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ABSTRACT 
Building performance simulation (BPS) is a powerful 
technique to predict the performance of a design 
proposal. It is extensively used towards the end of 
the design process to, for example, prove code 
compliance. However, its potential to provide design 
guidance early in the design process is rarely 
exploited. That is although decisions taken during 
conceptual design have a disproportionate impact on 
the final building performance, relative to time and 
effort consumed (Domeschek et al, 1994). To 
intensify the use of BPS early is to extend its 
capabilities. One issue to be addressed is the building 
performance uncertainty due to a wide range of 
plausible (uncertain) design decisions. 
A case study was conducted to evaluate the use and 
potential of uncertainty and sensitivity analysis 
techniques in BPS to support conceptual design. It 
was found that the techniques can be implemented 
with little effort. The results are promising for 
making explicit design decisions and for improving 
inter-design team communication. 
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INTRODUCTION 
Design decisions are often based on experience and 
intuition, rather than on quantitative prediction of 
performance indicators such as running costs, 
thermal comfort and CO2 emissions. This could 
potentially be facilitated with BPS. However, BPS is 
merely used towards the end of the design process, 
mostly, to demonstrate code compliance.  

Self-explanatory, early design decisions have greater 
impact than later decisions. So the aim of the work 
underlying this paper is to investigate how BPS can 
be used for decision support in earlier design phases. 
More in particular, the current objective is to assess 
the potential of uncertainty and sensitivity analysis in 
this context. 

Earlier efforts (Hopfe et al 2005) indicate that only 
few BPS tools are suitable to support practitioners 
during the conceptual design stage. LEA, prerelease 

v0.9.1, is one example of a conceptual design 
analysis tools (CDAT). It is specifically developed 
for Dutch professionals to predict instantaneous peak 
loads and annual energy demands, already, during 
the early design stages.  

Because it is meant to support early phase design, 
LEA reduces the representation of a building and its 
operation to the most crucial input variables. For 
example, the building is modeled as one thermal 
zone and walls are defined as thermal resistances 
only. 

UNCERTAINTIES IN BPS - TOOLS 
Building performance prediction is subject to 
uncertainties as; numerical-, modeling-, scenario-, 
and specification uncertainties (De Wit 2001). The 
latter two types, scenario and specification 
uncertainties are of particular importance during 
concept design. Specification uncertainties can be 
subdivided into physical uncertainties and design 
uncertainties (Figure 1).  

Figure 1, Traditional decision making process in building 
design adapted from Torcellini and Ellis (2006) 

Scenario uncertainties are imposed on a building by 
dynamic effects as occupancy pattern or external 
weather conditions. The assessment of scenario 
uncertainties provides information about the design 
robustness. Variables representing scenario 
uncertainties are the infiltration rate, internal gains 
and weather data. Scenario uncertainties have been 
excluded from the presented analysis. 

Design parameter uncertainties (i.e. window to wall 
ratio) represent a range of possible design values (i.e. 
0.5 – 1.0) with uniform probability distribution. 
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Their consideration enables practitioners to rank the 
variables impact based on their sensitivities. 

Physical uncertainties relate to physical properties of 
building materials. They are caused by differences 
between the materials thermal on site and laboratory 
performance. Variables influencing the differences 
are temperature, moisture content and aging 
processes. The consideration of physical 
uncertainties is useful to estimate the prediction error. 
Uncertainties in physical input variables are typically 
normally distributed around a mean value. 

METHODOLOGY 
A case study based investigation into the use of two 
techniques for sensitivity analysis, Morris- and 
Monte Carlo analysis, was conducted. The case study 
was based on the Bestest Case 600 (Judkoff and 
Neymark 1995). The analysis techniques were used 
to derive uncertainties and sensitivities, for both 
physical and design variables. Deviating from their 
occurrence in practice for this study they have been 
considered separately. The BPS tool, LEA was used 
as simulation model. For the purpose of the 
investigation the annual energy demand for cooling 
was chosen as performance indicator.  

Uncertainty and sensitivity analysis 
Two techniques were considered, the method of 
Morris and Monte Carlo analysis.  
The two methods are applicable to epistemic 
uncertainties, which result from inaccurate or 
incomplete information about building related model 
parameter (Helton et al 2006). 

The method of Morris is a local method. It describes 
the individual variable importance on a performance 
indicator. The impact of each variable on the 
performance indicator is expressed by its associated 
mean value and standard deviation.  

The Monte Carlo analysis (MCA) is a global method. 
It provides total uncertainties of performance 
indicators and variable sensitivities. The variable 
importance is derived from the strength of correlation 
between the variable and performance indicator. The 
stronger the correlation the more sensitive the 
variable is assessed.  

To facilitate the analysis, design variables are 
distributed across their likely range of occurrence. 
The variables range of occurrence can be determined 
by expert review or the use of published data. Due to 
the character of the study published and assumed 
values were used. 

For the MCA, the latin hypercube sampling method 
was chosen, Its advantage over other sampling 
methods is that large amounts of uncertainties and 
sensitivities can be represented with relatively small 
sample sizes.  

The computational expense depends on the number 
of samples to process with the building BPS tool. 
The sample size for the Morris analysis depends on 
the number of input variables and quantiles chosen to 
represent their distribution. 80 samples were 
processed for the Morris analysis. The minimum 
number of samples for the MCA is determined by the 
accuracy of the output standard deviation.  

Lomas and Eppel (1992) state that independent of the 
number of variables, only marginal improvements in 
accuracy can be achieved after 60 to 80 simulations. 
A test analysis did show that the limits defined can 
be confidently applied to the problem at hand.  

Figure 2, Accuracy assessment - Relationship 
between standard deviation and number of Monte 
Carlo simulations 

Figure 2, shows that the standard deviation for the 
annual cooling demand fluctuates between 10 and 50 
and stabilizes after 50 simulations.  The percentage 
difference between the standard deviation calculated 
for 60 and 100 simulation is below 5%. Based on the 
test analysis the number of samples used with MCA 
was limited to 100.  

Prototyping 

In order facilitate the uncertainty and sensitivity 
analysis a prototype was developed using Matlab 
R2006a as platform by integrating LEA and Simlab 
3.0. Simlab acts as statistical pre- and post processor, 
whilst LEA represents the calculation model to 
predict the annual cooling demand.  

Physical input variables and associated 
uncertainties 

The input variables have been selected reflecting the 
definition and purpose of the Bestest Case 600 as 
well as the limits of LEA.  

Using LEA the building definition is limited to the 
definition of the thermal resistance to describe the 
thermal performance of opaque-, and U-value, g-
value and the light transmittance for transparent 
building elements.  

Subsequently, seven variables have been selected 
representing uncertainties related to the thermal 
performance of walls, roof and glazing construction. 
The floor construction has been excluded as its 
definition is not realistic. Its high thermal resistance 
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aims to decouple the space from the influence of the 
ground.  

The variables have been normally distributed around 
their mean value. Negative values were excluded by 
truncation, where necessary (see table 1). 

Design parameter as window to wall ratio, floor area 
and building mass are fixed to 0.5, 48m2 and 
125kg/m2 respectively.  

 
Table 1, Physical variables 

 

VARIABLE MEAN
VALUE

STAND.  
DEV. 

SAMPLE
DISTRIB.

Conductivity 
of insulation, 
Wall (W/mK) 

0.04 0.016(a) Truncated  
normal 

Thickness of 
 insulation, 
Wall (m) 

0.066 0.0118 
(20%) 

Normal 

Conductivity 
of insulation, 
Roof (W/mK) 

0.04 0.016(a) Truncated  
normal 

Thickness of 
 insulation, 
Roof (m) 

0.112 0.02 
(20%) 

Normal 

Glazing, U-
value 
(W/m2K) 

3.0 0.3 
(10%) 

Normal 

Glazing, g-
value 

0.78 0.078 
(10%) 

Normal 

Glazing, light 
transmittance 

0.6 0.06 
(10%) 

Normal 

Note: Percentage values of standard deviation 
indicate assumption made based on percentage 
of mean value.                                                    
(a) derived from Clarke et al (1991) 

Input variables related to design and associated 
uncertainties 

The input variables represent example design 
problems occurring during the conceptual design 
stage. They relate to single design parameter and 
systems. Systems such as glazing types i.e. are 
represented by fixed U-values, g-values and light 
transmittances. 

Building mass is by nature no design variable. 
However, it is regarded as design variable as it is 
nowadays consciously integrated into innovative 
spatial conditioning strategies.  

The glazing system as well as standard of wall and 
roof insulation has been included to demonstrate that 
their uncertainties differ looking from the physical or 
design point of view.  

The design variables have been distributed uniformly 
as their likelihood of occurrence is equally possible. 
The same applies for the glazing systems. However, 

their representation by integers, 1 to 5, required 
discrete sampling.  

Table 2, Design variables 
 

VARIABLE VALUE 
RANGE 

SAMPLE 
DISTRIB. 

Window to 
wall ratio 

0.5 – 1,0 (a) Uniform 

Floor area 48 m2 – 72m2 (b) Uniform 
Building mass 105kg/m2-295 

kg/m2 (c) 
Uniform 

Glazing system 
(1-5) 

Low to high 
thermal 
performance (d) 

Discrete 

Wall insulation 
standard 

Minimum to  
high (e) 

Uniform 

Roof insulation 
standard  

Minimum to  
high (e) 

Uniform 

(a) One window in south facing wall. 
(b) Internal gains raise proportional to floor area. 
(c) Light weight to medium weight constructions (i.e. 
wood frame structures, steel skeleton and hollow 
core constructions). 
(d) Clear double glazed, air filled, units (6-12-6 built 
up);  U-value, g-value & Light transmittance 
according to manufacturers catalogue (Saint-Gobain 
Glass 2000) 
(e) The insulation standard is represented by the 
thermal resistance of the building element; value 
range 2.5 – 4 m2K/W. (NPR2917:2005) 

 

RESULTS 

Physical and design uncertainties 

The MCA analysis allows calculating the total 
uncertainty of the annual cooling demand caused by 
the input uncertainties. The standard deviation is 
used as uncertainty indicator. 

 

Figure 3, Probability distribution of annual cooling demand 
due to uncertainties in physical and design variables. 

 

Figure 3 shows the normally distributed annual 
cooling demand for both types of variables. Specific 
for the case study and variable selection, the standard 
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deviation, is larger for design variables than for 
physical variables by a factor of 2.5 (see table 3). 

 
Table 3, MCA – Total uncertainties due to physical 

and design uncertainties  
 

OUTPUT: ANNUAL COOLING 
DEMAND 

INPUT: 

Mean value 
(kWh) 

Standard deviation 
(kWh) 

Physical 
variables 5166.96 1037.28 

Design 
variables 6352.23 2650.04 

 

Individual sensitivities of design variables 

The method of Morris uses the variable specific 
mean value and standard deviation of the 
performance indicator as a measure of individual 
variable importance (see Figure 4). 

Figure 4, Individual sensitivity of design variables for 
annual cooling demand (Morris analysis) 

 

The data points in the upper right corner indicate 
highly sensitive variables, window to wall ratio i.e. 
Data points in the lower left corner indicate variables 
with negligible small sensitivity, roof insulation wall 
insulation standard and floor area i.e. The variables 
glazing types and building mass show an 
intermediate sensitivity. The glazing type compared 
to building mass has a higher mean values but 
smaller standard deviation.  

Total sensitivities of design variables 

The MCA uses the strength of correlation between 
variable and performance indicator as measure of 
variable importance. However, prior correlation 
analysis scatter plots are useful to assess their 
relationship. Figure 5 shows the correlation of two 
variables ,window to wall ratio and roof insulation 
standard, to the annual cooling demand.  

To derive more quantitative information about the 
correlation, multiple approaches can be found in 
literature. 

 

Figure 5, Scatter plot indicating relationship of two 
variables, window to wall ratio & roof insulation 

standard, to annual cooling demand. 
 

Such methods are i.e. correlation-, partial correlation- 
and regression analysis. Whilst the raw data can be 
used if linearity exists, rank transformed data are 
typically used in case of non-linearity. Helton et al 
(2006) propose regression analysis to determine 
model sensitivities. The standardized regression 
coefficient (SRC) was selected due to the linearity of 
the model. One advantage of the SRC over simple 
regression coefficients is that the influence of the 
variable units is eliminated.  

In MCA the coefficients themselves provide the 
measure of variable importance. The higher the 
absolute value of the coefficient associated to a 
variable the more sensitive the variable is assessed. 
The prefix corresponds to the direction of impact 
(see figure 6).  

Figure 6, Total sensitivity of design variables for annual 
cooling demand ( MCA) 

Figure 6 shows the window to wall ratio as variable 
having the biggest importance on the uncertainty of 
the output. The positive prefix of its coefficient 
indicates its positive impact on the increase of the 
annual cooling demand. The roof insulation standard 
is the least sensitive variable.  

DISCUSSION 
Both types of analysis considered, MCA and method 
of Morris, have the potential to add value to the 
conceptual design stage. The choice of the type of 
sensitivity analysis is governed by the design 
problem.  
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Early experiences did show problems conveying 
results about individual and total sensitivities to 
practitioners. The communication failed as no 
obvious relationship could be exists between 
sensitivity indicators SRC and variable specific mean 
values and standard deviations. 

It is anticipated that the communication can be 
enhanced by presenting both sets of results in one 
graph. It is proposed to replace the standardized 
regression coefficients with regression lines and 
using error bars around the mean value (see figure 7 
and 8).  

Figure 7, Design variables - Proposed combined 
presentation of individual and total sensitivities for 

annual cooling demand 
 

The angle of the regression line presents the strength 
of correlation. The bigger the angle relative to the 
horizontal the stronger the correlation is appraised. 
The inclination of the regression line relative to the 
vertical is an indicator for the direction of impact on 
the raise of the performance indicator.  

Figure 8, Physical variables - Proposed combined 
presentation of individual and total sensitivities for 

annual cooling demand 
 

CONCLUSIONS AND FUTURE WORK 
A case study based comparison was conducted to 
evaluate the potential of using uncertainty and 
sensitivity analysis techniques coupled with BPS 
tools to support the conceptual design stage. 

Uncertainty and sensitivity analysis is not limited to 
single parameters but can be used to evaluate 
sensitivities associated to architectural or building 
services systems represented by a number of discrete 
values. 

The sample distribution techniques for design and 
physical variables are different. Design variables are 
typically distributed uniformly and physical variables 
normally.  

It was found that both methods considered Morris 
and Monte Carlo analysis are with little effort to 
implement and use. 

The method of Morris provides qualitative results of 
the individual variable importance based on mean 
value and standard deviation of the performance 
indicator. However, it is not possible to determine 
the combined impact of the input variable uncertainty 
on the uncertainty of the performance indicator.  

The quantitative Monte Carlo analysis does allow 
determining the combined impact of input 
uncertainties on the uncertainty of the performance 
indicator. Furthermore, it provides total uncertainties 
of the performance indicator. However, individual 
sensitivities can not be derived.  

An operational drawback is the need to choose a 
correlation coefficient based on the linearity of the 
model. However, guidance on the subject can be 
found in literature. Here the standardized correlation 
coefficient was applied as suggested by Helton et al 
(2006). 

Due to the lack of a technique providing both 
individual and total sensitivities they were separately 
calculated and combined for presentation. 

The case study did show that the techniques used 
could potentially be useful to make implicit design 
knowledge explicit for communicative purposes. 

Future work will be dedicated to identify how 
practitioners assess the value of sensitivity analysis 
in design practice. Therefore, the case study will be 
expanded to a more realistic design problem and 
different types of uncertainties assessed to provide 
design guidance. Furthermore, attention will be given 
to the order in which the types of uncertainties need 
to be considered. 
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