
Proceedings: Building Simulation 2007

- 1291 -

VISION-BASED LOCATION SENSING AND SELF-UPDATING INFORMATION
MODELS FOR SIMULATION-BASED BUILDING CONTROL STRATEGIE

A. Mahdavi, O. Icoglu, S. Camara

Department of Building Physics and Building Ecology, Vienna University of Technology,
Vienna, Austria

ABSTRACT
Dynamic facility state models could effectively
support simulation-based building systems control. In
a simulation-based control strategy, the permutation
space of control options (alternative states of control
devices) at a future time step is proactively explored
using computational simulation. The simulated
implications of alternative control options are then
compared based on users' preferences. From this
comparison, the preferable control actions can be
deduced. To achieve this functionality, however, the
presence of a dynamic and self-updating building
model (with context, room, systems, and occupancy
data) is necessary. In this paper, we described the
conception and implementation of a prototype vision-
based object location sensing and occupancy
detection system to provide the control unit of a
sentient building with a steady flow of up-to-date
building state infomration.

KEYWORDS
Simulation-based building systems control, location
sensing, building information models

INTRODUCTION
In a "sentient building", a comprehensive sensor-
supported dynamically self-updating facility state
model effectively supports, amongst other operations,
simulation-based building systems control. Sentient
buildings possess a dynamic representation of their
context, components, systems, spaces, processes, and
occupancy (Mahdavi 2004). They can autonomously
update this representation based on information from
a comprehensive sensory infrastructure. Thus, a
sentient building possesses at all times up-to-date and
high-resolution information regarding external
conditions, room enclosure surfaces, furniture,
building components (such as doors and windows),
environmental systems, occupants' presence and
movements, and other static or dynamically changing
building entities. Most importantly, sentient buildings
can use this dynamic representation to support
operations in facility management and indoor-
environmental systems control (for heating, cooling,
ventilation, lighting, etc.).

In a simulation-based control strategy, the
permutation space of control options (alternative
states of control devices) at a future time step is

proactively explored using computational simulation.
This simulation model is regularly fed with data from
the self-updating building and context representation.
The implications of alternative control options are
then obtained via simulation and compared based on
users' preference settings. From this comparison, the
preferable course of control action can be deduced
(Mahdavi 2001, Mahdavi et al. 2005).

To achieve this functionality, however, the presence
of a continuously updated context, room, and
occupancy model is sine qua non. In previous
publications, we have described and documented
approaches for dynamically capturing contextual
conditions (weather, solar radiation, sky luminance,
etc.) as a component of a building's self-
representation (Mahdavi 2004, Mahdavi et al. 2005).
In the present contribution, we present the conception,
implementation, and testing of a prototype vision-
based object location sensing and occupancy
detection system. It is designated to provide a
sentient buildings model with a steady flow of up-to-
date data on the state of rooms (surfaces, system
components and interior objects, occupancy, etc.).
Such information, together with data on outdoor
conditions and system states constitute the
information core of sentient building's self-updating
representation. As the underlying sensing technology,
a vision-based system was selected that functions
based on the well-known "barcode reader" principle,
using a combination of visual markers (tags) and
cameras. It utilizes image-processing methods to
obtain in real-time the identity and location (both
position and orientation) of the tagged objects.
Additionally, cameras are used for motion-based
occupancy detection. This provides an extra benefit
for the vision-based methods, since it makes the
implementation of an additional technology for
occupancy sensing unnecessary.

The initial results obtained from our implementation
suggest that vision-based sensing, when enhanced
computationally and integrated with appropriate
hardware, can offer a promising technology for
application domains such as simulation-based
building systems control.

In the following two sections of the present
contribution, we first describe the overall system
design prototypical implementation of VIOLAS, a
prototype vision-based object location sensing and
occupancy detection system that is based on an array

Proceedings: Building Simulation 2007

- 1292 -

of (in part pan-tilt) network cameras (İçoğlu and
Mahdavi 2005). We then report on ongoing
modifications and enhancements to the system, which
involve the use of non-moving fisheye cameras.

VIOLAS

Technology review

Prior to the implementation of a solution, available
technologies were reviewed from the building
automation perspective. Our technology review did
not reveal a perfect sensing system for self-updating
building models. However, vision-based methods
appeared to come closest in meeting our requirements,
as they are software-supported and open for
modifications and improvements. Hence, we selected
a vision-based system that functions based on the
well-known "barcode reader" principle, using a
combination of visual markers (tags) and video
cameras. It utilizes image-processing methods to
obtain in real-time the identification and location
(both position and orientation) of the tagged objects.
Additionally, video cameras are used for occupancy
detection.

Upon choosing vision-based methods as the one
currently most responsive to our requirements,
different camera technologies were examined:
Network cameras (netcams) posses lower image
quality when compared to CCTV (close circuit
television) and digital photo cameras. However, in
buildings that are equipped with a data transmission
network, the required infrastructure for netcams is
already in place. A high-end network camera can
send images to ten or more computers simultaneously
using the HTTP transmission protocol. Moreover,
netcams enable the control of third-party devices like
pan-tilt (P/T) units, thus effectively increasing the
monitoring ranges. Therefore, network cameras were
selected as the sensors for the initial implementation.
However, ongoing work includes also a test of digital
cameras equipped with fisheye lenses as potential
alternative sensors in the location-sensing system.

Implementation

VIOLAS can be installed in a room equipped with
one camera, and it can be applied to an entire
building with one hundred rooms, equipped with one
hundred cameras. The latter scenario involves
intensive processing loads of data acquired from
multiple sensors. To accommodate such loads,
multiple computing resources must be utilized that
can function in parallel and that can be reconfigured
in a scalable fashion. For this reason, VIOLAS
software is implemented as a distributed architecture,
where the subcomponents of the system
communicate through the Internet platform.
Communication and data sharing follow the
distributed component object model (DCOM)

protocol enabling software components to
communicate directly over a network in a reliable,
secure, and efficient manner (DCOM 2004). This
distributed structure provides scalability, incremental
growth, and enhanced performance derived from
parallel operation. Thus, VIOLAS software is
divided into server and client tiers (Fig. 1).

Application server lies on the server tier. It is
responsible for two important activities, resource
management and data integration. Concerning its
resource management activity, application server
controls the distributed components, including the
sensors and client modules, lying on the client tier.
Network cameras are the sensors in this structure.
They convey video images as distributed network
devices. Client modules are the image processing
units (IPU) implemented on different computers
scattered across a facility. They process the input
images captured from netcams. Application server is
responsible for connecting the IPUs with the
available netcams in the system. Concerning the data
integration activity, application server combines the
results obtained from multiple IPUs, and
subsequently transfers them to the self-updating
model and the applications served by this model.
Database server is the second subcomponent that lies
on the server side. This component handles the data
access demands of other components and connects
them with the VIOLAS database. User interface
server is the last component of the server tier. It
maintains the communication between the operator
and VIOLAS. The activities undertaken by each
VIOLAS component are described in the following
sections in more detail.

Image Processing Units

Image processing units (IPUs) are the programs that
lie on the client side, and run parallel on different
computers scattered around the facility. IPUs are the
consumers of sensors (cameras). They acquire
images from the cameras and process them to extract
the context information (Fig. 2).

Hardware interface

Hardware interface facilitates the communication
with the cameras. The required communication
parameters are retrieved from a camera table located
in the VIOLAS database. In case of pan-tilt units, it
also permits controlling the motion of these devices.
Thus, the pan-tilt unit is successively guided through
a certain path so as to scan the entire space.

Proceedings: Building Simulation 2007

- 1293 -

Netcam

User
Interface
Server

Database
Server

Server-Side

Netcam
P/T

Netcam

Netcam
P/T

Application
Server

IPU

IPU

Operator
Space 1

Space 2

Lighting Control
System

VIOLAS Database

Figure 1 Distributed structure of VIOLAS

Object
Identification

Location
Sensing

Object
Data

Netcam
P/T

O
cc

up
an

cy
D

et
ec

tio
n

Coordinate
Transformation

Hardware Interface

Netcam

A
pp

lic
at

io
n

S
er

ve
r R

es
po

nd
er Communication

with Application
Server

Camera Data

Figure 2 Structure of the Image Processing Units

Object identification and location sensing

Amongst vision-based methods, the algorithm
proposed in TRIP (Lòpez et al. 2002) provides in our
view a suitable basis for object identification and
location sensing in buildings. For location sensing,
TRIP uses "pose from circle" algorithm (Forsyth et al.
1991, Trucco & Verri 1998), estimating the pose of a
circle in space from a single intensity image. The
algorithm can be concisely described as follows: A
circle on the target plane generates an ellipse on the
image plane of the camera. From the known
parameters of the ellipse, it can be back-projected to
the original circle, enabling the extraction of the
orientation and the position of the target plane with
respect to the camera origin. If tags with reference
circles are attached to the objects, their location can
be estimated with respect to the viewing cameras.

In TRIP system, object identification is performed
with a method similar to the barcode principle:
special marks are placed around the reference circle
used for location sensing. We also utilized the same
method, but applied a different coding structure. This
coding structure enables the definition of 2031
distinct tagged objects. The tag size is 12 by 12 cm. It
can be printed using regular black-and-white printers.
Thus, tags are low-cost, low-maintenance, and
require no power input. As previously mentioned,
netcams provide lower image quality (low resolution,
less sharp images) than CCTV or digital photo
cameras. In order to compensate these drawbacks,
image enhancement methods are applied prior to the
implementation of location sensing and object
identification. The details of the enhancement
methods and the location sensing and object
identification algorithms utilized in VIOLAS are
given in İçoğlu & Mahdavi (2005).

Occupancy detection

In addition to the object location data, occupancy
information is needed for a comprehensive model
construction. Even though there are off-the-shelf
products for this purpose, we explored the potential
of our vision-based solution for occupancy detection,
thus benefiting from an already established
infrastructure. Occupancy sensors typically operate
based on detection of motion. We thus implemented
a method to detect motion from sequential camera
images. The temporal changes in the intensity
(brightness) values of the pixels are evaluated to
sense the motion within the camera’s field-of-view.
However, the intensity values may change even
though there is no motion. Illuminance variations in
the scene may cause false occupancy reports.
Additionally, the aperture of the camera is managed
automatically by the camera mechanism, leading to
intensity changes in image pixels. To deal with these
problems, a model was adapted, in which the image
intensity is considered to be generated by incident
light, which is reflected by the surfaces of the objects
in the observed scene. For diffuse surfaces, the
relation between observed intensity, illumination, and
reflectance is multiplicative, and the images can be
decomposed into their illuminance and reflectance
components utilizing homomorphic filtering (Toth et
al. 2000).

In many realistic cases, a reflectance map contains
the object information, whereby the effects of
illumination are typically suppressed. Therefore, it is
more convenient to utilize reflectance maps rather
than the intensity images for evaluating the pixel
changes in image sequences. Thus, the raw camera
images are decomposed into their illuminance and
reflectance components, and subsequently, the
reflectance components of the successive images are
compared to detect occupancy.

Proceedings: Building Simulation 2007

- 1294 -

Coordinate transformation

The extracted location data is the position and
orientation information with respect to the
coordinates of the camera from which the processed
image is acquired. In this state, the location data is
not usable for model generation. By using 3D
transformations, "coordinate transformation"
converts the position and orientation data with
respect to camera coordinates to the position and
orientation data with respect to the real-world
coordinates (İçoğlu & Mahdavi 2005). The
coordinate transformation is also applied in
occupancy detection, if the camera is mounted on a
pan-tilt unit. The position of the camera is known
with the provided pan and tilt angles. Together
with the camera’s field-of-view range information
retrieved from the camera table, this information
allows for the determination of the region within
which the occupancy is detected. The calculation
does not provide a precise location data, but it allows
for the spatial derivation of the occupancy region.
Once the context information is obtained via IPU, the
results are conveyed to the application server (Fig. 1).

Application Server Responder

Located within the IPU, "application server
responder" is an auxiliary module that provides the
communication to the application server. The tasks
undertaken by this module are as follows: i) Register
the IPU in the system when it is initiated; ii) Respond
to the application server's "control" request sent for
checking the status of the IPUs. The application
server obtains the status of the IPUs (active or not)
by sending this request message; iii) Fetch the
application server's "new resource sharing" request.
The cameras assigned for the IPU are informed
through this message. Thus, the IPU recognizes the
cameras to be connected for image acquisition. Note
that, at the startup of the IPU, no cameras are
assigned. "Application server responder" first
registers the IPU in the system. After recognizing the
new IPU client, application server rearranges the
assignments between the cameras and the IPUs.
Consequently, the application server informs all IPUs,
whose camera assignments are changed by sending a
"new resource sharing" request. This is how the IPU
lines up its cameras at the initial state. Subsequently,
the IPU connects to the designated cameras and
applies the aforementioned sensing methods to the
images acquired.

Application Server

As the key component in VIOLAS, the application
server controls the overall system. First, it manages
data integration by combining the results coming
from parallel running IPUs. Second, it dynamically
performs the assignment of resources to consumers.
In other words, the application server detects changes

in the status of the cameras and IPUs in the system,
and accordingly rearranges the assignments of
cameras to the existing IPU clients. While
performing these assignments, application server also
balances the workload of IPUs.

The structure of the application server is illustrated in
Figure 3. It is comprised of five distinct modules.
The first three modules undertake the resource
management activities, whereas the last two modules
implement data transfer and integration.

Data Fusion

Resource Sharing & Load
Balancing

IPU - Status
Check

IPU Controller

Camera Controller

Camera - Status
Check

New resource
sharing

Lighting Control
System

Object Inventory

IPU results

Camera Data

Fusion Data

Communication Interface

Figure 3 Structure of the application server

Resource management

It is not feasible to assign an operator to continuously
and manually manage the large amount of distributed
components (cameras and IPUs). To support resource
management in VIOLAS, the three following
modules are implemented.

The first modul, "IPU controller", continuously
checks the state of IPU clients. It sends a "control"
request to each IPU (see also "application server
responder" in Fig. 2). The IPU’s status is assumed as
"active", if it responds within a certain time.

The second module, "camera controller", checks the
status of the cameras in a similar way. It reads the
available cameras and their communication details
(Fig. 3) from the camera table, and then sends a
"control" request to each of them. The netcams have
a built-in FTP server. If the camera's FTP server
responds within a certain time, the camera's status is
updated as "active".

The third module, "resource sharing and load
balancing", is executed at the initial run of the system
and whenever the status of cameras or IPUs change.
This module assigns the active cameras (resources) to
the active IPUs (consumers). This assignment is
performed in a manner so as to continuously balance
the workloads of IPUs. Thus, the application server

Proceedings: Building Simulation 2007

- 1295 -

computes the number of cameras that will be
assigned to each IPU in the next run. In addition to
the number, the "resource sharing and load
balancing" module also determines which cameras
will be assigned to a specific IPU by taking the
network domain of the cameras into consideration.
The cameras that lie on the same network area or on
a network area close to the IPU are assigned to
reduce the network load and increase the image
transfer speed. Consequently, multiple IPUs can
share a single camera, when the number of
processing units exceeds the number of available
sensors. This arrangement prevents jobless IPUs. In
order to eliminate inconsistencies, the application
server selects one of the IPUs as the "master". The
master IPU is authorized to control the pan-tilt unit if
one is available for the shared camera.

Data integration

Data integration is vital for handling multiple results
coming from concurrent IPUs. Towards this end,
"data fusion" module is implemented. This module is
activated regularly, whereby the context data
acquired from all IPUs are combined. There are two
phases of the data fusion, namely "tag-level fusion"
and "object-level fusion". The same tag can be
detected with more than one camera. Likewise, one
camera can be assigned to multiple IPUs. This leads
to repeated tag records coming from multiple
cameras (or IPUs) in the system. In the tag-level
fusion phase, data fusion combines these records.
The second phase of the data fusion is implemented
at the object-level. The system enables the
attachment of multiple tags on a larger object to
reduce the occlusion possibility and to increase the
line-of-sight between tags and cameras. This requires
the second level fusion in order to prevent redundant
object records when both tags are identified.

In addition to location, occupancy data is considered
in data fusion. IPU assigns time stamps to detected
occupancies, as it is done for tag identifications.
Based on the detection times, occupancy durations
are determined. The ones that exceed a predefined
time interval (elapsed since the last occupancy
detection report) are removed. Consequently, the
output of the data fusion (the final and consistent
context data) is stored in a fusion table in the
VIOLAS database. The results are also transformed
into XML-like data packets for convenient data
communication. Thus, they can be transferred to
operational applications (such as the office lighting
control system in our project) through the
"communication interface" module.

User Interface Server

User interface server provides the communication
between VIOLAS and the operator. It enables an
operator to add and modify system data and to see

system results on screen. The location values
retrieved from the fusion table are combined with the
values retrieved from the object inventory, and 2D
graphical representations of the objects within the
room are generated. Towards this end, the system
represents every object as a minimum bounding-box
covering the original object shape.

The communication is achieved by a method called
common gateway interface (CGI). CGI programs are
special applications that can run upon the initiation of
a web server. This method allows for the remote
execution of programs on the server platform,
eliminating any hardware or software requirement on
the client side. The operator can run the program
through his/her web browser, from any computer on
the network.

Database Server

Database server is an important module in VIOLAS,
as its underlying structure enables the access to
distributed COM (component object model) objects
over a network. COM is a software architecture that
standardizes the programming interfaces,
implementation models, and the data structures.
Based on this architecture, distributed COM objects
(DCOM 2004) are developed that can be employed
by other applications remotely in a network
environment. This allows the software components to
access data or to implement a function remotely from
multiple distributed computers. In this context, the
software components of VIOLAS (image processing
units, application server, and the user interface server)
act as client applications that request service from the
database server. Database server manages the
communication between these programs and the
VIOLAS database. The programs can also
communicate with each other utilizing the database
as a broker. Note that simple text messages between
the applications server and the distributed
components (for camera and IPU status-checking or
new-resource-sharing) are carried out with TCP
socket connection rather than DCOM.

A DEMONSTRATIVE TEST

Test-bed configuration

To evaluate the performance of VIOLAS, a
demonstrative test was performed in an office space
of the Department of Building Physics and Building
Ecology, Vienna Technical University. The building
is equipped with a local area network, thus offering
the required infrastructure. A netcam attached on a
P/T unit is connected to the network. Within this
network, our department possesses a domain via a
mainframe computer. The server applications
(database server, application server, and user
interface server) are installed in the mainframe
together with the VIOLAS database. This computer

Proceedings: Building Simulation 2007

- 1296 -

also runs a web server. The user interface server is
placed under a specific folder where the web server
can access and execute CGI applications. Prior to the
initialization of VIOLAS, required parameters are
defined via user interface server. However, the
database server is activated first so that the user
interface can access the database.

Towards the implementation of the test, a typical
office environment (test-bed) is used that involves 25
objects relevant for the demonstrative operational
application (lighting control system). First, these
objects are defined. For each object, a tag is
generated. Consequently, the tags are printed and
attached on the corresponding objects. Figure 4
shows the 2D sketch of the entire test-bed together
with the tagged objects and sensor devices. As also
depicted in the figure, motion was generated at three
points to test the occupancy sensing capability.

VIOLAS in operation

Following the configuration, application server is
initiated. Application server immediately starts
checking the status of the cameras and the IPUs in
the system, and finds the netcam connected to the
network. However, the camera is not assigned to an
IPU, since no IPU was activated before. Therefore,
an IPU is initiated from a computer in the department.
After its initiation, the IPU client registers itself to
the system and responds to the application server’s
control request. Detecting an active IPU client,
application server executes a resource management
computation and assigns the netcam to the IPU. To
test the system’s behavior with multiple clients, a
second IPU is initiated from another computer. This
IPU also registers itself successfully in the system,
and responds to the application server’s control
request. After the detection of a second active IPU,
application server enacts a reassignment, linking the
camera to the IPUs, whereby the second IPU is given
the "slave" role. Thus, the first IPU controls the pan-
tilt unit attached to the network camera.
Consequently, both IPUs successfully run in parallel
and scan the test-bed. They extract the context
information in the test-bed and concurrently transfer
the results to the VIOLAS database.

The output of the IPUs is fetched by the application
server. The incoming results are fused by the internal
data fusion module, and subsequently recorded in the
database. In this test, the system achieves a 100%
identification performance, extracting all tag codes
and recognizing all objects. To evaluate the accuracy
of location results, "position error" is defined as the
distance between the ground-truth position (actual
position information) and the sensed position of the
tag. "Orientation error" is defined as the angle
between the tag’s true surface normal and the sensed
surface normal. Generally, the test implies for the
system an average position error of 0.18 meters and

an orientation error of 4.2 degrees on aggregate. The
position error percentage has a mean value of 7.3%
(cp. İçoğlu & Mahdavi 2005).

WALL
3

WALL 1

WALL
4

WALL 2OPENING 1 OPENING 2

WINDOW 1 WINDOW 2

A

B

C

D

TABLE
1

TABLE
2

TABLE
3

TABLE
4

BLIND 1 BLIND 2

UPLIGHT
1 UPLIGHT

2
E

y

x
Figure 4 2D sketch of the test-bed ("A" to "D" refer
to Cabinets; "E" refers to Camera and P/T unit. The

marks, ⊗, refer to the occupancy events)

Occupancy in the test-bed was detected consistently
and without false reports. The system is robust
against illumination changes due to opening or
closing of the aperture in the camera mechanism.
Likewise, slow changes in the intensity of the light
sources do not cause false reports. As mentioned
before, the system does not provide an exact
occupancy location. However, the general region
within which the motion takes place can be specified.
A graphical representation of the test-bed, as
generated and displayed by the user interface, is
illustrated in Figure 5. The object location results can
be seen together with the sensed occupancies.

MODEL VISUALIZATION AND
REUSABILITY
As seen in Figure 5, VIOLAS can present the results
in a 2D display. However, this display is not very
convenient for the visualization of the resulting
model. A more proper visualization can include the
3D display of the model, and enable the model’s
examination by an operator with rotation and walk-
through capabilities. Towards this end, VRML
(virtual reality modeling language) function is added
to the user interface server. A sample VRML model
of the test-bed constructed by the user interface
server is shown in Figure 6. Moreover, VRML
enables the reusability of the models generated by
VIOLAS. Other 3D model editing applications can
import the VRML files. This allows the user to
modify and store the VIOLAS outputs in different
platforms offered by commercial CAD vendors.

Proceedings: Building Simulation 2007

- 1297 -

Figure 5 Graphical representation of the test-bed
generated by the user interface server. The objects
are drawn with the extracted locations. The slides

are caused by orientation errors that have an
average value of ~5°

Figure 6 3D model of the test-bed (VRML)

ONGOING WORK
The initial VIOLAS implementation was based on
network cameras. To achieve the required level of
scene coverage, most of such cameras in a facility
need to be augmented with pan-tilt units. While our
experience with this technology has been promising,
certain problems exist, such as the intrusiveness of
this technology both in terms of the camera size and
the existence of moving parts. Thus, to explore an
alternative that would not involve moving parts yet
would offer a wide scene coverage, we are currently
testing the potential of static cameras with fisheye
lenses as the primary visual sensing device. Toward
this end, we have performed an initial test, whereby,

other than the cameras, all other components of the
previous implementation (tags, detection algorithms,
test space) are unchanged. The test involved the
following steps: i) we equipped an ordinary digital
camera with a fisheye lens; ii) we mounted this
camera in the center of the test space. Altogether 17
tags were used to mark various room surfaces and
furniture elements; iii) four fisheye images of the test
space were generated by the camera from four
different vantage points close to the center of the
room (see Figure 7 as an example); iv) These four
images were dissected into nine partially overlapping
segments (see, for example, Figure 8) via the
application of an equi-rectangular projection
technique (Iris 2006); v) the resulting image
segments were analyzed using the image processing
methodology described in the previous section.

Figure 7 Sample fisheye image of the test space

Figure 8 Examples of image segments extracted
from the fisheye picture using equi-rectangular

transformation (Iris 2006)
Figure 9 shows the tag detection performance in
terms of the percentage of correctly identified tags as
a function of the distance of the tag from the camera.
Figure 10 shows the relationship between the actual
and computed tag-camera distances. Even though this

Proceedings: Building Simulation 2007

- 1298 -

initial test resulted in a rather modest tag detection
performance (67 %) and distance estimation accuracy
(6 ± 10%), further calibration of the camera and
improvements in the application of the equi-
rectangular projection are likely to improve the
performance of the system in the near future.

0

20

40

60

80

100

1.00 - 1.99 2.00 - 2.99 3.00 - 3.99

Distance [m]

Id
en

tif
ie

d
ta

gs
 [%

]

Figure 9 Percentage of correctly identified tags in a

scene captured as a fisheye image

0

1

2

3

4

5

0 1 2 3 4 5

True Distance [m]

C
om

pu
te

d
D

is
ta

nc
e

[m
]

Figure 10 Actual versus computed tag-camera

distances

CONCLUSION
Operational applications (such as control systems for
heating, cooling, and lighting in buildings) require
high-resolution self-updating spatial models with
context awareness, if they are expected to implement
advanced simulation-based control approaches. This
necessitates identifying objects, sensing their location,
and detecting occupancies. To explore how these
requirements can be met, we developed VIOLAS.
Thereby we selected network cameras as sensors,
implemented assorted sensing algorithms, and the
designed the system software architecture.

The system's sensing performance currently covers a
4 meters range and 75 degrees incidence angle,
enabling the identification of all objects in the test-
bed, and locating them with an accuracy of 0.18
meters average position and 4.2 degrees average
orientation error. Thus, assuming a single netcam and
pan-tilt unit, VIOLAS possesses an effective
scanning area of approximately 50 m2 (for both
object location sensing and occupancy detection).

The initial results obtained from VIOLAS as well as
recent experiments with cameras with fisheye lenses
suggest that vision-based sensing, when enhanced
computationally and integrated with appropriate
hardware, may offer a promising technology for
application domains such as facility management and
indoor-environmental control applications in
buildings.

ACKNOWLEDGEMENT
The research presented in this paper is supported by a
grant from FWF (Austrian Science Foundation),
project number L 219-N07.

REFERENCES
DCOM. 2004. Microsoft COM technologies.

http://www.microsoft.com/com/

Forsyth D, Mundy JL, Zisserman A, Coelho C,
Heller, A. & Rothwell, C. 1991. Invariant
descriptors for 3-D object recognition and pose.
IEEE Transactions on Pattern Analysis and
Machine Intelligence. 13(10): 971-991.

İçoğlu O & Mahdavi A. 2005. A vision-based
sensing system for sentient building models, 22nd
CIB-W78 Conference - Information Technology
in Construction. pp. 559 - 566.

Iris 2006. Iris software (Version 5.34) for equi-
rectangular transformation (http://www.Astro
surf.com/buil/us/iris/iris.htm).

Lòpez de Ipina D, Mendonca PS & Hopper A. 2002.
Visual sensing and middleware support for
sentient computing. Personal and Ubiquitous
Computing. 6(3): 206-219.

Mahdavi A. 2001. Simulation-based control of
building systems operation. Building and
Environment. 36(6): 789-796. Vol. 1. pp. 3-18.

Mahdavi A. 2004. Self-organizing models for
sentient buildings. In A.M. Malkawi & G.
Augenbroe (eds), Advanced Building Simulation:
159-188. London: Spon Press.

Mahdavi A, Spasojević B. & Brunner K. 2005.
Elements of a simulation-assisted daylight-
responsive illumination systems control in
buildings. BS 2005: 9th International IBPSA
Conference, Montreal, Canada. pp. 693 - 699.

Toth D, Aach T. & Metzler V. 2000. Illumination-
invariant change detection, 4th IEEE Southwest
Symposium on Image Analysis and
Interpretation.

Trucco E & Verri A. 1998. Introductory techniques
for 3-D computer vision. New Jersey: Prentice
Hall Inc.

