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ABSTRACT
This paper proposes to apply the celebrated Proper Or-
thogonal Decomposition (POD) approach in order to
obtain a short-term control model for the temperature
dynamics of the borehole system. The main idea be-
hind POD-based modeling is the extraction of a set
of optimal basis functions containing the main char-
acteristics of the system from snapshots of the system
dynamics at various time instants. This way, POD al-
lows an accurate description of the heat diffusion pro-
cess where the POD modes can be used as states of the
control model. The obtained control model is used for
control of heat extraction and injection.

INTRODUCTION
Energy prices resulting from increasing energy de-
mand and decelerating supply has prompted substan-
tial interest in clean and renewable energy in the last
decades. Based on the fact that buildings account
for approximately 40% of total energy use in Europe
(EPBD, 2010) and similar percentages in the rest of
the world, development of energy efficient buildings,
heating and cooling technologies together with appro-
priate control strategies are required.
Ground coupled heat pump (GCHP) systems com-
bined with low-exergy heat emission systems have the
potential to reduce the primary energy use related to
space heating and cooling by 70% compared to con-
ventional heating and cooling systems. For GCHP sys-
tems with vertical borehole heat exchangers (BHE),
however, the large investment cost of the borefield rep-
resents a major bottleneck. This explains the trend to-
wards compact, hybrid GCHP systems which combine
smaller boreholes with supplementary heating or cool-
ing devices (Cullin, 2010). The control of such com-
pact, hybrid GCHP systems constitutes an important
and challenging problem both for academic and indus-
trial communities (Scott and Amanda, 2011; Ridder
et al., 2011).
Recent studies indicate the influence of the short-
time response (Partenay et al., 2011; Yavuzturk and
Spitler, 1999) and the control strategies used (Verhelst,
2012) on GCHP performances. For example, in hy-
brid GCHP systems when maximizing the share of the
heat pump or passive cooling covering the heating and
cooling loads, the fluid temperature should be respec-
tively at the lower and upper optimal bound. Current
rule-based control strategies fail to get optimal system
operation within (but close to) the physical constraints.

When operating near the temperature constraints, they
often result in an on-off cycling, which is detrimen-
tal for both the system energy performance and in-
stallation life-time. To track a fluid temperature set-
point without cycling, a closed-loop control strategy
like Linear Quadratic Regulator (LQR) is appropriate.
LQR requires a dynamic model of the system to be
controlled. In this case, we need a BHE model to pre-
dict the response of the circulating fluid temperature to
the injected or extracted heat power.

Most existing BHE models are however intended for
simulation purpose and are far too complex to used in
a control framework where a low-order linear state-
space model form is desired (Kim et al., 2011). The
first borehole control model, developed by Franke
(Franke, 1998), was obtained by model reduction of
the detailed DST-model in TRNSYS. Verhelst and
Helsen (Verhelst and Helsen, 2011) evaluated two
comparable methods: first, model reduction of a very
simple first principle numerical model-which can be
set up by hand and, second, parameter estimation of
a resistance-capacitance model using TRNSYS simu-
lation data. Monteyne et al. (Monteyne et al., 2011)
evaluated the use of rational transfer functions in the
variable

√
s to describe the diffusion process, with

the model parameters being identified from measure-
ment data. These studies, dealing with the setup of a
model predictive control (MPC) framework, aimed at
obtaining a BHE model capturing both short and long
term BHE dynamics. As a result, there is a tradeoff in
these models in terms of accuracy when compared to
a stand-alone short-term model or a stand-alone long-
term model. Here, the focus is on modeling and con-
trol of the short-term BHE dynamics.

In this paper, we propose the Proper Orthogonal De-
composition (POD) method to obtain a reduced-order
control model for short term LQR-based circulating
fluid temperature control in a borehole. Compared to
the standard model reduction techniques, POD allows
us to focus on the fast dynamics in which we are in-
terested. Compared to system identification, POD is a
computationally less complex and physically more el-
egant technique, at least if a detailed numerical model
is available. The current study can be extended to the
more complex problem of borefiled control with hy-
brid GHP systems using more sophisticated control al-
gorithms such as MPC.
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TEMPERATURE DYNAMICS MODELING
The borehole filled with grout is shown in Figure 1
where an equivalent diameter approach is used. In the
equivalent diameter approach the heat transfer from
the U-tube is approximated by the heat transfer from
a pipe with a hypothetical diameter through which
the heat exchanging fluid circulates (Chiasson, 2007;
Javed and Claesson, 2011). The system variables are
listed in Table 1 at the end of the paper. The objective
is the determination of the circulating fluid mean-value
temperature over borehole length, Tf (t), correspond-
ing to an extracted/rejected heat per length, q(t), and
then the reverse problem of its control.

Figure 1: Borehole system.

For both the grout and the soil region the temperature
distribution is modeled by

1

α(r)

∂T

∂t
=
1

r

∂

∂r

(
r
∂T

∂r

)
, (1)

α(r) =

{
αg, if rfg < r < rgs,

αs, if r > rgs.

where αg and αs are grout and soil diffusivity, re-
spectively. Assuming that the undisturbed initial
ground temperature was T (r, 0) = T0, we can write
lim
r→∞

T (r, t) = T0, ∀t. However, assuming that at a
sufficiently large radius r = r! the effect of heat diffu-
sion is negligible, we can approximate the above con-
dition at infinity as

∂T (r, t)

∂r

∣∣∣∣
r!

= 0, ∀t.

The next step is to relate the fluid temperature Tf (t)
to the grout temperature Tfg(t) at r = rfg . As-
sume that a thermal resistance Rfg exists over the pipe
periphery between the fluid in the pipe and the near
outside grout. This thermal resistance takes into ac-
count the conduction resistance through the pipe and
the fluid convective resistance (Chiasson, 2007; Javed
and Claesson, 2011):

Rfg =
1

2πkp
ln

(
rpi

rpo

)
+

1

2πrfghf
, (2)

where kp is the pipe thermal conductivity, rpi =
rfg, rpo are the inner and outer pipe radiuses, respec-
tively, and hf , is the fluid convective heat transfer co-
efficient. For short-time response analysis and con-
sidering for example variable flow rates, the value of
hf can change significantly between laminar and tur-
bulent states but its effect on the Tf is small. The
boundary condition between the circulating fluid and
the grout is

Tf (t)− Tfg(t) = Rfgqfg, (3)

where qfg is the heat transfer at fluid-grout boundary
and Rfg is the corresponding thermal resistance. Fi-
nally, the energy balance in the pipe results in

q = πr2pi
ρfcf

dTf

dt
+ qfg, (4)

where cf is the fluid specific heat and ρf is its density.
Equation (4) is derived by assuming the fluid to be in-

compressible so that
du

dT
= cf and using the chain

rule

du

dt
=

du

dTf

dTf

dt
= cf

dTf

dt
,

where u denotes the specific internal energy. Next, we
discretisize Equation (1) using ng space nodes for the
grout region and ns nodes for the soil region as shown
in Figure 2(a). Integration of Equation (1) over a con-
trol volume in Figure 2(c) and over a time step of size
∆t gives

∫ t+∆t

t

(∫

∆V

1

α(r)

∂T

∂t
dV

)
dt

︸ ︷︷ ︸
S1

=

∫ t+∆t

t

(∫

∆V

1

r

∂

∂r

(
r
∂T

∂r

)
dV

)
dt

︸ ︷︷ ︸
S2

. (5)

Next, we will calculate the terms S1 and S2, starting
with S1. Changing the order of integration and using
backward difference in time derivative approximation
we obtain

S1 =

∫

∆V

(∫ t+∆t

t

1

α(r)

∂T

∂t
dt

)
dV =

∫

∆V

1

α(r)
(TP − TP 0) dV, (6)

where TP denotes the temperature at time t +∆t and
TP 0 at time t. Using dV = 2πHrdr, Equation (6)
becomes

S1 =
πHr2e
αe

(TP − TP 0)− πHr2w
αw

(TP − TP 0) ,

(7)
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Figure 2: Borehole discrerization.

where H is the borehole length, w and e denote the
west and east faces of an internal node P in Fig-
ure 2 (c). Now we will calculate S2. Again, using
dV = 2πHrdr, S2 becomes

S2 =2πH

∫ t+∆t

t

(∫ e

w

∂

∂r

(
r
∂T

∂r

)
dr

)
dt

=2πH

∫ t+∆t

t

[(
r
∂T

∂r

)

e

−
(
r
∂T

∂r

)

w

]
dt

=2πH

∫ t+∆t

t

[(
re

TE − TP

∆r

)
−
(
rw

TP − TW

∆r

)]
dt

=
2πH∆t

∆r

[
re(TE − TP )− rw(TP − TW )

]
, (8)

where the last equality is obtained using a fully im-
plicit scheme (taking the temperatures in the time in-
terval equal to the values at the end of the interval).
Setting S1 = S2 we obtain

aPTP = aWTW + aETE + aP 0TP 0 , (9)

where

aP =
r2e
αe

− r2w
αw

+ 2
∆t

∆r
(rw + re), aW =

2∆t

∆r
rw,

aE =
2∆t

∆r
re, aP 0 =

r2e
αe

− r2w
αw

. (10)

Equation (9) is for a general internal node P having the
neighbor nodes W and E. Nodes with boundary faces
need special treatment. Next, we will handle different
boundary conditions which are required to derive the
overall grout-soil discretization equations.

Case 1: T (rA) = TA,T (rB) = TB

For the first node with west face at rA in Figure 2(b),
we have

S1 = 2πH

∫ e

A

1

α(r)
(TP − TP 0)rdr =

πH

αe
r2e(TP − TP 0)− πH

αA
r2A(TP − TP 0).

We have

S2 =2πH

∫ t+∆t

t

(∫ e

A

∂

∂r

(
r
∂T

∂r

)
dr

)
dt

=2πH

∫ t+∆t

t

[(
r
∂T

∂r

)

e

−
(
r
∂T

∂r

)

A

]
dt

=2πH

∫ t+∆t

t

[
re

TE − TP

∆r
− rA

TP − TA

∆r/2

]
dt

=
2πH∆t

∆r
re(TE − TP )−

4πH∆t

∆r
rA(TP − TA).

Setting S1 = S2, we get

aPTP =aWTW + aETE + aP 0TP 0 + aATA

(11)

where

aP =
r2e
αe

− r2A
αA

+ 2
∆t

∆r
(2rA + re), aW = 0,

aE =
2∆t

∆r
re, aP 0 =

r2e
αe

− r2A
αA

, aA =
4∆t

∆r
rA.

(12)

For any internal node in Figure 2(b), we have the
Equations (9) and (10) repeated below:

aPTP = aWTW + aETE + aP 0TP 0 , (13)

where

aP =
r2e
αe

− r2w
αw

+ 2
∆t

∆r
(rw + re), aW =

2∆t

∆r
rw,

aE =
2∆t

∆r
re, aP 0 =

r2e
αe

− r2w
αw

. (14)

For the last node with east face at rB in Figure 2(b),
we have

S1 = 2πH

∫ B

w

1

α(r)
(TP − TP 0)rdr

=
πH

αB
r2B(TP − TP 0)− πH

αw
r2w(TP − TP 0).

Proceedings of BS2013: 
13th Conference of International Building Performance Simulation Association, Chambéry, France, August 26-28

- 2054 -



Next, we obtain S2 as

S2 =2πH

∫ t+∆t

t

(∫ B

w

∂

∂r

(
r
∂T

∂r

)
dr

)
dt

=2πH

∫ t+∆t

t

[(
r
∂T

∂r

)

B

−
(
r
∂T

∂r

)

w

]
dt

=2πH

∫ t+∆t

t

[
rB

TB − TP

∆r/2
− rw

TP − TW

∆r

]
dt

=
4πH∆t

∆r
rB(TB − TP )−

2πH∆t

∆r
rw(TP − TW ).

Setting S1 = S2, we get

aPTP =aWTW + aETE + aP 0TP 0 + aBTB , (15)

where

aP =
r2B
αB

− r2w
αw

+
4∆t

∆r
rB +

2∆t

∆r
rw, aW =

2∆t

∆r
rw,

aE = 0, aP 0 =
r2B
αB

− r2w
αw

, aB =
4∆t

∆r
rB . (16)

Case 2: T (rA) = TA, q(rB) = 0

The equations for the first node and for the internal
nodes are the same as Equations (11)-(12) and (13)-
(14), respectively. For the node with east face at rB ,
we have

S1 = 2πH

∫ B

w

1

α(r)
(TP − TP 0)rdr

=
πH

αB
r2B(TP − TP 0)− πH

αw
r2w(TP − TP 0).

Next, we obtain S2 as

S2 =2πH

∫ t+∆t

t

(∫ B

w

∂

∂r

(
r
∂T

∂r

)
dr

)
dt

=2πH

∫ t+∆t

t

[(
r
∂T

∂r

)

B

−
(
r
∂T

∂r

)

w

]
dt

=2πH

∫ t+∆t

t

[
0− rw

TP − TW

∆r

]
dt

=− 2πH∆t

∆r
rw(TP − TW ).

Setting S1 = S2, we get

aPTP =aWTW + aETE + aP 0TP 0 , (17)

where

aP =
r2B
αB

− r2w
αw

+
2∆t

∆r
rw, aW =

2∆t

∆r
rw,

aE = 0, aP 0 =
r2B
αB

− r2w
αw

. (18)

Temperature dynamics for combined grout-soil re-
gion
Using Equations (11)-(12), (13)-(14) and (15)-(16) in
Section with αe = αA = αw = αB = αg, rA =

rfg, TA = Tfg, rB = rgs, TB = Tgs, ∆r = (∆r)g ,
we get

xg(k + 1) = Agxg(k) +Bg

(
Tfg(k)
Tgs(k)

)
, (19)

where xg ! [Tg1 · · ·Tgng
]T . In the same way, using

Equations (11)-(12), (13)-(14) and (17)-(18) in Section
with αe = αA = αw = αB = αs, rA = rgs, TA =
Tgs, rB = r!, qB = 0, ∆r = (∆r)s, we get

xs(k + 1) = Asxs(k) +BsTgs(k), (20)

where xs ! [Ts1 · · ·Tsns
]T . From the continuity of

heat flux at r = rgs, we have

−kg
Tgs − Tgng

(∆r)g/2
= −kg

Ts1 − Tgs

(∆r)s/2
,

which when combined with Tgng
= Cgng

xg and Ts1 =

Cs1xs, where Cgng
= [0 0 · · · 1]T ∈ Rng , Cs1 =

[1 0 · · · 0]T ∈ Rns , gives

Tgs =
kg(∆r)sCgng

xg + ks(∆r)gCs1xs

kg(∆r)s + ks(∆r)g
. (21)

Using Equation (21) in Equations (19) and (20), par-
titioning Bg as Bg = [B1

g B2
g ] and defining x !

[xg xs]T , we obtain the combined grout-soil tempera-
ture dynamics as in (22) at the top of page 5.

Mean-value temperature prediction of the circulat-
ing fluid
In addition to Equation (3), we can write another ex-
pression for qfg as

qfg = −kg
A

L

dT

dr

∣∣∣∣
r=rfg

∼= −4πkgrfg
Tg1 − Tfg

(∆r)g
.

(23)

Using Equations (3) and (23), we obtain

Tfg =
1

1 + kfg
Tf +

kfg
1 + kfg

Tg1

=
1

1 + kfg
Tf +

kfg
1 + kfg

Cg1x, (24)

where the temperature at the first grout node, Tg1 , is
expressed as Tg1 = Cg1x with Cg1 = [1 0 · · · 0]T ∈
Rng+ns and

kfg =
4πkgRfgrfg

(∆r)g
.

Using Equation (24), Equation (22) becomes

x(k+1) =

[
A+

kfg
1 + kfg

BCg1

]
x(k)+

1

1 + kfg
BTf .

(25)

Now, using Equation (24) in Equation (3) we get

qfg =

kfg
1 + kfg

(Tf − Cg1x)

Rfg
. (26)
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x(k + 1) =





Ag +
kg(∆r)s

kg(∆r)s + ks(∆r)g
B2

gCgng

ks(∆r)g
kg(∆r)s + ks(∆r)g

B2
gCs1

kg(∆r)s
kg(∆r)s + ks(∆r)g

BsCgng
As +

ks(∆r)g
kg(∆r)s + ks(∆r)g

BsCs1




x(k) +B1

gTfg(k)

!Ax(k) +BTfg(k). (22)

xsys(k + 1) =





1− ∆tkfg
(1 + kfg)Rfg(2πr2pi

ρfcf )

∆tkfg
(1 + kfg)Rfg(2πr2pi

ρfcf )
Cg1

1

1 + kfg
B A+

kfg
1 + kfg

BCg1




xsys(k) +

∆t

2πr2pi
ρfcf

u(k),

!Asysxsys(k) +Bsysu(k), y = Tf = [1 0 · · · 0]xsys ! Csysxsys. (28)

Using expression Equation (26) and discretisizing (4)
(with the same time discretization step size ∆t) we get

Tf (k+1) =

[
1− ∆tkfg

(1 + kfg)Rfg(2πr2pi
ρfcf )

]
Tf (k)

+
∆tkfg

(1 + kfg)Rfg(2πr2pi
ρfcf )

Cg1x+
∆t

2πr2pi
ρfcf

u,

(27)

where u = q. Finally, letting xsys = [Tf x]T , we can
write the combined system of Equation (27) and (25)
as in Equation (28) at the top of page 5.

POD-BASED MODEL REDUCTION
In this section we will give a summary of the model
reduction problem by POD and its solution. The in-
terested reader is referred to (Holmes et al., 1996)
for details. Let H be an N -dimensional Hilbert
space with an orthonormal basis {fi}i∈I where I =
{1, 2, · · · , N}. Let H1 and H2 be a complemnetary
orthogonal decomposition of H with the correspond-
ing basis functions {fi}i∈I1 and {fi}i∈I2 , respectively.
Any element f ∈ H can be written as

f =
∑

i∈I1
aifi +

∑

i∈I2
aifi = f1 + f2, (29)

where the coefficients ai =< f, fi > are the Fourier
coefficients. This decomposition has the following
properties:

• ||f − f1||2 = ||f2||2 =
∑

i∈I2
a2i ,

• ||f − f2||2 = ||f1||2 =
∑

i∈I1
a2i ,

• f1 = argmin
f0∈H1

||f − f0||,

• f2 = argmin
f0∈H2

||f − f0||,

where ||·|| is the inner product-induced norm. The ge-
ometric meaning of the last two properties is that f1
is the best approximation of f in H1 and f2 is that
of f in H2. The objective is the “optimal” projec-
tion of f onto H1. For that, first an order complexity
function co : H → Z+ is defined as the number of
nonzero Fourier coefficients in Equation (29). Next,
we define the misfit function dmf : H × H1 → R+

as dmf (f, f1) ! ||f − f1||. Then, the optimal projec-
tion problem can be stated as follows: given f ∈ H of
complexity order co(f), find f1 ∈ H1 with complexity
order co(f1) ≤ co(f) such that dmf (f, f1) is mini-
mal. The solution of this problem is as follows. If the
Fourier coefficients {a1, a2, · · · aN} are ordered as

a2i1 ≥ a2i2 ≥ · · · ≥ a2ico(f1)
≥ · · · ≥ a2iN ,

then the optimal projection f1 onto H1 is given as

f̂1 =

co(f1)∑

j=1

aijfij , (30)

where hat denotes the projection and

dmf (f, f1) =
N∑

j=co(f1)+1

a2ij .

So far we considered the optimal projection of a sin-
gle vector f ∈ H onto H1. Next, we will consider
the extended problem of optimal projection of a set of
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vectors onto H1. To deal with this kind of problem, let

Fsnap =

[
f(t1) f(t2) · · · f(tn)

]
,

where f(ti) ∈ H, ti ∈ T, i = 1 : n and T is a time
interval. For each of f(ti), we can write

f(ti) =
N∑

j=1

aj(ti)fj ,

where aj(ti) =< f(ti), fj >. Fsnap is a snapshot
matrix whose columns are values of f at a sequence of
time points. The complexity function in this extended
case is defined as

co(Fsnap) ! max card
ti∈T

{
aj(ti) "= 0; 1 ≤ j ≤ N

}
.

The problem of optimal projection of Fsnap onto H1

can be stated as follows: given Fsnap of complex-
ity order co(Fsnap), find F 1

snap with complexity order
co(F 1

snap) ≤ co(Fsnap) such that dmf (Fsnap, F 1
snap)

is minimal. The solution of this problem is as follows.
If the Fourier coefficients

{
aj(t)

}
are averaged over

time sequences ti and the averages are ordered as

ā2i1 ≥ ā2i2 ≥ · · · ≥ ā2ico(F1
snap)

≥ · · · ≥ ā2iN , (31)

where the bar denotes the average, then the optimal
projection of Fsnap onto H1 is given as

F̂snap(ti) =

co(F
1

snap)∑

j=1

aij (ti)fij , 1 ≤ i ≤ n, (32)

where

dmf (Fsnap, F
1
snap) =

N∑

j=co(F 1
snap)+1

a2ij .

From the results up to this point we see that the optimal
projection problems are solved by ordering the Fourier
coefficients or their averages. However, Fourier coef-
ficients depend on the chosen basis functions. There-
fore, the next problem is the determination of the op-
timal orthonormal basis (optimal in the sense of min-
imizing the misfit between Fsnap and F 1

snap among
all other candidate bases) {fj} from a snapshot matrix
Fsnap and then order the averages of Fourier coeffi-
cients to find the optimal projection for a given order.
The solution steps of this optimal basis problem are as
follows (See for example, (Holmes et al., 1996)):

• step 1: Construct the snapshot matrix from ob-
servations at a sequence of time points:

Fsnap =

[
f(t1) f(t2) · · · f(tn)

]
.

• step 2: From Fsnap construct the correlation
matrix Ccor:

Ccor =
1

N
FsnapF

T
snap.

• step 3: Solve the eigen-value problem

CcorΦ = ΦΛ,

where Λ = diag
(
λ1, λ2, · · · ,λN

)
% 0 and Φ

is an orthogonal matrix.
• step 4: Let φi be the i-th column of Φ, i ∈ I.

Then, {φi}i∈I is the optimal basis, which is
called the POD basis in the literature.

REDUCED-ORDER MODELING OF
BOREHOLE DYNAMICS USING POD
BASIS
Letting H to be the ng + ns + 1-dimensional Eu-
clidean space Rng+ns+1 containing xsys(tk), we
will determine a POD basis from a set of values
of xsys and then use it to obtain a reduced-order
model for the typically large-scale system in Equa-
tion (28). The associated snapshot matrix is Fsnap =[
xsys(t1) xsys(t2) · · · xsys(tn)

]
. Next, N eigen-

values are ordered and then the following sequence is
constructed:

Pr =

r∑

i=1

λi

N∑

i=1

λi

, r = 1, · · · , N. (33)

Since eigen-values are positive, we have 0 < P1 ≤
P2 ≤ · · · ≤ PN = 1. The truncation degree r is cho-
sen based on the value of Pr and it should be large
enough to capture the system dynamics. Typically r
is chosen such that Pr

∼= 0.99 (Holmes et al., 1996).
The reduced-order model is obtained using the state
transformation xsys = Φrxsysr , where r is the trun-
cation order in Equation (33), Φr ∈ R(ng+ns+1)×r

represents the first r columns of Φ and xsysr is the
reduced-order system state vector. The reduced-order
system is given as

xsysr (k + 1) =Asysrxsysr (k) +Bsysru(k), (34a)
y =Csysrxsysr (k) (34b)

where Asysr = (ΦT
r Φr)−1ΦT

r AsysΦr, Bsysr =
(ΦT

r Φr)−1ΦT
r Bsys and Csysr = ΦrCsys.

REDUCED-ORDER MODEL VALIDATION
Next, we apply the POD approach to obtain a reduced-
order model for the overall system presented by Equa-
tion (28) and then show its validation. To that end,
we divide the grout region into 20 nodes and the soil
region into 500 nodes. Other assumed parameter or
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property values are given in Table 1. The time discreti-
sation step size is 1 second. The system in Equation
(28) is excited by a multi-sine random power input in
the range of [−500 500]W/m and the simulation pe-
riod is 200 hours. Snapshots are created at every 500
seconds. The initial temperature for the field is as-
sumed to be 10 ◦C. The eigen-value plot of Ccor is
given in Figure 3 and based on it the selected order of
the reduced-order model is 5.

0 100 200 300 400 500 600
10−70

10−60

10−50

10−40

10−30

10−20

10−10

100

1010

Ei
ge

n−
va

lu
es

n−th eigen−value

Figure 3: Eigen-values of correlation matrix.

For validation another multi-sine random power input
in the range of [−500 500]W/m is created and the cir-
culating fluid mean-value temperatures are compared
in Figure 4. As seen, the performance of the reduced-
order model is very satisfactory. The thermal property
values and the pipe size-related parameter values in
Table 1 were taken from (?) where an equivalent an-
alytical form of the large-scale model given by Equa-
tion (28) was derived in the Laplace-domain and ex-
perimentally validated.
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Figure 4: Validation of reduced-order model.

HEAT EXTRACTION and REJECTION
CONTROL
The final objective is to design an LQR controller with
Kalman filter state estimator based on the reduced-
order model. The ratio of weight for penalizing track-
ing error over control input weight was selected to be
0.1. The controller is tested on the original large-scale
model. Figure 5 and 6 show the control of heat extrac-
tion and rejection through tracking of set point values
for Tf , respectively. The circulating fluid mean-value
temperature set point is 3 ◦C for the heat extraction

mode and 15 ◦C for heat rejection mode. The initial
value of the circulating fluid mean-value temperature
is taken equal to the undisturbed ground temperature,
10 ◦C. The high performance of controller is observed
from the figures.

0 10 20 30 40 50
2

4

6

8

10

time (hour)co
nt

ro
lle

d 
flu

id
 te

m
pe

ra
tu

re
  (

 °  C
)

0 10 20 30 40 50
−1000

−800

−600

−400

−200

0

time (hour)

co
nt

ro
l i

np
ut

 (W
/m

)

Figure 5: Set-point temperature control for heat ex-
traction.
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Figure 6: Set-point temperature control for heat rejec-
tion.

CONCLUSIONS AND FUTURE WORK
In this paper, a reduced-order control model for short-
term prediction of circulating-fluid mean-value tem-
perature in borehole heat exchangers was derived us-
ing a POD model order reduction technique. The main
advantage of POD is that it is derived based on the
governing mathematical equation of the system dy-
namics instead of using an input-output framework.
As a result, it is possible to obtain a very low-order
model with a good performance, as illustrated here.
The borehole system was decomposed into 521 nodes
or states where the first state corresponded to circu-
lating fluid mean-value temperature. Hence, the or-
der of the large-scale system describing the heat trans-
fer dynamics was 521. The reduced-order model was
fifth order, giving almost the same performance as
the original one. Next, the reduced-order model was
used to control the circulating fluid mean-value tem-
perature set point values for heat extraction and re-
jection modes. The control algorithm was LQR with
Kalman Filter for state-estimation. In fact, the devel-
oped reduced-order modeling approach can be used
both for short-term and long-term simulation periods
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by taking the snapshots over the corresponding time-
periods but it is computationally efficient mainly for
short-term periods since the simulation time step-size
is 1 second. Therefore, it was used for mean-value
temperature control of circulating fluid in short-term
periods. The future extensions of the paper will be in
the following directions:

• the large-scale model including both short-and
long-term process dynamics will be obtained
with a less number of nodes by considering a
nonuniform grid size where the grid size in-
creases from the grout region towards the far
away soil region.

• the heat transfer in the vertical direction will
be taken into account to obtain a 2-D large-
scale model and the corresponding reduced-
order model to be used for control purposes.

• by considering a set of borehole lengths, first
a corresponding set of reduced-order 2-D bore-
hole models and then a single model parameter-
ized in terms of borehole length will be obtained
from these set of reduced-order models. This
parameterized model can be used to determine
the optimal borehole length for a given purpose.

• the above concepts will be extended to borefield
and to hybrid GHPs.

NOMENCLATURE

Table 1: Borehole system variables

Var. Descrip. Value
H borehole length (m)
αg grout diffis.(m2/s) 4.8 e− 7
αs soil diffis. (m2/s) 1.6 e− 6
kg grout conductivity (W/(mK)) 1.5
ks soil conductivity (W/(mK)) 3
kp pipe conductivity (W/(mK)) 0.47
rfg grout reg. inner rad. (m) 0.26
rgs grout reg. outer rad. (m) 0.55
rpi equival. pipe inner rad. (m) 0.26
rpo equival. pipe outer rad. (m) 0.28
r! soil reg. insulation rad. (m) 10
Tf fluid mean temperature (K)
ng(ns) "= of grout (soil) nodes 20 (500)
(∆r)g discr. step size (grout) (m) 0.014
(∆r)s discr. step size (soil) (m) 0.019
∆t time discr. step size (sec.) 1
cf fluid specific heat (J/(kgK)) 4182
hf fluid convec. coeff. (W/(m2K)) 1700
ρf fluid density (kg/(m3)) 1000
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