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ABSTRACT  
This paper utilizes a probabilistic mold risk 
assessment method, introducing a novel mold risk 
indicator (MRI). The MRI captures the risk of mold 
occurrence at identified “trouble spots” under 
uncertainty. It will show how the MRI can enhance 
decision-making in a mold remediation case. When 
used in decision making under uncertainty, the MRI 
enables the best selection of remediation actions in 
the light of given preferences of the decision maker. 
In particular, decision makers are empowered to 
make a more rational decision based on a mold risk 
assessment that exceeds the usual deterministic 
performance evaluations. We will apply the Bayesian 
decision theory to the decision-making problem that 
involves the selection of two possible remediation 
actions in an existing building case. This approach 
demonstrates how to use additional information from 
mold simulation and uncertainty analysis in practical 
decision making problems and increasing the 
confidence of the decision maker.  
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INTRODUCTION 
In many cases, mold occurs in buildings as a result of 
local, situational, and sometimes unexpected or even 
idiosyncratic conditions during the actual occupancy 
and operation of the building. These unexpected 
behaviors are virtually disregarded by current 
deterministic simulation methods. To respond to this 
situation, Moon (2005) has developed a probabilistic 
performance indicator for mold growth by treating 
mold as a risk linked to a limit state phenomenon. 
This approach led to a so-called mold risk indicator 
(MRI). Its determination requires the extension of the 
simulation capacity offered by current standard tools 
and a reliable aggregation method that quantifies 
mold growth risk as a probability density function. 
The extended simulation capacity combines the 
different mechanisms that govern mold growth. In 
this approach, mold germination is considered the 
limit state criterion for risk. In other words, every 

time when an ambient condition persists long enough 
for germination to occur at a trouble spot, adds a unit 
of risk for mold occurrence at that spot. The analysis 
is based on a combined heat and moisture simulation 
of the whole building, along with detailed simulation 
of local conditions around trouble spots. These local 
conditions are assessed against potential mold 
occurrence risk by applying mold germination graphs. 
The local environmental conditions are calculated 
from hygrothermal models (Moon 2004). The 
functionality of current standard heat and moisture 
simulations had to be extended to account for 
additional mechanisms that affect the mold 
phenomenon. Four major categories of mechanisms 
were identified where an extension of simulation 
capabilities would be needed in order to produce 
accurate assessments. Each category represents a 
special “root cause” of mold germination as was 
found from an analysis of field data from real mold 
cases, i.e., spore source availability, substrate 
condition, HVAC maintenance and operation, and 
building detailing. Each mechanism requires a 
specific local or global simulation approach that is 
not available in the current generation of whole 
building simulation tools. In our approach they are 
accounted for in the simulation by using a 
combination of existing stand-alone simulation tools; 
each specialized in a particular domain of heat, air, 
and moisture transport. 

Another major ingredient of the MRI approach 
concerns the inclusion of uncertainty in the 
simulation. Those uncertainties are represented as 
probability distributions of values for the building 
parameters (rather than one deterministic guess). The 
uncertainties are introduced to represent our lack of 
knowledge in a range of areas, such as the natural 
variation of hygrothermal properties of building 
materials, the deviation between “as-designed” 
values and the actual “in-use” values of the 
parameters, and other sources of uncertainties in 
simulation as well. The uncertainties of each building 
parameter are expressed by upper/lower values with a 
probability distribution based on available data in the 
literature, in mathematical models, or from field 
measurements. Once the uncertainties of the 
parameters are quantified, they can be propagated 
through the set of mixed simulation runs using a 
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Monte Carlo method. In this case a special technique, 
called the Latin Hypercube Sampling method is used 
(Wyss 1998). This technique reduces the number of 
samples that would have to be computed using the 
original brute force Monte Carlo method. The 
method is particularly suited for our purpose as one 
typically has a large number of uncertain parameters 
in a mold risk assessment. The uncertainty analysis is 
based on the repeated simulation with sampled 
building parameter values, eventually providing the 
mold growth risk as an outcome in the form of a 
probability distribution at each selected trouble spot 
in a building.  

In the MRI approach the identification of the 
dominant parameters, i.e., those parameters  that have 
a major influence on mold risk, is performed using a 
parameter screening technique suggested by 
Morris(1991). Knowledge of these dominant 
parameters is vital, as they may point to the factors 
that require special attention to guarantee a low mold 
risk environment over the life cycle of the facility. 
This is especially true if it is found that large 
uncertainty in a particular parameter adds 
substantially to the uncertainty in the outcome of the 
mold risk. It can then be researched whether 
reduction of the uncertainty will reduce the mold risk. 
If that proves to be the case, one can pay special 
attention to this parameter and make sure during the 
delivery and use of the facility that this parameter is 
subjected to rigorous quality control. One example 
would be the amount of uncontrollable air infiltration 
through a curtain wall façade. From known cases of 
the application of this technology in similar projects, 
one is able to estimate that range in values of the 
leakage factor up front. If the analysis shows that this 
creates a substantially increased mold risk, one could 
check what range of the unknown leakage factor 
would be allowable. If this range cannot be 
guaranteed for the chosen curtain wall technology, 
one could decide to select another façade type or 
make other design changes. In some cases, the 
manufacturer and the installer might guarantee the 
limited range of the leakage through the facade, if 
very special care is dedicated to it. Such stipulations 
could be written into performance contracts, 
assigning the risk to increased leakage to the 
manufacturer/installer. In some case, one might find 
that a manufacturer cannot accept this risk in view of 
the inherent uncertainty in the installation and on site 
assembly of the system. In that case, one might have 
to abandon a curtain wall in the given project.  

The MRI approach has proven to be capable of 
explaining unexpected (i.e., non-deterministically 
predictable) mold growth occurrences. In many cases, 
such an unexplained and unanticipated mold 
occurrence is associated with the increased risk that 
the MRI calculation reveals. Such increased risk 
occurs as the result of combinations of parameter 

values within their uncertain range. The additional 
information from the MRI, i.e., probability 
distribution of mold risks at specific locations in a 
building is obviously the key to making provisions to 
avoid mold in the first place or remediate it when it 
has occurred.  Most importantly, one can now make 
rational decisions concerning remediation actions in 
existing buildings weighing different options against 
each other, both in terms of cost and the risk 
mitigation they deliver. In the following sections, it 
will be shown how the MRI approach empowers 
decision making in a specific mold remediation case. 
To show the value of the MRI, we utilize a decision 
theory that focuses on the decision maker (DM) in 
mold remediation, if confronted with the choice 
between discrete remediation options. 

 

DECISION THEORY 
When a DM is handed a probability distribution of a 
performance indicator (like the MRI in our case), it is 
not intuitively clear how this may influence the DM 
in reaching a (different) decision based on the 
additional information. We need a theory that enables 
us to introduce the decision makers’ preferences and 
decision criteria based on probability. For our 
purposes, we utilize the Bayesian decision theory 
(Berger 1985).  

In Bayesian decision theory, uncertainty information 
is incorporated in the DM’s preferences. The 
underlying certain rules or axioms that support the 
DM’s rationality are weighted and formulated 
explicitly in his decision process. This is a normative 
theory rather a descriptive theory (behavioral model 
of the decision process). A normative theory tries to 
construct a model that ensures how a rational 
decision maker keeps his preference over a certain 
attribute consistent in his decision-making tasks. We 
assume a completely rational way of reaching a 
decision, only influenced by the DM’s a-priori 
preferences and the information of the consequence 
of different options given to him or her. Detailed 
discussions on the underlying decision theory can be 
found in Bedford and Cooke (2001), French (1986), 
Press (1989).  

The theory of normative decision making is based on 
the concept of utility, which enables the ranking of 
available actions in order of the decision maker’s 
preference (Savage 1972). The main idea of this 
theory is as follows. If a decision maker prefers 
action a (or object a) to action b (or object b), there is 
a utility function, i.e., u(.), that representing the 
preference structure.  

 

( ) ( )a b u a u b⇔f f     (1) 
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When a decision maker is prepared to measure his 
utility values in a set of actions in a certain way, the 
action with the maximum utility is preferred. If the 
outcomes of consequences are to some extent 
uncertain, the decision maker chooses the action with 
the maximum expected utility. The decision maker’s 
preferences over available actions can be observed 
through simple physical mechanisms, e.g., a 
probability wheel (French 1986). The observation of 
his a-priori preferences regarding a specific action or 
object leads to the construction of a utility function. 
Depending on the attitude towards risk, different 
shapes of the utility curve result, e.g., different 
curves that represent a risk averse, risk prone, or risk 
neutral attitude.  

In this paper, the decision-making theory is 
demonstrated in the selection of a mold remediation 
action in an existing building. We introduce two 
different types of decision maker, one with a risk 
neutral attitude (DM 1) and one with a risk averse 
attitude (DM 2). Before applying the decision-
making theory, the decision maker should understand 
the current status of mold risk in the building under 
remediation. The next section describes the selected 
building for this study and the MRI result for the as-
is case. 

 

SIMULATION RESULTS 

MRI Approach for the as-is case 

The MRI approach is applied to an existing building 
case with mold problems. The selected building case 
is a dormitory building located in Atlanta, USA, 
where the summer climate is warm and humid and 
the winters are moderate. The building has 
experienced repeated mold infestation on the inside 
surfaces of exterior corner walls for many years. 
Although the building management team has 
repeatedly removed mold on the walls by using a 
spray application, mold has come back every time. 
Corner rooms have shown most extreme mold 
growth, while the middle rooms have not.  

Figure 1 shows the room (3.4m×5m×3m) of the 
building under study. The location of concern for 
mold growth is highlighted. In this building, the 
exterior walls are composed of brick, air cavity, and 
concrete block without insulation. Each floor has 20 
dorm rooms and a common space is located in the 
center part of every floor, where a shower facility 
and the bathrooms are located. 

Before starting the simulations, 21 uncertain 
parameters were identified in this specific case. Base 
and the lower/upper values that quantify the 
uncertainty were derived from inspections, statistical 
analysis and on-site observation (See Moon 2005 for 
details). The mixed simulation runs were conducted 

for a six months period covering the heating season 
in the Atlanta climate. The uncertainty analysis was 
conducted with a sampling size of 60 and 
propagation of the parameter uncertainties in the 
mixed simulation approach discussed earlier. As 
described in (Moon 2005) a useful unit of measure of 
the MRI is the so-called “risky day”. 

 

 

 
Figure 1 Plan of the building and the room under 

consideration 
 

The results of the analysis can be seen in Figure 2. 
The expected mean value of risky days is 33.7 and 
the standard deviation is 88.7, with median value of 
11.5. In this analysis the variation is significant as the 
coefficient of variation ( vC  = /Xσ ) is 2.63. The 
uncertainty propagation shows mold growth risks in 
all 60 samples, ranging from 1 to 110 (out of a 
potential maximum of 180 risky days), which 
predicts, theoretically, some level of mold growth in 
all possible combinations of uncertain parameters in 
this particular case. The mold risk is obviously linked 
to a couple of easily identifiable sources: the 
potentially high moisture content in the air from 
inadequate ventilation and extraction of the common 
shower and kitchen areas, and the inadequate U value 
of the un-insulated corner walls. It should be 
stipulated here that further research is needed to link 
the MRI measure to an “absolute” mold risk. Such a 
link could for instance result in the statement “if the 
probability that more than 60 risky days occur is over 
30%, the absolute risk of mold growth is 
unacceptable.” As long as this link has not been 
established, the MRI has limited use in the prediction 
of mold occurrence. However, this approach is very 
suitable to perform comparative analysis. This is 
exactly the purpose of using the MRI in the 
dormitory case. 
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Figure 2 Histogram of the performance indicator 

using the MRI approach with Latin Hypercube 
sample size of 60. 

Options for remediation actions 

In the dormitory case, we found severe mold risk 
with small probability. With the MRI result, a 
decision maker (DM) may want to know what 
possible options he/she has to reduce the mold risk in 
the given building. We assume that the following two 
options are suggested to the DM, i.e., addition of 
insulation in the cavity walls and installation of a 
new rooftop HVAC for the common space.  

In the analysis of dominant parameters in the MRI 
approach with the above as-is case, the temperature 
factor is found as one of the dominant parameters. 
Since the exterior wall have no insulation inside the 
cavity, it contributes to mold growth during the 
heating season, especially at thermal bridge locations, 
i.e., in corners. Putting insulation material in the 
cavity of the exterior wall will therefore reduce the 
mold growth risk (option 1).  

The second option is to install a rooftop HAVC that 
retrieves moist air from the common space. Since in 
the current situation, the increased moisture level 
from shower facility in the common space may 
transfer to the rooms. It may lead to high room air 
relative humidity. The consultant suggests a small 
rooftop HVAC with perfectly balanced air supply 
and return (a ventilation rate of 2 1h− ). In this case, a 
typical CAV system is installed. The HVAC system 
is assumed to run 24 hours and appropriate outside 
air flow rate is introduced to make up for exhaust air.  

The DM requests a performance study using the MRI 
approach. We assume that a thorough MRI approach 
is conducted for the two suggested remediation 
actions. In this paper, we assume that the decision 
maker is the owner of the building for the simplicity 
of the decision problem.  

 

DECISION MAKING 
This section discusses the relevance of the 
probabilistic information from the MRI approach in 
practical decision-making situations. It is a logical 
step to follow up a quantitative uncertainty analysis 
by quantitative decision analysis (Bedford 2001). 
Decision makers can make a more rational decision 
by using enhanced information, i.e. information that 
exceeds the usual “point sample” from deterministic 
performance evaluation. De Wit (2002) showed the 
relevance of uncertainty information in a simple 
decision problem in a thermal comfort analysis. We 
will apply a similar approach to the decision problem 
that involves the selection of two possible 
remediation actions in the dormitory case. 

MRI results for option 1 and 2 

The MRI assessment for options 1 and 2 will show 
the effect of each remediation action. In the 
assessment, additional uncertain parameters and 
uncertain ranges that are linked to the application of 
each option need to be considered. 

In the assessment of option 1, six additional uncertain 
parameters related to the insulation material are 
introduced with lower/upper values. These 
parameters relate to the physical properties of 
insulation materials (density, porosity, heat capacity, 
heat conductivity, diffusion resistance, moisture 
storage function). The choice of the ranges in these 
parameters also reflects that potential defects in the 
installation of the cavity insulation. The temperature 
factor (a macro factor indicating the thermal bridge 
effect) for the exterior wall with insulation material 
in the cavity is also recalculated using KOBRA 
(PHYSIBEL 2002) and has a modified range of 
lower/upper values with a 95% CI. 

In the second option, four additional uncertain 
parameters are required in relation to the rooftop 
HVAC, including outside air flow rate, zone set point 
temperature control deviation, supply air temperature, 
and supply air flow rate. The uncertainties are 
derived from an industry analysis of typical CAV 
systems and their operation in real life. 

The MRI analyses are conducted for options 1 and 2 
with a sample size of 60. Both options show 
significant reductions of the mold risk compared to 
the as-is case (Figure 3). Although both cases still 
have high upper bound of risky days, the probability 
that this occurs is much less than the as-is case.  

A lognormal distribution was found as the best fit for 
the distribution of risky days (Figure 4). Both options 
show similar distribution but option 2 has a little bit 
higher probability for higher numbers of (normalized) 
the mold risky day value. The normalized mean 
values of option 1 and option 2 are 0.04 and 0.06, 
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respectively. The obtained standard deviation is equal 
at 0.08 in both cases.  
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Figure 3 Empirical cumulative density function of the 

results of as-is, option 1 and option2 
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Figure 4 Distribution of normalized mold growth 
risky days for as-is, option 1, and option2 case  

 

The probability information about the MRI will 
support a decision maker to choose between options, 
depending on performance and other criteria such as 
costs. First and foremost, a decision maker will look 
for the guarantees that a remediation option will 
achieve the desired result. For example, the DM may 
measure the (in)effectiveness of a remediation action 
by the total probability that the normalized MRI is 
above a target value Y. This can be expressed as a 
conditional probability, i.e. P(x ≥ Y); the smaller this 
probability, the more effective the remediation action 
is expected to be. We can simply calculate this value 
for every remediation options and compare different 
options against each other. This could also be done 
for different choices of the value of Y, related to the 
risk acceptance of the DM. In this case, option 1 
results in P1(x ≥ 0.1) = 0.08 at the performance target 
value of 0.1 whereas P2(x ≥ 0.1) = 0.11 in the option 

2. The decision maker may select option 1 if that 
satisfies his performance criterion. However, as 
mentioned before, no proven criterion between a 
guaranteed mold-free buildings and mold-problem 
buildings has been established yet in terms of MRI 
distribution. Further research is required to set 
practical performance criteria, before the mold risk 
indicator can be used as an absolute guarantee or as 
the basis for a “mold avoidance” building regulation. 
Although this means that we cannot set an absolute 
performance criterion for the MRI at this time, the 
conditional probabilities introduced above can be 
used to compare options in the practical decision case. 
It informs decisions in a way that is vastly superior to 
point sample comparisons obtained from 
deterministic analyses. The next section discusses 
how this helps the decision maker in the selection of 
remediation actions. 

 

Decision making under uncertainty  

In the previous section, we introduced two alternative 
options that either decision maker can choose from to 
reduce mold growth risk in the dormitory building. 
There are two concerns that motivate the decision 
maker: (1) the adverse occupants’ health effects due 
to environmental conditions (2) the costs to procure 
the remediation action. This leads to two objectives 
that the DM tries to satisfy (1) minimize investment 
cost (X) and (2) minimize mold risk (Y). As shown, 
the mold risk in each case was expressed as the MRI 
distribution. The required cost for each action is 
quoted as $100×103 (option 1) and $60×103 
(option 2), respectively. It is assumed that there is no 
uncertainty in the projected monetary investments in 
this demonstration.  

In this example, we assume that DM1 holds a linear 
marginal utility for X (investment cost, unit: $103) 
and Y (normalized mold risk, 0 to 1). DM1 prefers 
less investment cost and less mold risky days. The 
process of elicitation of the utility function for each 
attribute is not discussed here but we assume that 
each utility function exists and can be generated from 
observations about the decision makers. Details about 
the elicitation of the marginal utility function is 
provided in (French 1986). In the establishment of a 
multi attribute utility function, the decision maker’s 
preferences are assumed to be mutually utility 
independent. When X and Y are mutually 
independent, we can calculate utility function u(x, y) 
as follows: 

 

if (x0, y0) is such that u(x0, y0) = 0, 

0 0( , ) ( , ) ( , ) ( , ) ( , )o ou x y u x y u x y k u x y u x y= + + × × (2) 
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DM1 holds the following utility function, 

 

u(x0, y0) = u(100, 0.2) = 0            (3) 

u(x1, y1) = u(0, 0) = 1               (4) 

 

From the above utility functions, we can set 0x  = 100, 

0y  =0.2, 1x = 0.0, 1y  =0.0. Since the marginal utility 
function for X is linear, the DM1’s utility function 
forms, u(x, y0) = (x, 0.2) = (100 ) /100x− , when u(0, 
0.2) = 1 and u(100, 0.2) = 0. 

In the same way, the marginal utility function for Y 
can be calculated as u(x0, y) = (100, y) = 
(0.2 ) / 0.2y− , with an assumption of u(100, 0.0) = 1 
and u(100, 0.2) = 0. DM1’s marginal utility function 
for Y is shown in Figure 5 (DM 1). 

 

 

 
Figure 5 Marginal utility functions for decision 

maker 1 (solid line) and decision maker 2 (dotted line) 
 

 By substituting  0( , )u x y  and ( , )ou x y  into the 
equation (2), we get the decision maker’s utility 
function over X and Y. 

 

100 0.2 100 0.2( , )
100 0.2 100 0.2

x y x yu x y − − − −⎛ ⎞⎛ ⎞= + − ⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

,  (5) 

 

His expected utility function is then 

{ } { } { }0.2 0.2100 100( , )
100 0.2 100 0.2

E y E yx xE u x y
⎛ ⎞− −− −⎛ ⎞= + − ⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠

, 

(6) 

 

As a result of this expected utility function, we can 
calculate an expected utility of action 1 and action 2. 

 

Action 1: { }( , )E u x y  = { }(100,0.04)E u  = 0.8 

 

Action 2: { }( , )E u x y  = { }(60, 0.06)E u  = 0.82 

 

These results suggest that action 2 is the most 
preferred action for DM 1. 

Imagine now that a decision maker (DM 2) has a 
previous experience of mold infestation in his 
buildings and became more conscious about mold 
problems. He may not want to accept even the 
slightest risk of mold in the dormitory. In this case, 
the decision maker holds a different preference over 
mold risky days from the previous decision maker. 
Let us assume this risk averse DM2 holds a utility 
function over Y as shown in Figure 5 (dotted line).  

He satisfies his building conditions if the normalized 
mold risky day is 0.05 or less in this building and 
does not take much risk that he would end up with a 
building with 0.2. He has an identical perception of 
the decision problem and shares his preferences with 
the DM1, except for his marginal utility for y. In this 
case, the marginal utility function over Y became, for 
DM2: 

 

u(x0, y) = (100, y) = 
0.2

0.15

y−
 (for y>0.05),  

(100, y) = 1 (for 0 < y ≤ 0.05),        (7) 

 

The resulting expected utility of action 1 and 2 would 
be 1.067 and 0.957, respectively. In this case, action 
1 is the most preferred action of this decision maker, 
which is more expensive but provides the smaller 
mold risky. 

The foregoing shows how additional information 
acquired from uncertainty analysis can be used for 
real decision-making problems in the context of mold 
growth. The implication of feeding uncertainty 
information into a decision-making problem is a 
significant step to use probabilistic simulation to 
support decisions. It is most important when different 
preferences and risk attitudes govern the decision 
problem, especially in limit state cases such as mold, 
when deterministic point samples do not provide any 
insight into the real risks and how they can be 
controlled by choosing different design options or 
remediation methods. 

 

y 0.2 

2 

U(y) 

0 
0.05 

1 
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CONCLUSION 
The main premise of this study is that uncertainty 
should be taken into account in mold risk evaluations, 
and that this will lead to better informed rational 
decision-making by improving the decision maker’s 
confidence in the evaluation. This study also showed 
that decision makers with different preferences might 
make a different decision in the selection of 
remediation actions in specific cases. The new 
approach provides a strong case to mold consultants 
when making recommendations about design or 
remediation options, or empowering them to make 
unbiased rational choices.  

Uncertainty analysis is rarely used in current building 
performance evaluation practice. If building physics 
consultants would start employing the quantification 
and propagation of uncertainty in their practice, it 
could be a significant step forward in finding the 
optimal response to known building deficiencies. 
Uncertainty analysis is not simple and can be quite 
time consuming, however. Tools with uncertainty 
analysis modules do not yet exist in mainstream 
practice. The tools that exist are research oriented 
and require extensive preparation and computation 
times. Libraries of quantified uncertainty in building 
materials, building and occupancy schedules, weather 
data, and other input parameters would greatly 
facilitate uncertainty analyses, but they do not exist 
yet. 
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