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ABSTRACT 
Domed skylights are important architectural design 
elements to deliver daylight and solar heat into buildings 
and connect building’s occupants to outdoor.  However, 
most of building energy simulation programs do not 
cover such skylights to quantify their energy 
performance when installed in buildings. This paper 
presents a numerical study on natural laminar convection 
within vertically eccentric domed cavities when heated 
from the exterior surface. Both interior and exterior 
surfaces are held at uniform temperatures.  A 
commercial CFD package employing the control volume 
approach is used to solve the laminar convective heat 
transfer within the cavity.  The obtained results showed 
that the flow is mono-cellular for small and moderate 
heating intensities as depicted by the Grashof number.  
For high Grashof numbers, small vortex cells appear 
within a larger vortex cell at the lower part of the cavity. 
The multi-cellular flow increases heat transfer. The 
critical gap spacing that yields the maximum heat 
transfer was quantified for several dome profiles.  

KEYWORDS 
Natural laminar convection; domed cavity; domed 
skylight, eccentric domed cavity  

NOMENCLATURE 
k Fluid thermal conductivity 
Lmax Maximum gap thickness 
Lmin Minimum gap thickness 
L Local gap thickness 
P Pressure 
P* Dimensionless pressure 
qcond Pure conduction heat transfer 
qi Convection heat transfer from interior surface 
qo Convection heat transfer from exterior surface 
Ro Outer radius 
Ri Inner radius 
r Position radius 
r* Dimensionless position radius 
T Temperature 
T* Dimensionless temperature  
ur Velocity component in r-direction 
uθ Velocity component in θ-direction 

 
Greek Symbols 
α Fluid thermal diffusivity 
β Fluid thermal expansion coefficient 
δmax Maximum dimensionless gap thickness(Lmax/Ro) 
δmin Minimum dimensionless gap thickness (Lmin/Ro) 
δ Dimensionless local gap thickness (L/Ro) 
ν Kinematic viscosity 
θ Position angle 
θο Dome truncation angle 
ρ Fluid density 
τ Dimensionless time 
 
Dimensionless Numbers 
Gr Grashof number, [gβ(To-Ti)Lmax

3/ν2] 
Nu Nusselt number, [h Lmax /k] 
Pr Prandtl number, [ν/α] 
Ra Rayleigh number (Ra = Gr.Pr) 
Ra* Modified Rayleigh number, Eq. (15) 

 INTRODUCTION 
Domed skylights are commonly used in buildings such 
as residential, industrial and commercial buildings. They 
deliver daylight and solar heat into the indoor 
environment and connect building’s occupants to the 
outdoor environment. If properly designed, domed 
skylights may reduce the building energy usage for 
lighting, cooling and heating. Furthermore, current 
research has shown that daylighting and connection to 
outdoor have positive effects on occupants’ mood and 
wellbeing. Despite their wide spread use, the thermal 
performance of domed skylights has not been well 
understood. Current design tools such as fenestration 
product rating tools and building energy simulation 
software do not cover this type of skylights.  This paper 
addresses the natural laminar convective heat transfer in 
vertically eccentric domed skylight cavities heated from 
outside.  The inside and outside surfaces are held at 
uniform different temperatures, and the edge surfaces are 
sealed and adiabatic.  The main objectives are to 
investigate the flow pattern in the cavity, quantify the 
critical gap spacing that yields the maximum heat 
transfer, and develop correlations for the convective heat 
transfer coefficient as a function of the governing 
parameters. 
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 MATHEMATICAL FORMULATION 
A double-layer domed skylight with the eccentricity of 
(ε) is the subject of this study. The dome cavity is 
characterized by its interior and exterior radii (Ri, Ro), 
minimum and maximum gap thicknesses (Lmin, Lmax) and 
truncation angle (θ0). The interior and exterior domed 
surfaces are maintained at uniform temperatures Ti and 
To, respectively. The edges of the domed cavity are 
sealed and adiabatic. The cavity is filled with a gaseous 
fluid. The truncation angle may vary from 0o to 90o, 
covering almost flat horizontal cavities or fully 
hemispheric cavities. Since the dome is symmetric with 
respect to the Y-axis (revolution axis), the flow is 
considered two-dimensional. Figure 1 shows a schematic 
representation of a double-layer domed cavity. 

 

 
Figure 1 Schematic description of a double-layer domed 

cavity  

 

Assumptions 

The governing equations for mass, momentum and 
energy transfer balances are written in the spherical co-
ordinate system. The following assumptions are made to 
simplify the governing equations; 
 
• The fluid is incompressible, Newtonian and laminar; 
• The physical properties of the fluid are constant, 

except the density in the body force terms; 
• Boussinesq approximation is used for the buoyancy 

terms; and 
• The viscous dissipation is neglected in the energy 

equation. 

Governing Equations 

The simplified governing equations are cast in a 
dimensionless form using the following dimensionless 
variables; 
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Substituting those dimensionless variables into the 
governing equations, the resulting transient 
dimensionless governing equations reduce to: 
Continuity: 
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r-momentum: 
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θ-momentum 
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Energy: 
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Dimensionless Boundary Conditions  

The dimensionless governing equations (2) to (5) are 
subject to the following boundary conditions: the dome 
ends are sealed and adiabatic; the exterior and interior 
surfaces are maintained at uniform and constant 
temperatures and no-slip condition. The dimensionless 
boundary conditions are as follows: 
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max

*

max

min

max
0

* 11,0,0
δ

<<
δ
δ

−
δ

θ=θ=
θ∂

∂
==θ ratTUU r

   (6) 

Symmetry surface, 
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Where Lave = (Lmax + Lmin)/2 and L is the local gap 
thickness at position angle θ. 

 
 At the initial conditions (τ = 0), the fluid is assumed 
quiescent and, therefore, the heat transfer is by pure 
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conduction. The dimensionless governing equations and 
boundary conditions show that the cavity flow is 
governed by the Grashof number (Gr), Prandtl number 
(Pr), dimensionless gap spacing (δmax), the ratio of the 
minimum to maximum gap spacing (Lmin/Lmax) and 
truncation angle (θ0). 

NUMERICAL METHOD 
The control volume approach is used to discretize the 
dimensionless governing equations. A commercial CFD 
package is used to solve the discretized equations.  
The heat transfer problem was investigated for a wide 
range of geometry and boundary conditions: the Grashof 
number (Gr) varies from 103 to 107, non-dimensional 
gap spacing (δmax) varies between 0.008 and 0.5, and 
three different truncation angles (θo) of 30o, 45o and 90o. 
The ratio of the maximum to minimum gap thickness is 
fixed to Lmax/Lmin = 2.  For all geometries, different mesh 
sizes were used to ensure mesh-independent results. A 
non-uniform grid in the radial direction with finer mesh 
sizes near the walls was used to account for the 
temperature and velocity gradients near the interior and 
exterior surfaces. 
The governing equations were solved numerically using 
the implicit and segregated scheme [4]. A second order 
upwind scheme is used to discretize the momentum and 
energy equations (3) to (5).  The SIMPLEC algorithm [4] 
was used for the pressure-velocity coupling and 
PRESTO algorithm for the pressure correction, which is 
recommended for buoyancy-driven problems [5]. 

Validation of the Numerical Method 

For the model validation purposes, the results from the 
uniform gap thickness model (Lmin/Lmax = 1) are 
compared with those obtained by Laouadi and Atif [1], 
Raithby and Holand [2] and Grag [3] for concentric 
spheres when heated from inside. Table 1 shows this 
comparison.  The maximum difference between the 
present model and the other models is less than 1%. 

 
Table 1. Nusselt number for concentric spheres heated 

from inside for δmax = δmin = 0.5 

RA Present 
model 

Laouadi 
and Atif 
[1] 

Grag 
[3] 

Raithby 
and 

Hollands 
[2] 

3000 1.4180 1.420 1.4213 1.2610 
6300 1.7346 1.737 1.7393 1.5180 
10500 1.9800 1.980 1.9848 1.7248 
14000 2.1283 2.127 2.1331 1.8534 
21000 2.3511 2.345 2.3560 2.0511 
42000 2.7707 2.760 2.7761 2.4392 
91000 3.303 3.283 3.3110 2.9594 

 

EVALUATION OF HEAT TRANSFER 
The heat transfer from the interior and exterior surfaces 
of the domed cavities are evaluated as follow: 
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For cavities of non-uniform gap thicknesses, the 
conduction heat transfer is two-dimensional, which has a 
complicated equation in the spherical co-ordinate system. 
In this paper for convenience, the Nusselt number is 
defined for the interior and exterior surfaces as follows:  
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Where q’cond is the conduction heat flux of a concentric 
cavity with an average gap thickness equal to Lave = 
(Lmax + Lmin)/2.  
Under the steady state conditions, the heat transfer and 
Nusselt number at the interior surface are equal to the 
exterior surface ( NuNuNuqqq oioi ==== & ). 

RESULTS AND DISCUSSION 
The numerical results are presented when the exterior 
surface is hotter than the interior one and air (Pr = 0.72) 
is used in the cavity gap. Small, moderate and large gap 
thicknesses are the subject of this study. The flow 
reaches the steady state conditions for small and 
moderate Grashof numbers, independently of the 
truncation angles and gap thickness. For the Grashof 
number around 2.5x106, small unstable vortex cells form 
inside a big cell, which causes small oscillations in the 
Nusselt number. Figure 2 shows typical oscillations for a 
truncation angle of 30o, δmax =0.008 and Gr = 7.5x106. It 
is found that in most of the times these oscillations are 
periodic. Under such periodic transient conditions, the 
Nusselt number is averaged over two or three oscillation 
periods.  
Figure 3 shows the streamlines and isotherms for small, 
moderate and large gap cavities for two different 
truncation angles of 90o and 45o.  The Grashof number is 
fixed at 5x104. For all cases, the cavity flow reaches the 
steady-state conditions with only one vortex cell. As the 
Grashof number increases, one or more small cells form 
inside a big cell. Figure 4 shows the comparison of 
streamlines and isotherms for three different gap 
thicknesses and two truncation angles of 90o and 45o.  
For large cavity gap thicknesses (δmax > 0.2), the flow 
reaches the steady-state conditions with one small cell 
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inside a big cell for both 90o and 45o truncation angles. 
However, for moderate and small gap thicknesses, small 
multi-cells appear inside the big vortex cell. 

      

 
Figure 2 Typical oscillations in the Nuo for Gr=7.5x106, 

θo=30o and δmax =0.008  

The small vortex cells in Figure 4 are unstable. They 
form inside the big cell and move inside the cavity and 
then merge with the big cell. This behavior causes small 
oscillations in the Nusselt number, particularly for very 
high Grashof numbers. In some of the cases, depending 
on the gap thickness and truncation angle, it is found that 
the Grashof number of 7.5x106 indicates the transition to 
turbulent flow.  
Figures 5 and 6 show the variation of the Nusselt 
number (Nuo) as a function of the modified Rayleigh 
number (Ra*) for truncation angles of 90o and 45o, 
respectively. The modified Rayleigh number, which was 
first introduced by Raithby and Hollands [2], is 
expressed as follows:  
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The figures show that the changes in the Nusselt number 
as a function of Ra*1/4 depend on the non-dimensional 
gap spacing δmax for a given truncation angle. This 
dependence is more significant for the truncation angle 
of 45o.   
Figure 7 shows the effect of the gap thickness on the 
Nusselt number evaluated at Gr = 5x104, 5x105 and 
5x106 for three truncation angles of 90o, 45o and 30o.  the 
figure shows that the Nusselt number increases with the 
dome truncation angle θo. The critical gap thickness that 
maximizes the heat transfer varies with the truncation 
angle θo, dimensionless gap thickness δmax and Grashof 
number. For a truncation angle of θo = 90o the Nusselt 
number increases with the gap thickness and then 
converges to an asymptotic value. For truncation angles 
of θo = 45o   and 30o the critical gap thickness increases 
with the Grashof number.       

CONCLUSION 
Natural laminar convection in vertically eccentric domed 
skylight cavities was investigated when the exterior 

surface is hotter than the interior one.  The control 
volume approach was used with a commercial CFD 
package to solve the transient governing equations. The 
results were obtained for small, moderate and large gap 
cavities and high and low profile domes (θo = 90o, 45o 
and 30o) with a wide range of Grashof number (103 < Gr 
< 107).   For small Grashof numbers, the flow is mono-
cellular and reaches the steady state conditions, 
independently of the gap thickness and truncation angle.  
For large and moderate Grashof numbers depending on 
the   gap thicknesses and truncation angle, the flow is 
steady state and may be multi-cellular with one big cell 
and some small cells inside. The Nusselt number is 
higher for truncation angle of 90o, and it increases with 
the dimensionless gap thickness to an asymptotic value. 
For truncation angels of 45o and 30o the Nusselt number 
increases with the dimensionless gap thickness and 
reaches to the maximum value and then decreases. The 
critical gap thickness that maximizes the heat transfer 
varies with the truncation angle and Grashof number. 
The critical gap thickness increases with the Grashof 
number and gap thickness. For instance at Grashof 
number of 5x106,  the critical gap thickness for θo = 45o 
and 30o is around δmax =0.1 and 0.05 respectively.  With 
increasing the Grashof number, small cells appear inside 
a big cell. These vortex cells become stronger and bigger 
upon increasing the Grashof number. Depending on the 
truncation angle and gap thickness, at the Grashof 
number around 7.5x106 the flow might be unstable and 
gets into the transition condition to the turbulent regime.  

ACKNOWLEDGEMENTS 
This research was funded by NSERC of Canada, the 
National Research Council of Canada, the Panel for 
Energy Research and Development (PERD), BC Hydro, 
and  Natural Resources Canada. 

REFERENCES 
A. Laouadi and M.R. Atif (2001), Natural Convection 

Heat Transfer Within Multi-layer Domes, 
International Journal of Heat and Mass Transfer, Vol. 
44, pp. 1973-1981 

G.D. Raithby and K.G.T. Hollands (1998), ‘Chapter 4, 
Natural Convection’, in Hand book of heat transfer, 
Editors: W.M. Rohsenow, J.P. Hartnett and Y.I. Cho, 
McGraw-Hill, New York 

V.G. Grag (1991), ‘Natural Convection Between 
Concentric Spheres’ International Journal of Heat 
and Mass Transfer, Vol. 35(8), pp. 1935-1945 

 H.K. Versteeg and W. Malalasekera (1995), ‘An 
Introduction to Computational Fluid Dynamics the 
Finite Volume Method’, Prentice Hall  

FLUENT 6.2 Documentation (2005), Fluent 
Incorporated, Evanston, Illinois 



Proceedings: Building Simulation 2007 

- 1782 - 

 
Figure 3 Streamlines and isotherms for θo= 90o & 45o and Gr= 5x104 

 
 

 

 
Figure 4 Streamlines and isotherms for θo= 90o & 45o and Gr= 5x106  
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Figure 5 Profiles of the Nusselt number as a function of Ra*1/4 for a truncation angle of 90o 

  

 
Figure 6 Profiles of the Nusselt number as a function of  Ra*1/4 for a truncation angle  of 45o  
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Figure 7 Profiles of the Nusselt number as a function of  Ra*1/4 and gap thickness δmax. 

 
 

 


