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ABSTRACT 
The aim of the present study was to determine the 
applicability of a genetic algorithm for the 
optimization of daylighting systems, as well as the 
requirements for the lighting simulations to be used. 
Furthermore, by testing the daylighting performance 
of a building's facade when several parameters are 
allowed to change simultaneously, the results were 
used as a complement of previous parametric studies. 

The goal of the optimization was to maximize energy 
savings by reducing visual discomfort while 
maintaining good daylight penetration. The results 
were obtained by dynamic simulations using 
Radiance. Discomfort glare produced by daylight 
was calculated for several viewpoints inside the 
building, adapting the blinds' position accordingly for 
each time step tested. Fitness was defined as the 
proportion of the annual lighting requirements that 
can be replaced by daylight. 

The results show a fast convergence in the beginning, 
followed by a minimal improvement in subsequent 
generations. Several trials over 200 generations 
showed similar evolution and consistent results, 
suggesting that genetic algorithms can be used 
effectively for facade design optimization 
considering daylight performance. Finally, some 
possible improvements and modifications are further 
discussed. 
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INTRODUCTION 
When assessing the performance of a daylighting 
system, it is important to consider not only the 
amount of daylight that can enter the building, but 
also the amount that cannot be admitted due to visual 
discomfort problems [Nabil and Mardaljevic 2005]. 
Therefore, it is also necessary to consider the 
behavior of the building’s occupants, and when and 
how they will allow daylight inside the rooms 
[Reinhart and Voss 2003]. 

As a result, the potential savings will be determined 
by the amount of daylight that can enter the building, 
and the amount of glare produced by the daylight 
source. There is a complex relationship between the 
many factors that affect these two amounts, which 
makes it difficult to determine the incidence of each 
factor in the global performance. 

Parametric simulations can give an idea of the 
variation in daylighting performance related to the 
variation of one parameter. However, it is not 
possible to test all the combinations over a search 
space of multiple dimensions. 

Genetic algorithms can perform a series of 
simulations in a multi-dimensional search space, 
increasing the relevance of the cases simulated. In 
this sense, genetic algorithms can be seen as a 
complement of parametric studies, in addition to 
being an optimization tool. The main obstacle to their 
implementation is the fact that the number of 
simulations required, although comparatively 
reduced, can still pose an important demand to 
computer resources. 

For the present study, in order to reduce computation 
times, a sub-set of the annual meteorological data 
was used, as well as an adaptation of the daylight 
coefficients method, and the population was limited 
to ten individuals. Additionally, in order to ensure a 
faster convergence in fewer generations, absolute 
elitism was used to select the individuals in each 
generation. 

MODEL DEFINITION 
A set of 21 parameters encoded the size, number, and 
position of windows and fixed protections (figure 1, 
table 1) and the reflectance of the different surfaces. 
Each one was encoded by using real-number 
variables (alleles) conforming real-parameter vectors 
(chromosomes) [Wright 1991; Rasheed et al. 1997] 
and bounded by upper and lower limits, which 
ensured the consistency of the simulated cases. 

Two of the parameters defined general proportions of 
the windows, producing a certain degree of 
redundancy. By allowing the same model to be 
encoded by different combinations of chromosomes, 
the search space becomes overpopulated, improving 
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the chances of finding a fitter model [Mitchell, 
1996; Dasgupta and Michalewicz 1997]. 

Figure 1 - Geometric Parameters and example of 
model produced 

The set of 21 parameters was translated at run time 
into a Radiance model definition of a 20m section of 
the façade, applying additional controls to ensure the 
model is always consistent with the initial geometric 
assumptions. 

This model was then combined with a static model 
for the rest of the room. The exterior environment 
consisted only of the sky and a simple definition of 
the ground. The section of the façade simulated was 
sufficient to eliminate the effect of lateral walls in the 
results.  

Table 1 List of parameters 
 

 

SIMULATION METHOD 
Each case studied was simulated by means of a 
dynamic daylight simulation, considering the weather 
conditions of Tokyo, Japan. 

The positions of four observers were defined at the 
center of the room. For each time step, the visual 
conditions of each observer were calculated, and the 
position of the blinds for that time step was decided 
according to the incidence of glare. The glare index 
utilized (1) was an adaptation of the daylight glare 
probability from vertical illuminance, modified 
according to empirical results obtained in Japan 
[Torres 2006].  

DGP3 =
1

1 + e (12.1311 − 3.1185 ⋅ log10 Ev )
    (1) 

This simplified daylight glare probability uses only 
the vertical illuminance at eye level to calculate the 
glare incidence. It is based on a simplified calculation 

 Min. value Max. value 

1-window width 1 12 

2-sill height 0 2.5 

3-window height 0.5 4 

4-ext lightshelf depth 0 0.8 

5-int lightshelf depth 0 0.8 

6-lightshelf height 0.5 3 

7-overhang depth 0 1 

8-low sunshade depth 0 0.5 

9-high sunshade depth 0 0.5 

10-Nr. shades / window 2 5 

11-Nr. windows 3 7 

12-window sill depth 0.1 0.4 

13-wall reflectance 0.3 0.6 

14-ext lightshelf reflec. 0.3 0.6 

15-int lightshelf reflec. 0.3 0.8 

16-window sill reflec. 0.2 0.7 

17-sunshade reflectance 0.2 0.6 

18-window size factor 1 1.5 

19-shading size factor 0.3 1 

20-window transmittance 0.5 0.9 

21-reflective Lightshelf (Y/N) 0.7 2 
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of DGP by Wienold and Christoffersen, but should 
not be confused with the daylight glare probability 
index, which calculates the incidence of individual 
glare sources [Wienold and Christoffersen 2005]. 

The control model used a stochastic function that 
decided the position of the blinds randomly, with a 
probability equal to the probability for an occupant to 
close the blinds under such glare conditions. Only 
open/closed positions were considered. 

A second simulation calculated the illuminance value 
at the working plane for each observer, given the 
weather conditions and the position of blinds. 

 

 

Figure 2 – Original (above, from Mardaljevic 1999) 
and modified (below) sky subdivisions for daylight 
coefficients 

For all the calculations, an adaptation of the daylight 
coefficient method was used [Tregenza P. and 

Waters I. 1983; Mardaljevic J. 1999] optimized for 
the simulation of vertical openings (figure 2). For this, 
the sky subdivisions were augmented in size near the 
zenith and reduced near the horizon, but reducing the 
total number from 145 to 113. 

The method was implemented in Radiance using the 
rtcontrib command [Ward G. 2005], which allows the 
calculation of the contribution of each sky 
subdivision to the values in the scene with only one 
simulation. The results are then multiplied for each 
time step by the average luminance of each sky 
subdivision. These luminance values depend solely 
on the weather conditions and were pre-calculated 
and equal for all models. In this way, the simulation 
times are greatly reduced. 

However, in order to allow for the number of 
simulations that an implementation of a genetic 
algorithm requires, further simplification was 
necessary, which was achieved by considering only 
one of every twenty days in the year. In this way, the 
variability of the weather throughout the year is 
maintained as much as possible. 

GENETIC ALGORITHM 
For the actual implementation of the genetic 
algorithm, further simplification was necessary. The 
population was limited to only ten individuals, which 
has been shown to produce acceptable results 
[Wright and Alajmi 2005]. 

In order to accelerate convergence, absolute elitism 
was employed, meaning that only the best individuals 
were selected for breeding. To avoid convergence to 
local maxima, three individuals were randomly 
chosen and also included in the breeding group. 

Fitness was defined as the proportion of the total 
lighting requirements that could be replaced by 
daylight. Since the design illuminance on the work 
plane considered was 500lx, fitness was defined as: 

F =
Ua

500lx
=

Uho
o

O

∑
h

H

∑
H ⋅O ⋅500lx

       (2) 

where Ua is the annual average for all observers of 
the usable daylight illuminance; Uho is the daylight 
illuminance on the working plane, for a certain hour 
and observer, when the condition of blinds is 
considered; and H, O are the number of hours and 
observers respectively. Therefore, a fitness of 1 
would imply meeting the total illumination needs for 
all the occupants, only with daylight. 

Different breeding methods were employed, making 
use of the real-value character of chromosomes. The 
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first one, simple mutation, consisted of the alteration 
of the value of one parameter, randomly chosen. 

Three recombination methods were also employed, 
making use of the real-value character of 
chromosomes. Simple crossover consisted in 
swapping the values of one parameter between two 
individuals. Additionally, interpolation and 
extrapolation crossovers were used. These consisted 
in changing the values of one parameter taking a 
value proportional to the fitness of the individuals. 

RESULTS 
The results for a typical run show a fast increment of 
the fitness during the first generations and a very 
slow change after approximately 100 generations 
(figure 3). 
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Figure 3 – Evolution of the fitness of the best 
individual, the average of the best 7 individuals and 
the total average, through 200 generations 

Figure 4 shows a typical evolution of the best 
individual in each generation for six different 
generations. It can be observed that after the main 
characteristics of the façade are found, only minor 
changes in size determine an improvement of the 
fitness. 

The result of the optimization is consistent with the 
constraints of the model. Since the only determinant 
factor considered for fitness was daylight, the 
windows occupy the maximum width and height 
allowed, improving the total daylight penetration. 

Additionally, the protection elements disappear 
above the lightshelf, where sunlight cannot cause 
glare, but improve the daylight levels in the building. 
Below, the vertical fins protect the observers from 
the sun when it is at a lower altitude, reducing the 
need to close blinds. 

CONCLUSION 
The implementation of a genetic algorithm presented 
here is quite simple compared to other more 
elaborate implementations. However, it shows the 
viability of the method applied to daylighting 
systems, even with the use of relatively complex 
simulation methods. 

The use of dynamic daylighting simulations was only 
possible thanks to the implementation of the daylight 
coefficients method, and the use of a simplified 
version of the daylight glare probability index. 

The results were consistent between several runs of 
200 generations, showing that the final result did not 
correspond to a local maximum, but to an optimized 
solution. 

Constraints in the population size were strongly 
determined by the computation resources available. 
As this situation is bound to improve in time, better 
implementations with larger populations and more 
elaborate simulation methods will become possible. 
Additionally, there are several improvements that 
could be applied to the present method. 

The first possible improvement is the use of selective 
fitness. The calculation of fitness can be divided 
between different parts of the year, giving a more 
specific assessment of each individual. In this way, 
selection and recombination can be performed 
between individuals of complementary 
characteristics, in order to better approximate an 
optimized solution. 

A second possible improvement is to consider a more 
complete model for the performance of the facade, 
given that daylighting is only one aspect in a facade 
optimization. In order to implement this, thermal 
simulations should be coupled with daylighting ones, 
and the definition of fitness should include the total 
energy performance. One intermediate simpler 
solution could be to perform thermal and daylighting 
simulations separately, and chose a fitness definition 
that compensates for the incidence of each one, 
although this is not optimal. 

In the case presented here, the fact that only 
daylighting constraints were considered caused that 
windows evolved to occupy the maximum available 
surface on the façade. Thermal constraints would 
mean that an intermediate size for windows should 
be sought. 
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Figure 4 – Example of results for the best individual every 40 generations, from 0 to 200 


