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ABSTRACT 
While most current building simulation tools 
consider occupants as predictable robots the true 
nature of human behaviour is more complex. This 
article describes a set of stochastic models aimed at 
capturing this complexity by decoupling occupant 
presence from occupant behaviour, then considering 
separately each means of occupant interaction (use of 
appliances, of windows, of lighting, etc.) with the 
building and finally modeling each of these 
appropriately. The model of occupant presence is 
unique in that it generates time series that have 
proven themselves to be realistic at both hourly and 
daily time scales. That of window opening assigns 
personal levels of tolerance to each occupant who 
thereafter reacts to indoor stimuli. The appliance 
model attributes devices to a zone, then reproduces 
the typical use of these by the occupants present, 
thereby generating a realistic variety in values of 
energy consumption and peak loads. 
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INTRODUCTION 
Various factors play a part in the energy 
consumption of a building : its physical properties, 
the equipment installed to maintain the desired 
internal environment (Heating Ventilation Air-
Conditioning system, auxiliary production of 
electricity or hot water), the outdoor environment 
and the behaviour of its occupants. While relatively 
good progress has been made in the simulation of the 
first three factors, the latter has generally been based 
on fixed profiles of typical occupant presence and 
associated implications of their presence. As a result 
the randomness linked to occupants, i.e. the 
differences in behaviour between occupants and the 
variation in time of each behaviour, plays an ever 
more important part in the discrepancy between the 
simulated and real performances of buildings. This is 
most relevant in estimating the peak demand of 
energy (for heating, cooling, electrical appliances, 
etc.) which in turn influences the choice of 
technology and the size of the equipment installed to 
service the building. It is also important in predicting 
the comfort of a building’s occupants.  

State of the art 
The effects of occupants on a building’s energy 
consumption are varied: people give off heat and 
“pollutants” (water vapour, odours, CO2) that add to 
the buildings internal gains and influence the 
occupants’ comfort. Most building simulation tools 
integrate the effects of occupant presence within their 
calculations but in a very simplified way, usually 
considering all occupants to be present according to a 
fixed schedule and multiplying the number of 
occupants by fixed values of metabolic heat gain. 
Other profiles, e.g. relating to small power or 
lighting gains, may also be entered on a similar basis. 
Occupants interaction with window openings tend 
either to be defined by fixed schedules or by 
deterministic responses to physical stimuli. The most 
advanced of such inputs would be so-called 
“diversity profiles”. These summarise measurements 
made on many buildings and propose profiles for 
various categories of internal gains and types of 
buildings (Abushakra et al. 2001).  
There are however models that do not consider the 
occupant in an averaged way yet that are specific to a 
means of influence of the occupant on the building. 
In the field of daylighting, the Lightswitch software 
(Reinhart 2004) proposes a sophisticated model for 
the interaction of occupants with blinds and lighting 
systems; their presence is determined by using a 
simplified stochastic model of arrival and departure. 
In the same field Wang (Wang et al. 2005) pointed 
out the importance for such lighting models to be 
able to simulate the typical short periods of presence 
and absence of an occupant in an office. She 
proposed an elegant method based on Poisson 
distributions for the generation of realistic profiles of 
daily presence. Fritsch (Fritsch et al. 1990) was the 
first to propose a model based on Markov chains for 
the random opening of windows by occupants. This 
later inspired Tanimoto (Tanimoto and Hagishima 
2005) to use a similar model for the use of air-
conditioning systems while Nicol (2001) and Herkel 
(Herkel et al. 2005) adopted a static rather than 
dynamic approach to window opening behaviour as a 
function of external conditions based on logit 
distributions. The latest use of Markov chains to 
simulate occupant presence (and their use of 
computers) within offices of a building was 
developed by Yamaguchi (Yamaguchi et al. 2003). 
The model is integrated into a software tool 
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developed to explore the optimal way for covering a 
neighbourhood’s energy needs. Although there exists 
a platform for the integration of occupant models 
(Bourgeois et al. 2006), i.e. occupants’ presence and 
their effect on the building, there is to date no 
complete and interlinked set of models considering 
all aspects of occupant behaviour. Also, the most 
advanced published models for occupant presence 
(proposed by Wang and Yamaguchi) still neglect its 
time-dependence over a day and over a year. 

Objectives 
This article proposes such a set of stochastic models 
for the simulation of occupant presence and 
behaviour. Our aim is not to reproduce the exact 
behaviour of occupants but rather to make sure that 
each aspect of occupant behaviour that has an 
influence on a buildings’ consumption of resources 
and production of waste is reproduced in a 
statistically reasonable way. This should be useful 
for the prediction of peak energy demand, the 
temporal profile of this demand as well as the 
comfort of the occupant and her/his possible 
acceptance of integrated passive systems. 

RESEARCH METHODS 

Procedure 
The models developed can be applied to any type of 
occupants (given the corresponding inputs) as well as 
any number of buildings. Each building is broken 
down into “zones”, the unit volume in which a fixed 
number of occupants are present and with which they 
interact. One zone would correspond to a flat in 
residential buildings or an office room in commercial 
buildings. The occupants of a zone are simulated 
independently. 
The model of occupant presence is obviously the 
core model and produces an input for each of the 
behavioural models (see figure 1). The latter all use 
the time series of simulated presence (a sequence of 
zeros and ones at each time-step for each occupant of 
a zone) as an input. The behaviours considered are 
the opening of windows, the use of appliances 
consuming electricity and/or hot and cold water and 
the production of solid waste.1 Measured data was 
used for the calibration and validation of the models 
as well as their continuous development. It was 
collected within the framework of the SUNtool 
project (Robinson et al. 2003, 2007). The aim of this 
EU funded project was to develop a software tool 
capable of simulating the resource flows of urban 
neighbourhoods. The set of stochastic models 
explained here were developed to be integrated 
within this tool. 
                                                           
1 An adaptation of the Lightswitch model for the use of 
blinds and lighting appliances has also been performed. 

Model of occupant presence 
We developed this model based on the hypotheses 
that each occupant's presence is independent from 
that of any other and that the state of an occupant's 
presence at a given time-step only depends on her/his 
state of presence at the previous time-step. This last 
condition naturally leads us to the use of Markov 
chains. But, while Yamaguchi considers the 
probability of transition (from one state of activity to 
another) to be time independent, we want to calculate 
this probability for each time step of a week. To do 
this we use the profiles of probability of presence 
that are typical inputs of building simulation tools 
(for example the diversity profiles mentioned earlier 
could be used for this). 2  We still lack some 
information to uniquely fix the probabilities of 
transition. This is done by introducing a new 
parameter that expresses the rate of movement in and 
out of the zone simulated and that we call the 
“mobility parameter”. We can now simulate the 
typical periods of presence and absence that appear 
during one day; but what about days when the 
occupant does not appear at all? For this we add to 
our Markov chain model the simulation of periods of 
absence longer than one day (but not a weekend), to 
account for periods of external meetings, vacations 
or ill health.  
With the parameter of mobility, the profile of 
presence and information on the periods of long 
absence, we are now capable, by using the inverse 
function method (IFM), of generating any number of 
time series of presence of any length of time. This 
output can be converted into metabolic heat gains 
injected into a zone but more it importantly serves as 
an input to all the models of occupant behaviour. We 
refer the reader to Page et al. (2007) for a detailed 
description of the model and results from its 
validation.   

Model of use of appliances 
We understand “appliance” to mean a group of 
appliances fulfilling the same function or 
participating in that function. For example a 
computer, a printer, a modem and a set of loud-
speakers will be considered as a “computer 
appliance”, with parameters covering the aspects of 
these individual appliances; a sink, a shower and a 
bath can be the various incarnations of a “body 
cleansing appliance”. The model distinguishes four 
categories of appliances: those that have a 
(practically) constant consumption (such as a fridge) 
or a fixed profile of use and are independent of 
occupant presence, those switched ON by a user and 
therefore depend on her/his presence (e.g. washing-
                                                           

2 These usually provide hourly values. We were able to 
calibrate the model with time-steps of 15 minutes. This 
higher resolution will be useful for the behavioural 
models of window opening, lighting and appliance use. 
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machine) and those switched ON and OFF by an 
occupant (e.g. shower, television). Appliances of the 
last two categories will be switched OFF when the 
period of use, determined according to the 
distribution of duration of use, comes to an end. 
Those of the latter category can also be switched 
OFF when the occupant using them leaves the zone. 
Finally a category “stuff” regroups appliances which 
are too small to be modeled individually but can be 
collectively significant. Before simulating the use of 
appliances it is necessary to determine: 
- which appliances are to be found within each zone 
(what types of appliances and how many of each 
type), 
- at what rate of electricity consumption (i.e. power) 
and water consumption (hot and cold) they will be 
used, 
-  for how long they will be used, 
- what their standby power is and how liable the 
occupant is to leave the appliance in this state when 
not using it, 
- and finally what the probability is that an occupant 
might switch an appliance ON for each time step of a 
week. 
The values of these parameters are fixed in a pre-
process phase, given the technical characteristics of 
the appliances installed and the more social 
characteristics such as the type of occupancy 
(commercial or residential – with family size given in 
this latter case) and behaviour regarding appliance 
use (e.g. appliances are switched OFF or left on 
standby). This preliminary part of the model 
determines the installed power within the zone; it is 
therefore the first step in reproducing the random 
resource consumption related to the occupant. As 
noted earlier, occupants’ interactions with appliances 
depend on their presence. The time series for each 
occupant of the zone produced beforehand by the 
presence model will therefore serve as an input to 
this model. This covers the next cause of randomness 
within resource consumption, namely occupant 
presence.  
Appliances functioning at constant power, others that 
follow a programmed schedule (hot water boiler) as 
well as “stuff” can also be considered in the pre-
process phase: the former consume a fixed amount of 
water, electrical and thermal energy, while in the 
case of the latter two we generate consecutive 
sequences of respectively deterministic and 
stochastic duration of use and consumption rate. The 
sum of the three serves as an occupant-independent 
base load. Appliances that rely on occupants’ 
presence to be switched ON are simulated in the 
processing phase. At each time step the model checks 
for each occupant whether (s)he wants to switch ON 
a type of  appliance unused at the moment (one 
occupant only uses one appliance of a type, for 
example one TV when two are available). It does this 
by applying the IFM to the probability of switch ON 

given by the probability profile for this time step of 
the week. When an appliance is switched ON the 
duration of use and power of use are deduced from 
the respective distributions thanks to the IFM. A 
counter allocated to the use of the appliance is 
decremented by one unit at each time step. An 
appliance is switched OFF when the counter is equal 
to 0, or when the occupant using the appliance leaves, 
in the case of appliances whose switching OFF 
necessitates the interaction of an occupant. Once 
OFF the appliance stays OFF for at least one time 
step. Certain appliances may be used collectively (a 
cooker for example) in which case the power will be 
related to the number of occupants using them.  
At each time step the model calculates the total water 
consumption and waste water produced, the total 
electrical and thermal (from hot water) energy 
consumed and the resulting heat given off to the zone 
by all the appliances (electrical appliances ON or on 
standby, fraction of heat from appliances using hot 
water) and fraction of (grey) water recoverable from 
the waste water. From this we can also determine the 
load profile and rate of consumption of hot and cold 
water of the zone and therefore the distribution of its 
peaks.  

Model of opening of windows 
The model of opening of windows by the occupant is 
more behavioural than that of appliance use. Its 
randomness depends on the presence of the occupant, 
the physical stimuli causing her/him to open or close 
the window and the variability of occupants’ 
tolerance towards these stimuli. Occupants open a 
window to ventilate a place when discomforted by 
the concentration of pollutants or to cool a zone 
when it is considered to be too hot; a window is 
closed when the indoor temperature is considered to 
be too low.  At departure the occupant may decide 
to close the window or leave it open.  
The occupants’ levels of tolerance towards the 
concentration of pollutants and their level of 
discomfort when exposed to cold and hot indoor  
temperatures are based on well accepted studies 
(Fanger 1988, 1982). Each occupant is given a set-
point of tolerance for each discomforting influence 
drawn from distributions proposed by Fanger. It is 
assumed that occupants are sensitive to pollutants 
only on arrival into a zone.  
For this model we distinguish between the stimuli 
and associated interactions and the effects of these 
interactions. Concerning the latter an air exchange 
rate is calculated based on single-sided buoyancy 
driven ventilation. But since SUNtool’s timestep is 
60min a simplified thermal model with a timestep of 
5min calculates a new temperature (due to the low 
heat capacity of air, large temperature changes may 
occur rapidly) which is communicated to the window 
interaction model. A time-weighted heat gain/loss is 
finally parsed to SUNtool. Due to lack of knowledge 
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of internal building layout in SUNtool, no exchange 
of air between zones of a building is considered. 

Model for use of lighting appliances and blinds 
The model for the use of lighting appliances and 
blinds has been directly adapted from the 
Lightswitch model proposed by Newsham 
(Newsham et al. 1995) and Reinhart (Reinhart 2004) 
to the specific needs of the SUNtool software. While 
their model of occupant use of lighting appliances is 
amongst the best available, the modeling of blinds 
needs further development (Robinson 2006). 

Model of production of waste 
A simplified  model for the production of solid 
waste uses the output of the model of presence and 
statistics related to types of wastes (recyclable, 
organic, non-recyclable) to infer the weekly 
production of each type by the occupants of the 
simulated zone. The purpose of this is to support the 
modeling of the derivation of energy from waste in 
SUNtool. 

RESULTS 
Within this article we shall concentrate on the results 
provided by the models of occupant presence and use 
of appliances. 

Model of presence 
As this model works as an input to all behavioural 
models it is important that it be thoroughly validated. 
We did so by conceiving a list of indicators –  
properties of the output of the model that play an 
essential part as inputs to the behavioural models, 
such as: 
- the “time of first arrival” and “time of last 
departure” that inform us of occupants’ behaviour 
regarding blinds, lighting appliances and windows, 
- the duration of “periods of absence” and of 
“periods of presence”, whose importance Wang 
highlighted in the behaviour of occupants towards 
lighting appliances, 
- the “cumulated presence over a day” or over a week  
are excellent indicators of the time an occupant 
really spends within a zone, and, when the former is 
compared with the “daily presence” (the difference 
between the time of first arrival and of last departure) 
this indicates the potential for saving electricity 
during occupants’ short absences from the zone. By 
comparing the distribution of these indicators 
resulting from data measured in single person offices 
of the LESO building and from simulations with our 
model, we were able to assess how well the model 
reproduced these indicators.  
These results are given and discussed in great detail 
in Page et al. (2007). However we would like to 
highlight two important features of the model with 
figures 2 and 3.The first shows the distribution of 
periods of presence and the second that of presence 
cumulated over a week. Monitored data is in green, 

simulated values are in red and standard value(s) 
typically used in simulation tools are represented by 
vertical bar(s). Figure 2 proves the hypothesis that 
the duration of periods of presence cannot be 
considered to be inhomogeneous and shows how 
closely this model has come to reproducing the 
actual indicator, both in terms of dependence on time 
and dependence on the occupant simulated. Figure 3 
shows how the presence of occupants is greatly 
overestimated by models so far. First of all occupants 
spend less time within an office than the 8 hours 
usually estimated due to them moving into and out of 
their office. But more importantly, occupants often 
leave their office for long periods of absence (lasting 
a fraction of a day, days or weeks) for various 
reasons such as work out of the office, sickness or 
vacation. The models of occupant presence proposed 
so far either neglect this absence or consider it in the 
best of cases by using fixed periods of vacation. 
However the figure clearly shows that these periods 
of absence vary greatly and absolutely need to be 
considered (which this model does in a convincing 
way).  

Model of appliances 
As our aim is to reproduce the stochastic behaviour 
of occupants regarding the appliances at their 
disposal, we have focused our attention on checking 
that, given the profiles of presence of each occupant 
and the appliances installed in the zone, we simulated 
correctly the use of appliances of categories 2 and 3 
in terms of the resulting energy consumed and peaks 
of load produced. To do this we simultaneously 
collected the profiles of presence and electricity 
consumption3 of the appliances within the zone as 
well as the zone’s total consumption. This was done 
for 5 singly occupied offices (approx. 40 weeks of 
computer and lighting use with a 15min time step) 
and for 8 households (approx. 15 days of 6 most 
relevant appliances with a 2min time step). While the 
two office appliances measured typically function for 
long periods at low power, many household 
appliances are used for short periods at high power 
and therefore require the highest resolution possible.  
The method of validation consisted in generating 100 
simulations of the use of each appliance for each 
time unit (one day for residential data, one week for 
office data) with the measured presence during the 
time unit of interest as an input to the model. The 
parameters related to the appliance and its use by 
occupants are calibrated based on observations 
relating to the other time units. We then assessed the 
model based on its capability of producing realistic 
values of the following indicators: total energy 
consumed by the appliance during the time unit and 
                                                           

3 Unfortunately we did not have the needed data of 
water consumption and occupant presence to validate 
water-related appliances. 



Proceedings: Building Simulation 2007 

- 761 - 

the 10th, 90th and 100th percentiles of its load profile; 
these give a good idea of the base load and peak load.  
Figure 4 shows the results from the cumulated 
profiles of a computer and a lighting appliance from 
an office.4 The box-plots (top left) show, for each 
week simulated, the spread of the 100 simulations 
around the mean of the total energy consumed during 
that week; the measured value (green star) and the 
value predicted by using an adapted diversity profile 
(red cross) serve as comparisons. The top right 
graphic expresses the distance (absolute value of the 
difference divided by the value measured) between 
the measured value of total energy for each week and 
either the average of the simulations (blue star) or the 
value predicted by the diversity profile. The two 
bottom graphics show the distance for the 90th (left) 
and 100th (right) percentiles, giving an idea of how 
well the model (and the diversity profile) estimate the 
peak values taken on by the appliance. The box-plots 
show that although the diversity profile does well at 
estimating the total energy half of the time (25 of 42 
weeks slightly better than the model) the model's 
estimation is never more than 12% worse off while 
still being a lot more reliable the rest of the time. 9 of 
the weeks correspond to periods of quasi null 
consumption (and typically complete absence of the 
occupant) but another 12 correspond to a variability 
in consumption that fixed profiles cannot predict (the 
last 11 red crosses lie above the y=1 axis). This 
observation is even more obvious for the prediction 
of peak loads: the threshold for peak loads, we fixed 
at 90%, is always better estimated by our model, as 
well as the maximum peak at 100%. This is quite 
convincing as diversity profiles are normalised 
thanks to the maximum peak value of the office over 
the whole period. 

DISCUSSION 
We have presented here an attempt to simulate 
occupant influences on resource flows within 
buildings. The novelty of this approach is the simple 
consideration that the presence of the occupant is a 
necessary condition for her/his interaction. This has 
led us to develop a core model of occupant presence 
whose output serves as an input to a family of 
stochastic behavioural models. An account of the 
detailed functioning and promising results of the 
model can be found in (Page et al 2007). This 
approach has admittedly been used in precedent 
studies but with the flaws we have discussed earlier, 
namely time-independent probabilities of transition, 
repetition of daily patterns and therefore neglecting 
long periods of absence. In overcoming these 
shortfalls we have tried to keep the inputs to the 
model as simple as possible by using inputs already 
common to simulation tools (such as profiles of 
probability of presence) and by helping the user 
                                                           

4 Comparison for residential data is under way. 

assess new parameters (such as the parameter of 
mobility).  
We have compared the stochastic model of appliance 
use to the latest method of diversity profiles in the 
case of an office building. While our model 
sometimes slightly overestimates and other times 
underestimates the weekly total energy and peaks it 
has proven itself capable of following the variability 
of the measured weekly loads, a feature that diversity 
profiles are incapable of providing. This is of 
particular importance in estimating peaks as these 
clearly vary from one week to the other.  
The lack of inter-zonal flows of air and the adoption 
of Fanger’s results for buildings that are not 
necessarily air-conditioned are obvious flaws of the 
model of window opening. Yet it proposes a simple 
algorithm based on well-established conclusions of 
the field of thermal comfort that can easily be 
modified to include more complex sub-models of 
fluid dynamics and human thermal comfort (Haldi 
and Robinson 2007). 

CONCLUSION 
As building standards improve, so the relative impact 
of occupants on resource use will increase. It thus 
seems inevitable that better models of their presence 
and interactions will be necessary. The set of models 
discussed in this article is a first attempt to simulate 
the multiple influences occupants can have on a 
building in terms of resource consumption and waste 
production. Their outputs will provide valuable 
information for the simulation of a single building or 
a group of buildings in the form of a time series of 
resources needed (electricity, hot and cold water) and 
waste (waste water and solid waste) produced by the 
building(s), but also of heat given off to the 
building(s) or evacuated from the building(s) in the 
case of ventilation. This shall be useful to building 
engineers and architects, but also to urban planners 
as tools for simulating and optimising urban resource 
flows are now becoming available.  
Central to this set is the stochastic model of occupant 
presence. It has demonstrated its advantages over 
standard methods and can serve as an input to the 
behavioural models discussed here. It can also bring 
an added-value to tools already using simulations of 
occupant behaviour, such as Lightswitch, by 
providing them with more reliable inputs.  
The stochastic models of occupant behaviour 
(regarding the use of appliances, the opening and 
closing of windows and the production of waste) 
complement this already stochastic input by 
representing the variety of occupant behaviours and 
their randomness over time. Of particular interest is 
the appliance model, which surpasses standard 
methods in determining the overall internal heat 
gains and predicting the peaks in resource demand. 
This will be of future use for the sizing and 
networking of local power and heat production. 
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Figure 1:Outputs of the occupancy model and their later use by stochastic models of occupants’ behaviour. 
 

Figure 2: Comparison, between the monitored data (green solid line) and the simulated time series (dotted red 
line), of the PDFs (probability density functions) and CDFs (cumulative distribution functions) of “periods of 
presence”  for four private  offices. The blue histograms correspond to the repeated use of a standard fixed 
profile. 

0 16 24 48 72 96
0

0.1

0.2

0.25

Quarters of an hour

P
df

Periods of presence − office no.1

0 16 24 48 72 96
0

0.5

1

Quarters of an hour

C
df

0 16 24 48 72 96
0

0.1

0.2

0.25

Quarters of an hour

P
df

Periods of presence − office no.2

0 16 24 48 72 96
0

0.5

1

Quarters of an hour

C
df

0 16 24 48 72 96
0

0.1

0.2

0.25

Quarters of an hour

P
df

Periods of presence − office no.3

0 16 24 48 72 96
0

0.5

1

Quarters of an hour

C
df

0 16 24 48 72 96
0

0.1

0.2

0.25

Quarters of an hour

P
df

Periods of presence − office no.4

0 16 24 48 72 96
0

0.5

1

Quarters of an hour

C
df

Lighting utilities

[W and state of blinds]

Windows

[m3 of exchanged air]
Electrical / Water appliances

[W / m3 of water]

Occupancy [# of people]

M
et

ab
ol

ic
he

at
ga

in
s

Pollutants

Presence Presence Presence

Resource consumption
electricity and water Internal heat gains Ventilation



Proceedings: Building Simulation 2007 

- 764 - 

 

Figure 3: Comparison of the “cumulated presence” over one full week for four private offices. 
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Figure 4: Comparison of simulated  weeks with measured results and values predicted by the diversity profiles: 
top left – box-plots of total energy with measured values (green star) and values predicted by diversity profiles 
(red cross); clockwise from top right – indicators of total energy, top peak(100th percentile) and peak threshold 
(90th percentile) for simulated values (blue star) and values predicted by diversity profiles (red cross). 
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