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ABSTRACT  
VAV system is a very complicated one  in air-
conditionging systems, thus automatic control 
become the key of such a system. As necessary 
components in automatic control system, sensor has 
failure risk. It is so expensive that detect sensor fault 
by hardware redundancy in comfortable air-condi-
tioning system. This paper presents an approach, 
Principal Component Analysis (PCA), to detect and 
identify sensor fault in VAV system. The PCA model 
partitions the measurement space into a principal 
component subspace (PCS) where normal variation 
occurs, and a residual rubspace (RS) that faults may 
occupy. When the actual fault is assumed, the 
maximum reduction in the squared prediction error 
(SPE) is achieved. A fault-identification index was 
defined in terms of SPE. Some examples were 
provided to prove this method is feasible. This paper 
also presents a fault reconstruction algorithm to 
reconstruct the identified faulty data.  
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INTRODUCTION 
As VAV(Varialbe Air Volume) system becoming 
more and more popular in morden buildings, on-line 
monitoring of the process are getting important for  
comfortalbe air quality, lower energy consumption 
and fault detection. Studies have shown that twenty 
or thirty percent of energy consumption can be saved 
in small VAV system of business building after fault 
debugged and corrected [ANNEX34 Final Report 
2001]. FDD (Fault Detection and Diagnosis) system 
can alarm the system operation failure and recons-
truct sensor faults, thus sensor fault can be removed 
in time and then the unnecessary shutting down 
caused by sensor fault is reduced, so system energy 
consumption can be reduced. Meanwhile, FDD 
system is useful to maintain comfortable indoor air 
environment and improve indoor air quality 
[Youming Chen and Shengwei Wang 2001] Conse-
quently, it is beneficial  to the service life and the 
maintenance expenses of equipment. But there are 
few of work reported in literature on use FDD tools 
in VAV system. This paper present an approach, 

Principal Component Analysis ( PCA ), for fault 
detecting and diagnosing sensor fault in  VAV 
system. 

PCA  is a traditional multivariate statistical analysis 
tool [K. Pearson 1901], which can reduce the 
dimensions of the source data by projecting the data 
onto a lower-dimensional space. In 1990s, PCA was 
applied to supervise the automatic process in industry 
by MacGregor [MacGregor J. F. 1996]. 
Subsequently,  more and more research about the 
application of  PCA in all kinds of process 
monitoring are published, such as Dunia [Ricardo 
Duina 1998] and Qin [S．Joe Qin 1997] applied 
PCA to supervise the boiler process and the air 
emission monitoring, Zhang [Haitao Zhang 1999] 
used PCA to monitor dynamic multivariate processes 
at different scales. Pranatyasto [Toto Nugroho 
Pranatyasto 2001] used PCA to validate sensors for 
FCC (Fluid Catalytic Cracker) system, José 
Camacho[José Camacho 2006] used PCA to online 
monitor the batch processes.  

This paper will employ PCA for sensor fault 
detection and diagnosis in VAV system. And the 
remaining of this paper will be organized as follow: 
section 2 introduce the PCA method; section 3 
discuss about how to  use PCA to  detect and identify 
sensor fault; section 4 discuss a method to 
reconstruct faulty sensor data  and an approach to 
choosing  the best number of principal components 
for PCA model; section 5 will apply PAC method in 
a simulation VAV system for sensor fault detection 
and identification; section 6 comes to conclusions 
and proposes the further work. 

PCA METHOD 
PCA method is multivariate statistical analysis 
technique, this section will introduce PCA method in 
brief. First, Let’s assume there is an sample vector 
x(can be a group of sensors), the variable number of 
x is m(x∈Rm) and the sample number is n, so the 
data matrix X∈Rn*m (is the set of the measurement 
data of x). PCA method decomposes the matrix X as 
a bilinear product of two matrixes, T and P, 

               ETPX T +=                                  (1) 

where, T represents the score matrix, T∈ Rn*l, P 
represents the loading matrix, P∈Rm*l, l represents 
the number of principal components, E represents the 
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residual matrix (including mainly noise of the system 
under normal conditions). 

The columns of  loading matrix P consist of 
eigenvectors of the corelation matrix R(denotes the 
covariance matrix of normal data ) and just associate 
with the l largest eigenvalues, and the columns of  
matrix P~  are the remain m-l eigenvectors of R. 
Generally the corelation matrix R can be derived 
from normal process data. And the corelation matrix 
of matrix x can be approximately calculated as 
follows [Ricardo Dunia 1996]. 

                  1n
XXR

T

−
≈

                                (2) 

The residual E can be expressed as Eq.(3) [S.Joe Qin 
1997], 

                  
TP~T~E =                                   (3) 

Through Eq.(1)-(3), a PCA model can be built. A 
new sample vector x can be decomposed into two 
parts by PCA model. 

       x~x̂x +=                                             (4) 

Where:      xPPx̂ T= , 

xP~P~x~ T=  
x̂ is the projection on the principal component 
subspace(PCS) and x~ is the projection on the 
residual subspace(RS), matrixes TPP  and TP~P~  are 
their projection matrixes, they can be rewritten as C 
and C~ ,  respectively.  

From mentioned above, a PCA model was built. 
Through  the PCA model, a sample matrix can be 
decomposed as the sum of the projection on the PCS 
and the projection on RS.  

FAULT DETECTION AND 
IDENTIFICATION 

Fault detection 
After a PCA model is built for a system, the 
projection matrixes can be used for fault detection. 
Generally, under normal condition, measurement 
vector x should be mostly projected on PCS and 
simultaneously, the projection on RS is very small. 
But when the measurement vector x contains some 
kind of data under fault process, the projection on RS 
will be increased, which cause the squared prediction 
error (SPE) to increase remarkably in certain 
confidence limit 2δ . SPE can be expressed as 
follows/ [5, 6].  

C)x(IxxC~x~SPE(x) T22 −===     (5)                        

Where:  is Euclidean norm. 

If SPE＞ 2δ , fault may occur in the system. On the 
contrary, if SPE≤

2δ , the system is considered 
normal. The confidence limit 2δ can be calculated 
by Eq.(6) [S. Joe Qin 1997] and more detail can be 
seen in[Jackson,J.E.1979]. 
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 ,   i=1，2，3 , 

l is the number of the principal components of the 
model , αc  is the confidence limit for the α in a 

normal distribution, λ  is the eigenvalue of the 
covariance matrix R. 

Fault identification 
After a sensor fault is detected it is necessary to 
know which sensor becomes faulty, that is, to 
identify the faulty sensor. In this section, a fault 
identification approach is introduced. Firstly, it is 
assumed that only one sensor fault occurs in the 
system process simultaneously (the probability of 
two or more sensor faults occur in a system at the 
same time is very low). When sensor fault occurs in 
the measurement data, the sample vector x can be 
represented as follows [S. Joe Qin 1997]. 

                     ifxx ξ+= *                        (7)  

Where: *x  denotes the portion of normal data, f  is 
the magnitude of the fault, iξ  is the direction vector 
of unit length for the faulty sensor. For an example, 

2ξ =(0 1 0 … 0) represents a failure occurring in the 
second sensor. 

For searching the fault direction, a sensor validity 
index (VI) should be introduced. VI can be defined 
as follows. 

                  
SPE(x)

)SPE(x
VI

*
j

j =                                (8) 

Where: *
jx  is a vector of the measurement vector x 

reconstructed along the j th direction (In the next 
section, it will be discussed how to reconstruct *x ). 

Apparently, VI ∈ [0 ， 1] because of SPE(x) ≧
SPE(x*). When VIj is close to 0, it indicates that the 
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fault direction is j th. On the contrary, when VIj  is 
close to 1, it means that the j th is not the fault 
direction.  

FAULT RECONSTRUCTION AND THE 
OPTIMAL NUMBER OF PRINCIPAL 
COMPONENT 

Fault reconstruction 

History data under normal conditions is used to build 
a PCA model. It is assumed that fault direction is 
known.  An optimal estimation can be searched for 
the fault vector x by the PCA model and the fault 
direction. As mentioned before, x̂ can be considered 
as the projection of x on the PCS, thus x̂ can be 
considered as an estimation of x here. However, x̂  is 
not the optimal estimation of x because x contains 
some faulty data while it is used to estimate x̂ . If x is 
replaced by the estimated value xnew obtained last 
time, xnew will be close to the normal value x* of the 
faulty sample vector x. Therefore, an iteration can be 
represented as follows. 

old
iii

T
i

T
ii

T
i

old
i

T
i

new
i x̂c]xc　0　　[c]cx　x̂　[xx̂ +== +−+−      (9)       

where, [ ]TT
ii c0c +−  is a vector of matrix C which 

the i th column of cii is substituted by 0.  

It can be proved that iteration always converges to 
the following formula [Ricardo Duina 1996]. 
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Where: cii≠1. For cii=1 means that the variable can't 
be reconstructed by this method. 

The optimum principal component number 

It is very important to determine a proper number of 
principal components because it will affect the result 
of fault detection and diagnosis directly. If a fewer 
number of principal components (PCs) are used, the 
ability of detecting and diagnosing small faults is 
weakened because of 2δ for SPE maybe so large. If 
more PCs are used, some faults maybe stay in the 
PCS and do not show enough effects in the RS. This 
will make it impossible to detect these faults. 
Furthermore, the number of PCs affects the accuracy 
of reconstruction. In this reserach, an optimal 
reconstruction method is introduced to determine the 
number of PCs [S. Joe Qin 1998]. 

The unreconstructed variance can be expressed in 
this method as Eq.(11). 
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Where: jξ  is the fault direction of the sample vector. 

The optimum number of PCs can be determined from 
minimizing the total value of the unreconstructed 
variance. 
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                       (12) 

Where, m is the number of measurement variables 
and l is the number of PCs. 

So, the value of ∑ ju can be calculated with 

different number of PCs, and then the number of PCs 
which corresponding to the minimum ∑ ju is the 

optimum number of PCs.  

SIMULATION APPLICATION FOR 
USING PCA FOR SENSOR FAULT 
DETECTION AND DIAGNOSIS 
Since lots of sensors are used in VAV system, 
consequently, there is a risk of sensor fault in 
processing. The aim  of this research work is to 
detect and diagnosis sensor fault in VAV system. 
The principal figure of simulation control for VAV 
system is provided in Figure 1. This system is 
verified through other documents, such as document 
[Shengwei Wang 1999]. Lots of sensors are used in 
VAV system to realize automatic control of the 
system. In this paper, seven relative sensors are 
selected for this research objective. There are 
respectively outdoor air flow sensor, total supply air 
flow sensor, return air flow sensor, outdoor air 
temperature sensor, VAV supply air temperature and 
CAV(constant air volume conditioner) supply air 
temperature sensor. Data derived from those seven 
sensors under normal conditions through simulation 
are used to build PCA model. Outdoor air flow 
sensor fault is used to demonstrate how to detect, 
identify and diagnose fault. The procedure for the 
remaining sensor is similar.  

As aforementioned, the number of PCs is evidently 
very important while building a PCA model. Fig.2 
shows that the optimum PCs number in the PCA 
model built by normal history data derived from 
simulation is three. 

To affirming the number of PCs for the model is 
reasonable or not, data derived from normal condi-
tions was used to test. The SPE value and the VI 
value can be seen as a test target here. Fig.3 is the 
value of SPE under normal conditions and Fig.3 
shows that the value of SPE is stay in the confidence 
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limit 2δ .  It’s means that the system is under normal 
conditions.  

Fig.4 is the VI value of the outdoor air flow sensor. 
Fig.4 shows that the value of VI is very close to 1 
which indicates that the outdoor air flow sensor is ….  
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normal, thus the PCs number is reasonable and 
effective. 

For validating, a bias fault was added to the outdoor 
air flow sensor at certain time in simulation process; 
the SPE value and the VI value under the conditions 
are shown in Fig. 5 and Fig.6 respectively.  

Fig.5 shows that the SPE value was increased and 
obviously beyond the value of the confidence limit 
while fault was added to the system. It’s means that 
the fault can be detected by PCA method. 

 Fig.6 shows that the VI value of outdoor air flow 
sensor changes to close to zero while sensor fault 
occurred from close to one under normal conditions. 
It indicates that the outdoor air flow sensor is in 
failure while fault was added in the simulation 
process. 

From Fig.5 and Fig.6, fault in outdoor air flow sensor 
was detected and identified. Obviously PCA method 
can detect and identify such kind of sensor fault. 
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Fig.3. SPE under normal conditions 

The fault reconstruction algorithm is used and the 
SPE value before and after fault reconstruction  is 
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compared in Fig.7. Obviously, the value of SPE after 
reconstruction stays in the confidence limit while 
outdoor air flow sensor fault was added in the 
simulation process. It indicates that the data of failure 
sensor can be reconstructed by normal history data. 
Consequently, sensor fault online diagnosis can be 
realized and HVAC system break caused by sensor 
fault can be decreased. 
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Fig.4. VI under normal conditions 
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Fig.5. SPE under fault conditions 
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Fig.6. VI under fault conditions 

CONCLUSION 
Sensor fault detection, identification and recons-
truction for VAV system based on PCA method was 
proposed in this paper. PCA method partitions the 
measurement vector space into PCS and RS. If sensor 
fault occurred, the sample vector projection on RS…. 
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Fig.7 Value of SPE before and after reconstruction 

will increase remarkably and consequently the value 
of SPE will increase and beyond the confidence limit, 
herein fault will be detected. A fault reconstruction 
method is introduced, which minimizes the value of 
total unreconstructed variance to determine the 
optimum PCs number of the PCA model. Whereafter, 
a sensor VI was introduced to identify faulty sensors.  

A simulation case about how to use PCA method to 
detect and diagnosis sensor fault in VAV system was 
described and demonstrated. Results show that      
PCA method can detect and identify sensor fault well, 
and then reconstruct sensor faulty data by PCA model 
of VAV system. With PCA method, online sensor 
fault detect and diagnosis may be realized. 

Further research shows that PCA method can detect 
collinear sensor fault in VAV system but can not 
identify it. Further research should be done to 
identify collinear sensor fault in VAV system. 

NOTATION 
C     model projection matrix 
X     sample matrix 
T     score matrix 
P     loading matrix 
E     residual matrix 
R     correlation matrix 
f      fault magnitude 
l      number of principal component 
m     number of sensors 
n      number of sample 
u      unreconstructed variance 
x      sample vector 
xj     reconstructed vector 
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GREEK LETTERS AND SYMBOLS 
λ      eigenvalue of the covariance matrix R 
δ        confidence limit 

iξ      fault direction 
∈      belongs to 

  Euclidean norm 

SUPERSCRIPTS AND SUBSCRIPTS 
˜     projected to the residual space 
ˆ     projected to the principal component space 
﹡   normal portion(uncorrupted portion) 
i     subscript for the actual fault 
j     subscript for the assume fault 
 

ABBREVIATION 
Min     minimum 
PC       principal component 
PCA    principal component analysis 
PCS     principal component subspace 
RS       residual subspace 
SPE     square prediction error 
VI       validity index 
VAV   variable air volume conditioner  
CAV   constant air volume conditioner 
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