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ABSTRACT 
A double population Lattice Boltzmann is used to 

solve the problem of the diffrentially heated cavity 
The use of a non-uniform grid makes it possible to 
validate the approach for laminar and transitional 
flows and (103≤Ra≤108). The results obtained, 
concerning the heat and mass transfers are in 
concordance with those of the literature. This 
comparison makes it possible to validate this type of 
approach for the prediction of anisothermal flows. To 
illustrate the applicability of such method for 
building components, the example presented is a 
model of solar collector. 
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INTRODUCTION 
The numerical resolution of the Navier-Stokes 

equations is largely used for the prediction of the 
heat and mass transfers. The major difficulty lies 
however in the resolution of the non-linear terms 
present in these equations. A possible alternative lies 
in the use of the Boltzmann equation. Under certain 
assumptions, and using an adapted space-time 
discretization, the method becomes of Lattice 
Boltzmann type its application having largely been 
used for the study of isothermal flows (Succi 2001, 
Fillipova and Hanel 2000, Mey et al. 2000). The 
principal interest of this method lies in its complete 
explicit formulation and by easy parallelisation of 
calculations.  

However, the majority of the flows, objects of 
engineers studies, are anisothermal. It is then 
possible to adapt the Lattice Boltzmann method in 
order to take into account the heat transfers (Chen et 
al. 1994, Pavlo et al. 1998, Crouse et al. 2002, 
Mezrhab et al. 2004). The approach with two 
populations, used in this article, is based on the work 
of He et al. 1998. It makes it possible to take into 
account the whole of the phenomena necessary to a 
correct prediction of the anisothermal flows.  

In order to validate the model, we are interested 
in the well known case of the two dimensional cavity 
differentialy heated with  adiabatic horizontal walls. 
There exists in the literature many data relating to the 
dynamic of the flow and heat transfer which occur in 

this test case (De Vahl Davis 1983, Mayne et al. 
2000, Wan et al. 2001, Le Quere 1991). It is then 
possible to validate the model for laminar flows 
(103≤Ra≤106) and transitional flows (107≤Ra≤108); 
with respect to  the flows and heat transfers  

PRESENTATION OF THE MODEL 
This part is devoted to a description of the model 

used. The complete mathematical analysis can be 
found in He et al. 1998. The principal assumptions 
are then: 
- the approximation of Bhatnagar, Gross and 
Krook concerning the operator of collision 

- the number of Knudsen is small 

- the flow is incompressible 

- the dissipation of heat per viscous effect is 
neglected. 

Under these hypoyhesis, the Boltzmann equation 
can be written as: 
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with f%  the density distribution function, ef%  the 
equilibrium density distribution function of Maxwell-
Boltzmann, ξ

r
 the microscopic velocity, vτ  the 

relaxation time and F external forces. 
Similarly, the internal energy distribution function 
g%  is given by the following evolution equation: 
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avec cτ  the relaxation time for the internal 
energy distribution function. 
The macroscopic variables such as density ρ , 
velocity ur  and temperature T  can be calculated as 
the moments of the distributions functions: 

( ) ( ), , ,x t f x t dρ ξ ξ= ∫
r rr r%  (3) 

( ) ( ) ( ), , , ,x t u x t f x t dρ ξ ξ ξ= ∫
r r rr r r r%  (4) 
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( ) ( ), , ,x t RT g x t dρ ξ ξ= ∫
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avec R  the constant of the gas. 
To obtain the lattice Boltzmann model, the velocity 
space must be discretized: during dt , the 
distribution function move along the lattice link 

i idx c dt=
uuur ur

. In our simulations, a 9 velocities 2 
dimensional (D2Q9) lattice has been used (see 
Figure 1). Moreover, the density f  et g  have been 
introduced by in order to avoid the implicitness of 
the second order scheme used to integrate the 
evolution equation (He et al. 1998) : 

( )2 2
e

v

dt dtf f f f F
τ

= + − −% % %  (6) 

( )2
e

c

dtg g f f
τ

= + −% %%  (7) 

 

Figure 1 : D2Q9 model 
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After discretization, the evolution equations 
become : 
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For the two dimensional case, applying the third-
order Gauss-Hermite quadrature leads to the D2Q9 
model with the following discrete velocities ic

ur
with 

1...8i =  and 0 0c = : 

1 1cos ,sin
4 4i

i ic cπ π⎛ − − ⎞⎛ ⎞ ⎛ ⎞= ⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠

ur
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with 3 mc RT=  and mT  the mean temperature. 

The equilibrium density distribution function is given 
by: 
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with ( ),u u v=
r

, 0
4
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ω = , 
1
9iω =  for 

i=1,2,3,4 and 
1
36iω =  for i=5,6,7,8. 

The equilibrium internal energy density function 
can be written as : 
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Finally, the macroscopic variables ρ , ur  and 
T can be calculated using: 

i
i

fρ =∑  (15) 

2i i
i

dtu c f Gρ = −∑
ur rr
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i
i

e RT gρ ρ= =∑  (17) 

where G
r

 the external force acting per unit mass. 
Using a Chapman-Enskog expansion, the Navier-

Stokes equations can be recovered with the described 
model. The kinematic viscosity and the thermal 
diffusivity are then related to the relaxation times by: 
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2

3
vcτν =  (18) 

22
3
ccτχ =  (19) 

BUOYANCY FORCE AND 
DIMENSIONLESS PARAMETER 

To demonstrate the validity of the thermal lattice 
Boltzmann approach proposed, simulations on the 
square cavity are hold, as a model of a room. This 
test-case is described figure 2. 
 

Figure 2 :Differentially heated cavity 
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With the Boussinesq approximation, all the fluid 
properties are considered as constant, except the 
body force term in the Navier-Stokes momentum 
equation where the fluid density is given by: 

( )( )1m mT Tρ ρ β= − −  (19) 

where mρ  is the average fluid density, mT  the 

average fluid temperature and β  the thermal 
coefficient expansion of the fluid. In that case, the 
external force acting per unit mass 

( )m rG T T gρβ= − −
r r

, and the external force 

appearing in equation (1) is given by: 
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The major control parameter of the test-case is 
the Rayleigh number given by: 
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All the velocities are normalized using the 

diffusion velocity * rPv
H
ν

= . The temperatures are 

dimensionless parameters using c

h c

T T
T T
−
−

. The 

dimensions are normalized using H . 

IMPLEMENTATION ON NON-
UNIFORM GRID 

In traditional LBM, the grid is defined as a 
regular lattice with equal spaces. But for high 
Rayleigh number flows, the thermal boundary layer 
is very thin and then required of considerable number 
of nodes, wasting computational time and memory 
size. The Taylor series expansion - and least square - 
based lattice Boltzmann method (TLLBM) of Shu et 
al. 2001 is based on the fact that distribution 
functions are continuous functions in the physical 
space and can be defined in any mesh system: it 
allows mesh refinement near the walls. Even if this 
method is in theory meshless, we use a based non-
uniform grid in order to have a more simple 
algorithm script. 

BOUNDARY CONDITIONS 

Velocity 

Implementation of boundary conditions is very 
important for the simulation. The unknown 
distribution functions pointing to the fluid zone at the 
boundaries nodes must be specified. Concerning the 
no-slip boundary condition, the bounce-back rule of 
the non-equilibrium distribution function developed 
by Zou and He 1997 is used. The unknown density 
distribution functions at the boundary can be 
determined by the following condition: 

e ef f f fα α β β− = −  (22) 

where eα
uur

 and eβ
uur

 have opposite directions, eα
uur

 

being the direction where the distribution function is 
unknown and eβ

uur
 the direction of the known 

distribution function. To reinforce the no-slip 
boundary condition, the velocity at the wall is used in 
the calculation of the density equilibrium functions. 

Temperature 

The vertical walls have constant temperatures. 
The condition on the adiabatic horizontal walls is 
converted into a Dirichlet boundary condition using a 
second order finite-difference approximation. 

Similarly, the internal energy distribution 
functions can be determined with the following 
condition: 
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The wall temperatures are used for the calculation 
of the internal energy equilibrium functions. 

NUMERICAL SIMULATION 
The program has been written in C, using 

numerical methods coming from Press et al. 1992. 
The simulations are held for Rayleigh numbers 

from 103 to 108. The convergence criterion for all the 
cases tested is: 

( ) ( )12 2 2 2 7max 10
n n

mesh
u v u v

+ −+ − + ≤  (24) 

1 7max 10n n

mesh
T T+ −− ≤  (25) 

RESULTS 
The comparisons with the literature results are 

held for 3 810 10aR≤ ≤  and 0.71rP = . Among 
the characteristic numerical values of the flow, the 
comparisons concern the average Nusselt number at 
the hot wall, the maximum horizontal velocity and 
the maximum vertical velocity, with the positions 
where they occur. 

The local Nusselt number at the hot wall, is 
calculated via: 

( )0
1

hot wallh c

TNu y
T T x

∂
= −

− ∂
 (26) 

The averagel Nusselt number at the hot wall, is 
calculated via: 

( )
1

0 0
0

Nu Nu y dy= ∫  (27) 

The maximum horizontal velocity maxu  is 

obtained for 0.5y =  at maxx ; the maximum 

vertical velocity maxv  is given at 0.5x =  and maxy . 

Grid dependence 

The grid dependence study of the results if 
examined before the comparisons. The case 

610aR =  has been chose. Three grid size have been 
tested and the results are summarized in table 1. 
These results show that there is no much 
improvement in the results when the mesh size 
increases from 128 to 160. 
 

Table 1 : Ra=106 

 96x96 128x128 160x160 De 
Vahl 
Davis 
1983 

umax 61.627 64.133 65.831 64.630
ymax 0.864 0.860 0.860 0.850 
vmax 218.92 220.54 220.79 219.36
ymax 0.038 0.038 0.038 0.038 
Nu0 8.746 8.792 8.799 8.817 

 

 

Table 2 : 103≤Ra≤106 
  Ra=10

3 
Ra=104 Ra=10

5 
Ra=106

umax article 3.636 16.167 34.962 64.133

 

De 
Vahl 
Davis 
1983 

3.649 16.178 34.730 64.630

 
Mayne 
et al. 
2000 

3.649 16.179 34.774 64.691

ymax article 0.809 0.821 0.854 0.860 

 

De 
Vahl 
Davis 
1983 

0.813 0.823 0.855 0.850 

 
Mayne 
et al. 
2000 

0.812 0.823 0.853 0.846 

vmax article 3.686 19.597 68.578 220.53
7 

 

De 
Vahl 
Davis 
1983 

3.697 19.617 68.590 219.36
0 

 
Mayne 
et al. 
2000 

3.696 19.612 68.692 220.83
3 

Xmax article 0.174 0.120 0.067 0.038 

 

De 
Vahl 
Davis 
1983 

0.178 0.119 0.066 0.038 

 
Mayne 
et al. 
2000 

0.179 0.119 0.066 0.038 

Nu0 article 1.117 2.246 4.518 8.792 

 

De 
Vahl 
Davis 
1983 

1.117 2.238 4.509 8.817 

 
Mayne 
et al. 
2000 

- - - - 

 

From grid dependence studies, the following grid 
size have been chose: 



Proceedings: Building Simulation 2007 

- 1430 - 

- for 310aR = , 64x64 with uniform grid, 

- for 410aR = , 128x128 with uniform grid, 

- for 510aR = , 128x128 with non-uniform 
grid (which requires 200x200 with uniform grid), 

- for 610aR = , 128x128 with non-uniform 
grid (which requires 250x250 with uniform grid), 

- for 710aR = , 256x256 with non-uniform 
grid (which requires 510x510 with uniform grid), 

- for 810aR = , 256x256 with non-uniform 
grid (which requires 1150x1150 with uniform grid). 

Numerical results  
Table 2 reports the average Nusselt number at the hot 
wall, the maximum vertical velocity, the maximum 
horizontal velocity and the positions where they 
occur obtained for laminar flows 103≤Ra≤106. The 
results obtained are close to those of the literature 
coming from modelings based on the Navier-Stokes 
equations. 
 

Figure 3 : Isotherms 103≤Ra≤106 

Ra=103 Ra=104

Ra=105 Ra=106  
 

The figures 3 and 4 show respectively the 
isotherms and streamlines for the laminar flow cases. 
As the Rayleigh number increases, the fluid motion 
mainly takes place near the differentially heated 
walls and the flow in the core of the cavity becomes 
quasi-motionless: these flow features are well 
captured by the numerical method proposed. 
 

 

 

 

Figure 4 :Streamlines 103≤Ra≤106  

Ra=103 Ra=104

Ra=105 Ra=106  
 

 

Figure 5 : Isotherms (left)andt streamlines (right) 
107≤Ra≤108 

Ra=107 Ra=107

Ra=108 Ra=108  
 

One of the main interest of this paper, is to prove 
that the transitional flow can be simulated using 
lattice Boltzmann method with non-uniform mesh at 
a low computational cost. The table 3 summarizes 
the numerical values of average Nusselt number at 
the hot wall, the maximum vertical velocity, the 
maximum horizontal velocity and the positions 
where they occur obtained for transitional flows 
107≤Ra≤108. From this table, the numerical values 
are in good agreement with those from literature. 

The isotherms and streamlines for the transitional 
flow are shown figure 5. The temperature field is 
becoming more and more stratified, with horizontal 
streamlines. Moreover, reversed flows occur at 
upper-left and bottom-right corners, destabilizing the 
laminar flow: the transitional flow features are well 
captured by our model. 
 

Table 3 : 107≤Ra≤108 
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  Ra=107 Ra=108 

umax article 148.76
8 321.457

 Wan et al. 
2001 145.06 295.67 

 Le Quere 
1991 148.58 321.88 

ymax article 0.881 0.940 

 Wan et al. 
2001 0.92 0.94 

 Le Quere 
1991 0.879 0.928 

vmax article 702.02
9 2243.36

 Wan et al. 
2001 714.47 2259.08

 Le Quere 
1991 699.24 2222.39

Xmax article 0.020 0.012 

 Wan et al. 
2001 0.021 0.012 

 Le Quere 
1991 0.021 0.012 

Nu0 article 16.408 29.819 

 Wan et al. 
2001 13.86 23.67 

 Le Quere 
1991 16.523 30.225 

 

INCLINED SOLAR COLLECTOR 
The second exemple of the method application 

concerns situations of lows occuring in solar 
collectors. The physical model is then a cavity 
(H/L=4) inclined with an angle of 45°, Pr=0.71. The 
model is shown figure 6. The figures  7, 8, 9 and 10 
show the isotherms and streamlines obtained for 
Rayleigh numbers, based on the cavity width L, of 
Ra=103, Ra=104, Ra=105 and Ra=106. 
 

Figure 6 : Solar collector modeling 
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Figure 7 : Isotherms (left) and streamlines (right) 

for the case Ra=103 

 
 

Figure 8 : Isotherms (left) and streamlines (right) 
for the case Ra=104 

 
 

Figure 9 : Isotherms (left) and streamlines (right) 
for the case Ra=105 

 
 

 

Figure 10 : Isotherms (left) and streamlines 
(right) for the case Ra=106 
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CONCLUSIONS 
A thermal lattice Boltzmann model with non-

uniform grid implementation has been discussed. 
Compare with previous studies, the TLLBM allows 
to reduce the mesh grid necessary to solve the 
Boltzmann problem. Moreover, the double 
population approach has shown its capability to solve  
heat transfer problems of building physics for 
laminar and transitional flows. 

The lattice boltzmann method can be used to 
predict forced covection flows. The main problem 
for these simulations of fluid flows is the modelling 
of turbulence. The next step of our work is to 
introduce, in the lattice Boltzmann method described 
in this paper, a Large Eddy Simulation modelling of 
turbulence (Chen et al. 2003). The turbulent 
dissipative effects are then interpreted as an eddy 
viscosity associated to a turbulent relaxation time 
calculated with the help of a lattice Boltzmann stress 
tensor. 

NOMENCLATURE 
Symbols:  

ci  particle discrete speed, m/s  

dt  time step, S  

dx  mesh size, m  

f  density distribution function, kg/m 3  

g  energy distribution function, J/m 3  

gr  gravity, m/s²  

H  size of the cavity, m  

Nu  Nusselt number 

Pr  Prandtl number 

Ra  Rayleigh number 

T  temperature, K  

(x,y)  coordinates, m  

(u,v)  speed, m/s  

Greek:  

β thermal coefficient of expansion  

ν kinematic viscosity, m²/s  

χ thermal diffusivity, m²/s  

ρ density, kg/m 3  

τ relaxation time, S  

Indices/Exponents:  

e  equilibrium  

max  maximum  
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