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ABSTRACT 

This paper presents results from a window blind 

usage field study that was conducted in California, 

USA.  In this study, the measurements of physical 

environmental conditions were cross-linked with 

participants’ window blind controlling preferences 

(n=83).  A total of seven predictive window blind 

control multivariate logistic models were derived.  

As hypothesized, the probability of a window blind 

closing event increased as the magnitude of physical 

environmental and confounding factors increased (p 

< .01).  The main predictors were window/ 

background luminance level and vertical solar 

radiation at the window.  The confounding factors 

included MRT, direct solar penetration, and 

participants’ self-reported sensitivity to brightness.  

The results showed that the models correctly predict 

between 84 – 89 % of the observed window blind 

control behavior.  This research extends the 

knowledge of how and why building occupants 

manually control window blinds in private offices, 

and provides results that can be directly implemented 

in energy simulation programs. 
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INTRODUCTION 

Research on intelligent building façade systems has 

traditionally been focused on two major goals; to 

reduce total building energy consumption and to 

continuously satisfy occupants’ comfort and 

satisfaction.  While results from previous studies 

suggest that the energy performance of office 

buildings with integrated automated window blinds 

and lighting control is superior to those with static 

glazing systems (Lee et al. 1998, Roche 2002), 

anecdotal evidence has mounted concerning 

occupants’ dissatisfaction with automated systems 

(Mahone 1989, Jain 1998, Stevens 2001).  In order to 

solve the occupants’ dissatisfaction problem, 

researchers have tried to gain more understanding on 

how and why building occupants controlling window 

blinds.   

 

Thus far, although limited in observation and 

identification methods, researchers were able to 

distinguish blind usage patterns between façade 

orientations and sky conditions (Rubins et al. 1978, 

Rea 1984, Inoue 1988, Foster and Oreszczyn 2001).  

A few studies monitored window blind movements 

and physical environmental conditions 

simultaneously.  By correlating window blind 

movement and physical environmental data, 

researchers were able to derive window blind control 

rules based on simple predictors such as solar 

radiation (Inoue et al. 1988, Newsham 1994, 

Reinhart 2001), and workplane illuminance (Vine et 

al. 1998).  Most recently, adaptive-fuzzy control, in 

which the position of window blinds are determined 

based on the optimization of multivariable predictors 

(solar radiation, visual comfort, thermal comfort) 

have been developed and simulated with a test façade 

model (Assimakopoulous et al. 2004, Park et al. 

2004). 

Even though recent algorithms include many 

variables, they are theoretically derived rather than 

derived from actual practice, and therefore their 

capacity to reflect building occupants’ preferences 

when implemented in actual buildings can be 

challenged.  Only the models from Inoue et al. 

(1988) and Reinhart (2001) were derived from actual 

observations.  Clearly, more field investigation is 

needed in order to understand the manual operation 

of window blinds.  This research, therefore, 

investigates how building occupants control their 

window blinds, focusing on the interaction between 

environmental domains that are directly regulated by 

window blinds, the lighting and thermal 

environments.  The ultimate goal of this research is 

to develop predictive manual control models that can 

be used as a function in energy simulation programs, 

and to provide the basis for the development of 

future automated shading systems that better respond 

to users’ preferences. 

METHOD 

Research Participants 

This research reports data which were gathered from 

25 building occupants (11 males and 14 females) 

who work in air-conditioned buildings in Berkeley, 

California.  All participants perform managerial or 
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clerical position within the institution and have full 

control of their window blinds despite the type of 

office they occupy (private or cubicle).  All 

participants use computer (mostly with Cathode Ray 

Tube type video display terminal) to conduct their 

daily task.  Most of research participants sat facing a 

sidewall (window wall is to their left or right) or a 

window and wall corner.  Only 20% of the total 

participants sat with their back against a window. 

Study Variables 

In this study, the dependent variable was the 

participants’ window blind closing preferences 

which was identified as want no change (0) or want 

to close (1).  For independent variables, only those 

variables that used to estimate visual or thermal 

comfort and provide a measure of the 

physiological/psychological variability of an 

individual participant or previously mentioned in 

window blind research literature were included.  

For visual comfort variables, luminance data were 

obtained from the High Dynamic Range (HDR) 

imaging program called PHOTOLUX (which is 

available as a licensed product).  The HDR images 

were captured at the seated location of each 

participant, looking toward a window wall at 1.2 m 

(4 ft) from the floor.  A detailed calibration report of 

this technique can be found Inkarojrit (2004). 

For thermal comfort variables, temperature data were 

gathered from a HOBO standalone data logger 

(HOBO H8-007-02) equipped with narrow-range 

temperature sensor cable.  Each air temperature (Tair) 

sensor probe was housed inside a cylindrical Mylar 

radiation shield (1.5- inch diameter) to protect the 

probe from direct radiation gain.  For globe 

temperature (Tglo), each temperature sensor probe 

was placed inside a 1.5 in. (38mm) matte gray ping 

pong ball.  The HOBO data logger and temperature 

probes were mounted to a pole at 1.1 m (3.6 ft) from 

the floor in order to measure the temperature at the 

neck position of a normal person in sitting position.  

Mean Radiant Temperature (MRT) values were 

approximated from the globe and air temperature.  

The equation for MRT under still air was: 

]2)[( ⋅−+= airgloair TTTMRT   (1) 

In addition, this research monitored the vertical solar 

radiation in which the pyranometer was mounted to 

the interior face of the window glass at 

approximately 1.22 m (4 ft) from the floor (see 

Figure 1). 

Accounting for physiological and psychological 

differences between individuals, the seven-point 

scale variable called self-reported sensitivity to 

brightness (Lsen) was generated.  Another variable 

that was analyzed is the presence of direct solar 

penetration (Disun). 

 

 

Figure 1 Location of the pyranometer that was 

mounted to the interior face of the window glass at 

approximately 1.22 m (4 ft) from the floor. 

Experimental Procedure 

Each participant was surveyed 1 to 4 times within 

one-day period (at approximately every 2 hours).  

The research protocol includes opening window 

blinds at building occupants’ workstation at the 

beginning of the test.  After a brief period of 

adaptation (5-10 minutes), participants were asked to 

rate their preference for window blind movement 

(want no change or want to close) on a web-based 

survey.  The window blind closing preferences were 

crossed check with an actual window blind 

movement that was monitored with a string 

potentiometer which was attached to the bottom of 

the blind.  Physical environmental data at the time of 

the survey were then matched with the window blind 

closing preference for further statistical analysis. 

Data Analysis 

Because of a limited number of participants, an 

applied longitudinal data analysis technique called 

the Generalized Estimating Equation (GEE), which 

takes into account within-subject covariates, was 

chosen.  Logistic models, which have been used in 

previous research to explain control behavior for 

electric lights, windows, and blinds (Hunt, 1979; 

Nicol, 2001; Reinhart and Voss, 2003), plays a major 

role in the derivation of predictive window blind 

control models in this research.  A logistic model is 

appropriate because the results can be interpreted as 

probability function or threshold value, measured at 

p = 0.5.  These characteristics are suitable for 

representing how window blinds are controlled in 

energy simulation programs and in actual automated 

blind systems. 
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Table 1 Descriptive Statistics of Selected Independent Variables by Window Blind Closing Preference 

 

 Want no change  Want to close  

Variabl

e 
Mean SD Min Max  Mean SD Min Max t value 

Lglo 2.38 0.19 2.10 2.79  2.71 0.33 2.12 3.42 4.50** 

Lwin 2.97 0.26 2.43 3.43  3.30 0.27 2.68 3.76 5.03** 

Lmxwin 3.61 0.29 3.03 4.11  4.05 0.28 3.39 4.53 6.37** 

SOL 1.21 0.35 0.61 2.03  1.74 0.52 0.71 2.55 4.25** 

MRT 72.41 2.70 68.00 79.40  74.18 3.45 64.20 82.90 2.11* 

*p < .05, **p < .01 

 

Table 2 Summary of Multiple Logistic Regression Analysis Predicting Window Blind Closing Events 

 

  Standard Regression  GEE 

No. Variable β, α R
2
 % Correct AIC  β, α Wald Statistics 

M1 Lwin -5.76 0.69 89.0 48.2  -5.82 58.67* 

 Lmxwin 5.96     6.20  

 SOL 3.30     3.29  

 Lsen 1.22     1.22  

 Constant -13.94     -14.66  

         

M2 SOL 3.09 0.62 86.3 50.8  3.22 13.82* 

 Lsen 1.22     1.22  

 Constant -8.71     -8.94  

         

M3 Lmxwin 5.19 0.53 84.0 61.3  4.87 21.77* 

 MRT 0.25     0.25  

 Constant -36.87     -35.92  

         

M4 Lmxwin 4.47 0.57 84.3 62.2  4.76 31.33* 

 Lsen 0.72     0.72  

 Constant -20.25     -20.66  

         

M5 Lglo 5.22 0.53 84.3 66.2  5.31 20.02* 

 Lsen 0.86     0.86  

 Constant -16.11     -16.35  

         

M6 Lwin 2.18 0.52 86.7 68.8  2.44 20.68* 

 Disun 1.98     1.89  

 Lsen 0.80     0.79  

 Constant -10.07     -10.87  

         

M7 Lwin 3.57 0.47 84.3 71.4  3.77 21.92* 

 Lsen 0.68     0.68  

 Constant -13.38     -14.04  

         

*p < .01 

RESULTS 

Descriptive Information 

Table 1 presents descriptive statistics for each 

independent variable by window blind closing 

preference.  A log-transformation was applied to 

each skewed variable, except for Mean Radiant 

Temperature (MRT).  The t test for independent 

means was conducted and the results confirmed 

that each environmental condition was significantly 

higher (when blinds were fully opened) when 
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participants wanted to close their blinds versus no 

change. 

Multivariate Models 

Results from the window blind usage survey that 

were conducted prior to the field study showed that 

window blind closing behavior was influenced by a 

combination of visual and thermal reasons 

(Inkarojrit 2004).  Therefore, multivariate models 

of window blind closing behavior were derived by 

using multiple logistic regression techniques.   

Table 2 summarizes the results from the two 

multiple logistic regression techniques.  Models 

were ranked based on the Akaike Information 

Criterion (AIC), a statistical model fit measure in 

which the model with the lowest AIC is considered 

to be the best..  A total of 7 multivariable logistic 

regression models were derived (p < .01).  Model 

M1 was derived by the backward elimination 

technique.  Models M2 to M7 were derived by the 

forward selection technique.  The percentage of 

correct prediction (% correct) was also used to 

justified the model’s goodness-of-fit.  The 

backward elimination model (Model M1) has the 

highest percentage of correct prediction (89.0%).  

Other multivariate models were found to have the 

lower percentage of correct prediction (84.0-

86.7%). 

In order to interpret the results, the probability of 

window blind closing event could be estimated by 

applying the regression coefficient and constant 

from Table 2 to the following equation: 
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where 

P(X) Probability of window blind closing 

α, β  estimated regression coefficients 

Using Model M2 as an example, the probability of 

window blind closing events could be estimated as 

a function of vertical solar radiation at window 

(SOL) and occupants’ brightness sensitivity (Lsen) 

from the following equation: 
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Graphical representation of this model is shown in 

Figure 2. 
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Figure 2 Model M2, logistic model of window blind closing as a function of vertical solar radiation (SOL) and 

brightness sensitivity (Lsen)
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DISCUSSION 

Selection of the Best Model 

Based on the different evaluation criteria, this study 

suggests that window blind control models can 

predict blind closing events with varying degree of 

accuracy.  To answer the question of which model 

is the best, the difference between explanatory and 

exploratory modes of model selection must be 

understood. 

In exploratory research, the goal is simply to find a 

good set of predictors.  On the other hand, in 

explanatory research, theory determines which 

variables are in the model in explanatory research.  

This dissertation was designed to be both 

exploratory and explanatory. 

As exploratory research, a total of 7 logistic models 

were derived in this paper.  Using the evaluative 

criteria, Nagelkerke’s r2 and AIC, the best model 

consists of 4 independent variables.  As 

explanatory research, limitations from the actual 

implementation will determine whether the models 

are appropriate for use.  For example, models 

which have the self-reported brightness sensitivity 

as one of the predictors may not be suitable for use 

in energy simulation programs but will likely be 

very useful in future automated blind systems. 

To answer the question of the best model, 

researchers must understand how the model will be 

used and what (or how many) parameters can or 

cannot be provided in the model.  For example, 

while the model with four predictor variables 

(Model M1) is considered to be the best, the 

computational process in an actual automated 

window blind control algorithm may be expensive 

and time-consuming.  The second best (Model M2), 

which consists of only two variables, could be 

substituted.  The two-variable models will likely to 

take less computational time while providing a 

comparably high percentage of correct predictions.  

Alternatively, if the interaction effect of window 

brightness and temperature needs to be examined, 

model M8 should be used.  Finally, researchers and 

manufacturers may consider using models with 

only one variable, which will be very easy to 

implement in current automated window blind 

control systems and energy simulation programs. 

It should be noted that the model selection criteria 

in this study were calculated from standard logistic 

regression because the output from the Generalized 

Estimating Equation (GEE) technique does not 

include any criterion for the measurement of 

strength or accuracy of the model other than the 

Wald statistics.   

Interpretation of logistic regression coefficients 

The effects of the independent variables in logistic 

regression have multiple interpretations.  This 

section discusses interpretations of logistic 

regression coefficients in terms of odds, 

probabilities and threshold value.  

1. Odds  

The odds is the ratio of the probability that an event 

will occur over the probability that the same event 

will not occur.  The odds can be expressed by the 

following equation: 

 Odds = P(X) / [1-P(X)]  (3) 

where P(X) denotes the probability of the event of 

interest, which is equal to the logistic model as 

defined in Equation 1.  The interpretation of odds 

comes from transforming the logistic regression 

coefficients by taking the exponent or antilogarithm 

of the logistic regression coefficients and predictor 

variables.   

An equivalent explanation is that the regression 

coefficient (βi) represents the change in log odds 

that would result from a one-unit change in the 

variable i when other variables are fixed.  By 

definition, a logit is a log odds, so that the 

difference between two logits is the same as the 

different between two log odds.  The interpretation 

of log odds is particularly useful if one would want 

to summarize the odds of an event for a categorical 

variable such as direct solar penetration.  This study 

found that when the direct sun is present, the 

chance of closing the blinds is 3.6 times higher than 

when there is no direct sun. 

2 Probabilities 

The second interpretation of the logistic model 

involves translating log odds or odds to 

probabilities.  Since the relationships between 

independent variables and probabilities are non-

linear and non-additive, they cannot be fully 

represented by a single coefficient.  The effects on 

probability have to be identified at a particular 

value (of an independent variable) or a set of 

values.  The choice of values depends on the 

concerns of the researcher and the nature of data. 

In this study, a few examples of window blind 

control models which express probability of closing 

as a function of predictor variables were.  By 

translating the regression coefficients into a 

probability curve, researchers can estimate a 

specific predictor value at a certain probability 

value (such as a threshold value) without complex 

calculations. 
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3 Threshold value 

The last interpretation of the regression coefficients 

is threshold value.  The threshold is a theoretical 

construct that indicates the particular stimulus value 

at which the binary variable goes from 0 to 1.  

Threshold is often defined as the stimulus value at 

the probability equal to 50% on the logistic 

function. 

In addition, because the threshold value is defined 

as the value at a specific probability (50%), it can 

be inferred that when vertical solar radiation at the 

window reaches 13 W/m2
, 50% of all window 

blinds will be closed (i.e. the average window blind 

occlusion value equal 50). 

Modeling Window Blind Movement  

Window systems in DOE-2 and EnergyPlus can 

have shading devices such as blinds, pull-down 

shades, or drapes.  Shades can be fixed or movable.  

Movable shades can be controlled by specifying a 

schedule.  In addition, the shade can be controlled 

to deploy if the trigger variable exceeds the set 

point. Basically, window blinds in DOE-2 and 

EnergyPlus can be controlled by three methods; 

1. Scheduled Controls - Fixed time schedules 

dictate when a shade is open or closed. 

2. Threshold Controls – Shades open or close 

depending on the conditions during the 

simulation 

3. Probabilistic Control - There is a probability 

that occupants respond correctly to conditions 

in the building (thresholds) and open or close 

shades accordingly. 

Example of allowed trigger variables (predictor 

variables) include solar radiation incident on the 

window and Daylight Glare Index. 

The window blind control model is incorporated 

into the daylighting module of EnergyPlus..  At the 

outermost level, the simulation manager controls 

the interactions between all simulation loops from a 

sub-hour level up through the user selected 

simulation period.   

Contribution to the Building Energy Simulation 

This study makes four major contributions to the 

building energy simulation. 

1. The window blind control models were derived 

from empirical study.  It is anticipated that by using 

the values from derived models, the window blind 

control behavior will be represented more 

accurately. 

2. In addition to the threshold value, the window 

blind control rule can be expressed as a probability 

function.  Using Model L2 as an example, all 

window blinds could be closed when the vertical 

solar radiation exceeds 15 W/m2.  However, instead 

of closing all the window blinds, a researcher can 

specify, based on the probability function, that 

when the solar radiation exceeds 15 W/m2, only 

half of the window blinds are closed. 

3. There are many alternative models to choose 

from in additional to those based only on solar 

radiation.  As mentioned earlier, the percentage of 

correct predictions increases as the number of 

parameters in the model increases.  Researchers 

may consider using models with more than one 

predictor variable to increase the simulation 

accuracy. 

4. If the distribution of occupants’ self-reported 

sensitivity to brightness is known, then differential 

control of blinds can be simulated, leading to more 

accurate prediction of energy usage. 

Implementation of control models as the basis 

for future automated window blind systems 

The major goal in this study was to provide a basis 

for the development of future automated shading 

systems that respond to the users’ satisfaction and 

preferences.  Through analysis, it can be seen that 

this goal can be realized by using the threshold 

values or probability functions that were derived 

from various window blind control models. 

Existing automated window blind systems are 

controlled by simple control rules such as time of 

day or direct solar penetration.  The threshold 

values in this study were derived from luminance, 

solar radiation, and temperature.  This enables the 

window blinds to be adjusted according to 

changing environmental and climatic variations.  

The control rules can also be applied to workspaces 

on the north façade, where there is no direct solar 

penetration. 

In addition, factors such as temperature and 

individual sensitivity to brightness could be 

integrated into the model.  This integration 

addresses the interaction effect of the visual 

environment, thermal environment, and building 

occupant, which helps the automated window 

blinds to be controlled more accurately. 

Another example of threshold value 

implementation is that the threshold value can be 

used in the procurement specification of automated 

window blind systems.  These specifications detail 

performance requirements for all aspects of a 

technology and enable manufacturers to understand 

the full scope of their involvement on a project.  

For example, one of the goals specified in the 

procurement specification for an automated 

window shade for the new New York Times 

Headquarters was to maintain a glare free 
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environment (LBNL, 2005).  To achieve this goal, 

the threshold value for the average luminance of the 

unobstructed portion of the window wall was set to 

2000 cd/m2 (reflecting the IES 1:10 luminance ratio 

between task and remote surfaces). 

Another approach to provide the basis for future 

automated shading systems is to express window 

blind control as a probability function.  Review of 

literature in the area of intelligent window blind 

control systems showed that many studies utilize 

fuzzy control systems, Genetic Algorithms, and 

neural networks to the reduce energy consumption 

(Guillemin & Morel 2001, Athienitis & 

Tzempelikos 2002, Kolokotsa 2003).  In these 

studies, window blinds were controlled based on 

threshold values or on optimization of one or more 

of the following variables: window luminance, 

solar radiation, illuminance level, solar position, 

indoor temperature, and season (Guillemin & 

Molteni 2002, Assimakopoulos et al. 2004, Park et 

al. 2004). 

Because predictors in the abovementioned studies 

can be expressed as a threshold value or degree of 

membership (in fuzzy control theory), the models 

derived in the current study can be easily 

interpreted into many usable threshold values and 

cumulative distribution functions (e.g. logistic 

functions) and probability density functions (PDF) 

for use in fuzzy control systems. 

Additional consideration for the derived models 

It should be noted that the statistical analysis 

performed in this study aims to rule out null 

hypothesis and accept research hypothesis.  As a 

consequence, a compromise between a model’s bias 

and variance versus the number of estimated 

parameters in the model were made.  In this study 

the models were derived through stepwise 

regression techniques to find the model with the 

least number of predictor parameter.  Occasionally, 

this results in an unpredictable phenomenon such as 

those shown in Figure 2 where the closing 

probability is more than 0 when there is no solar 

radiation. 

A possible explaination for this phenomenon comes 

from the window blind usage survey (Inkarojrit, 

2004) which shows that window blinds were closed 

for multiple reasons (to reduce brightness from 

window, to reduce glare, to increase visual 

privacy).  In this case, single predictor such as solar 

radiation in Model M2 may not be the best 

representative predictor that can explain the 

integration between all possible factors that 

influence the control of window blinds.  Therfore, 

future work should look into the integration of 

physical and non-physical criteria in detail. 

CONCLUSION 

This study investigated how and why building 

occupants control window blinds in private offices.  

Data were collected from participants who 

occupied offices with Venetian blinds in Berkeley, 

California.  These data supported the research 

hypothesis that the probability of window blind 

closing event was found to increase as the 

magnitude of monitored physical environmental 

conditions increase. 

In this research, seven multivariate predictive 

window blind control models were derived as a 

function of interior luminance characteristics, 

transmitted vertical solar radiation, temperature and 

direct solar penetration.  In addition, the data 

suggested that the internal psychological factor, the 

participants’ self-reported brightness sensitivity, 

influence the window blind control behavior.  With 

their probabilistic nature and simple measurable 

luminous and thermal based variables, it is 

expected that these predictive models can be easily 

implemented in the building energy simulation 

programs and provide the basis of future automated 

window blind control systems. 

The results presented in this study are merely a 

snapshot of how building occupants control 

window blinds based on a specific group of 

participants in particular climatic and contextual 

conditions.  Many factors, such as LCD screen that 

emit higher task luminance, that could potentially 

influence window blind control behaviors were not 

considered in this study.  This research concludes 

that future work is still needed to develop control 

models that maintain satisfaction while allowing 

the energy-saving potential of intelligent façade 

systems can be fully realized. 
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NOMENCLATURE 

Lwin  Average luminance of the window or 

source luminance (cd/m2) 

Lglo  Background luminance defines as the 

average luminance of the interior room 

surfaces (including window) and 

calculated as luminance averaged over the 

hemisphere of view (cd/m2) 

Lmxwin  Maximum luminance of the window 

 (cd/m2) 

Tair  Air temperature (°F) 
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Tglo  Globe temperature (°F) 

MRT Mean radiant temperature (°F) 

Lsen  Self-reported sensitivity to brightness on a 

seven-point scale ranging from lease 

sensitive (1) to most sensitive (7) 

Disun The presence of direct solar penetration 

falling on research participant 
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