ/m2) 3.390 3.336 0.054

Energy

consumption

s (MJ/m2) 4.678 4.658 0.640

s/ x̄ 0.013 0.013 0.002

RSS (MJ/m2) 4.313 4.270 0.043

Building

asset rating

s 0.581 0.594 0.000

s/ x̄ 0.016 0.016 0.000

RSS 0.439 0.434 0.005

The  number  of  non-linearities  and  non-monotonic 

effects increases for the building asset rating (Figure 

3).  All the parameters have at least a non-monotonic 

effect.

Monte Carlo Analysis: all parameters, MIP and 

LIP

The  simulations  involving  variations  in  all  the 

parameters and in the MIP have standard deviations 

very close to each other, while those regarding only 

variations  in  the  LIP  have  values  of  standard 

deviation  that  can  be  considered  negligible. 

Furthermore the RSS has been shown to be a good 

approximation  of   the  overall  uncertainty  defined 

through the Monte Carlo Analyses (Table 2).

Fundamentally  the  results  just  described  show that 

the two main models could be approximated by two 

meta-models  depending  only  upon  the  most 

important parameters without any significant loss of 

accuracy. Thus these inputs need to be defined with a 

good degree of precision, while it might be possible 

consider  the  others  (LIP)  in  an  approximate  or 

simplified way.  

Figure 2: Case 2, total energy consumption - ee from 

scaled data

Figure 3: Case 2, building asset rating - ee from 

scaled data

Figure 1: Case 2, total energy demand - ee from 

scaled data 
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Monte Carlo Analysis: increased uncertainties 

The incremented uncertainties for the APPROX-LIP, 

do  not  lead  to  any  relevant  growth  of  the  global 

uncertainties,  especially  for  Case 2.  Comparing the 

different values of standard deviation, increments are 

always less than or equal to the 1.5% of the mean 

(Table 3).

Table 3

Case 2, results from SET-0, SET-1 and SET-2 Monte  

Carlo simulations ( x̄ : mean, s: standard deviation) 

OUTPUT INDEX SET-0 SET-1 SET-2

Energy 

demand

s (MJ/m2) 3.758 3.856 4.737

s/ x̄ 0.016 0.016 0.020

Energy

consumptio

n

s(MJ/m2) 4.678 4.59 4.798

s/ x̄ 0.013 0.013 0.013

Building

asset rating

s 0.581 0.594 0.629

s/ x̄ 0.016 0.016 0.017

Final results

The previous result show that it should be possible to 

replace  the  “most  exact”  set  of  input  data  (i.e.  in 

these examples SET-0), with an “approximated” one 

(i.e.  in these examples SET-1 and SET-2),  without 

sensibly affecting the result of the calculation.

The  possible  increment  in  the  percentage  errors 

produced could be calculated as follow:

IE
%,i,n

=2∗( s
%,i,n

−s
%,i,0 ) (5)

where: 

− s%,i,0 is the standard deviation as percentage of the 

mean, relative to the probability distribution of the 

i-th SBEM output produced by the “most exact” 

set of data available; it represents the unavoidable 

amount of uncertainty;

− s%,i,n is the standard deviation as percentage of the 

mean, relative to the probability distribution of the 

i-th SBEM output produced by the “approximated” 

set  of  data;  it  represents  the  sum  of  the 

unavoidable  amount  and  the  increment  in  the 

uncertainty due to the approximations made.

For the two considered cases and approximated sets, 

the  increments  in  uncertainty  are  not  significant, 

especially for Case 2 (Table 4).

CONCLUSIONS

A series of sensitivity analyses at the local and global 

scale were carried out on SBEM, for two well known 

cases. In particular the Monte Carlo Analysis and the 

Morris  Method  were  employed,  the  former  as  a 

global method and the latter as a screening method.

It was possible to clearly identify the main influences 

of  the  model  input  factors  and  divide  the  factors 

between  most  important  (MIP)  and  least  important 

(LIP) (Table 1).

Table 4

Error increments, as percentages of the mean values,  

for the two cases and the three outputs

CASE OUTPUT SET-1 SET-2

Case 1 Energy demand 0.02 0.05

Energy consumption 0.01 0.02

Building asset rating 0.01 0.03

Case 2 Energy demand 0.00 0.01

Energy consumption 0.00 0.00

Building asset rating 0.00 0.01

At a general level the calculation method showed an 

almost  linear  character.  In  particular,  the  most 

influencing  factors  have  linear  and  monotonic 

influences  on  SBEM's  outputs.  That  is  also 

confirmed by the good agreement between the RSS 

and the overall values of standard deviation returned 

by the Monte Carlo simulations. 

The opportunity to approximate the two main models 

as  meta-models  depending  only upon the  MIP has 

been  demonstrated,  as  well  as  the  possibility  of 

considering the least important ones in a simplified 

way.  In  particular  the  LIP  parameters  have  been 

divided,  depending  on  the  kind  of  possible 

approximations, in least important parameter that are 

fixed  (FIXED-LIP  in  Table  1)  and  least  important 

parameters that can be approximated within defined 

ranges  (APPROX-LIP  in  Table  1).  In  both  cases 

studied,  considering  increased  uncertainties  for  the 

identified LIP produces negligible increments in the 

standard deviations and errors relative to the model 

responses.  

These results open the way to further simplifications 

in  the  input  procedure  in  iSBEM.  In  particular 

simplified input methods could be implemented for 

some of  the less  important  parameters,  considering 

the determined tolerable increased uncertainties. For 

example  the  window area  could  be  specified  as  a 

percentage of the wall as high, medium or low and 

the  internal  wall  areas  could  be  automatically 

calculated as functions of the internal wall length and 

height  of  the  zone,  since  any  possible  irregular 

shapes should not produce significant errors.

BRE are currently considering the results from this 

study, their applicability to a wider range of building 

typologies  and  the  potential  for  implementation  of 

some of the simplifications suggested in the paper.

More generally a methodology which employs  local 

and  global  sensitivity  analysis  techniques, 

specifically  the  Morris  Method  and  Monte  Carlo 

Analysis,  to  guide  user  interface  development  of 

energy  certification  and compliance  software  tools, 

has been presented.
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The  Morris  Method  can  effectively  and  efficiently 

identify  the  characteristics  and  the  extent  of  the 

influences for the input parameters and screen them. 

The  Monte  Carlo  Analysis  is  a  good  method  for 

assessing the effects of approximations on groups of 

parameters. It should be noticed that for calculations 

and  models  for  which  the  majority  of  the  most 

important  parameters  have  linear  or  monotonic 

effects, the results of the Monte Carlo Analysis could 

be well approximated by the Root Sum Squares  of 

the  singular  effects  involved,  saving  computational 

time.

The method described in this paper is  flexible and 

not software dependent and in addition to guiding the 

design of user interfaces, the approach could be used 

to  develop  guide  lines  for  all  the  data  input  and 

collection processes. For example the training of the 

assessors  could  be  structured  depending  on  the 

tolerable  uncertainty  values  resulting  from  the 

analysis,  so that  the focus  would be proportionally 

distributed  depending  on  the  influence  and 

importance of each input parameter.

It  should be  said  that  the  design and  definition of 

procedures  and  tools  involved  in  the  analysis  of  a 

multitude of buildings should be based on relevant 

statistically  results.  Thus  the  methodology  in  this 

paper  should  be  applied  to  a  statistically  relevant 

sample of buildings to confirm the results presented.  

Furthermore it is recognized that there is a significant 

gap  between  predicted  and  real  data.  In  future 

developments a similar approach could be adopted in 

calibration studies employing metered data in order 

to see how and to what extent different parameters 

contribute to the mismatch between predictions and 

reality.

Finally,  the  assumptions  made  in  undertaking 

uncertainty  analysis  in  terms  of  the  assumed 

distribution,  standard  deviations  and  uncertainty 

ranges could have an influence on the output of the 

Morris Method and Monte Carlo Analysis. However 

this  issue  can  easily  be  overcome,  by  defining 

suitable  uncertainty  structures  for  the  data,  in 

agreement with the various parties involved.   
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