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ABSTRACT  
Dynamic facility state models could effectively 
support simulation-based building systems control. In 
a simulation-based control strategy, the permutation 
space of control options (alternative states of control 
devices) at a future time step is proactively explored 
using computational simulation. The simulated 
implications of alternative control options are then 
compared based on users' preferences. From this 
comparison, the preferable control actions can be 
deduced. To achieve this functionality, however, the 
presence of a dynamic and self-updating building 
model (with context, room, systems, and occupancy 
data) is necessary. In this paper, we described the 
conception and implementation of a prototype vision-
based object location sensing and occupancy 
detection system to provide the control unit of a 
sentient building with a steady flow of up-to-date 
building state infomration.  

KEYWORDS 
Simulation-based building systems control, location 
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INTRODUCTION 
In a "sentient building", a comprehensive sensor-
supported dynamically self-updating facility state 
model effectively supports, amongst other operations, 
simulation-based building systems control. Sentient 
buildings possess a dynamic representation of their 
context, components, systems, spaces, processes, and 
occupancy (Mahdavi 2004). They can autonomously 
update this representation based on information from 
a comprehensive sensory infrastructure. Thus, a 
sentient building possesses at all times up-to-date and 
high-resolution information regarding external 
conditions, room enclosure surfaces, furniture, 
building components (such as doors and windows), 
environmental systems, occupants' presence and 
movements, and other static or dynamically changing 
building entities. Most importantly, sentient buildings 
can use this dynamic representation to support 
operations in facility management and indoor-
environmental systems control (for heating, cooling, 
ventilation, lighting, etc.).  

In a simulation-based control strategy, the 
permutation space of control options (alternative 
states of control devices) at a future time step is 

proactively explored using computational simulation. 
This simulation model is regularly fed with data from 
the self-updating building and context representation. 
The implications of alternative control options are 
then obtained via simulation and compared based on 
users' preference settings. From this comparison, the 
preferable course of control action can be deduced 
(Mahdavi 2001, Mahdavi et al. 2005).  

To achieve this functionality, however, the presence 
of a continuously updated context, room, and 
occupancy model is sine qua non. In previous 
publications, we have described and documented 
approaches for dynamically capturing contextual 
conditions (weather, solar radiation, sky luminance, 
etc.) as a component of a building's self-
representation (Mahdavi 2004, Mahdavi et al. 2005). 
In the present contribution, we present the conception, 
implementation, and testing of a prototype vision-
based object location sensing and occupancy 
detection system. It is designated to provide a 
sentient buildings model with a steady flow of up-to-
date data on the state of rooms (surfaces, system 
components and interior objects, occupancy, etc.). 
Such information, together with data on outdoor 
conditions and system states constitute the 
information core of sentient building's self-updating 
representation. As the underlying sensing technology, 
a vision-based system was selected that functions 
based on the well-known "barcode reader" principle, 
using a combination of visual markers (tags) and 
cameras. It utilizes image-processing methods to 
obtain in real-time the identity and location (both 
position and orientation) of the tagged objects. 
Additionally, cameras are used for motion-based 
occupancy detection. This provides an extra benefit 
for the vision-based methods, since it makes the 
implementation of an additional technology for 
occupancy sensing unnecessary.  

The initial results obtained from our implementation 
suggest that vision-based sensing, when enhanced 
computationally and integrated with appropriate 
hardware, can offer a promising technology for 
application domains such as simulation-based 
building systems control.  

In the following two sections of the present 
contribution, we first describe the overall system 
design prototypical implementation of VIOLAS, a 
prototype vision-based object location sensing and 
occupancy detection system that is based on an array 
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of (in part pan-tilt) network cameras (İçoğlu and 
Mahdavi 2005). We then report on ongoing 
modifications and enhancements to the system, which 
involve the use of non-moving fisheye cameras. 

VIOLAS 

Technology review 

Prior to the implementation of a solution, available 
technologies were reviewed from the building 
automation perspective. Our technology review did 
not reveal a perfect sensing system for self-updating 
building models. However, vision-based methods 
appeared to come closest in meeting our requirements, 
as they are software-supported and open for 
modifications and improvements. Hence, we selected 
a vision-based system that functions based on the 
well-known "barcode reader" principle, using a 
combination of visual markers (tags) and video 
cameras. It utilizes image-processing methods to 
obtain in real-time the identification and location 
(both position and orientation) of the tagged objects. 
Additionally, video cameras are used for occupancy 
detection. 

Upon choosing vision-based methods as the one 
currently most responsive to our requirements, 
different camera technologies were examined: 
Network cameras (netcams) posses lower image 
quality when compared to CCTV (close circuit 
television) and digital photo cameras. However, in 
buildings that are equipped with a data transmission 
network, the required infrastructure for netcams is 
already in place. A high-end network camera can 
send images to ten or more computers simultaneously 
using the HTTP transmission protocol. Moreover, 
netcams enable the control of third-party devices like 
pan-tilt (P/T) units, thus effectively increasing the 
monitoring ranges. Therefore, network cameras were 
selected as the sensors for the initial implementation. 
However, ongoing work includes also a test of digital 
cameras equipped with fisheye lenses as potential 
alternative sensors in the location-sensing system.  

Implementation 

VIOLAS can be installed in a room equipped with 
one camera, and it can be applied to an entire 
building with one hundred rooms, equipped with one 
hundred cameras. The latter scenario involves 
intensive processing loads of data acquired from 
multiple sensors. To accommodate such loads, 
multiple computing resources must be utilized that 
can function in parallel and that can be reconfigured 
in a scalable fashion. For this reason, VIOLAS 
software is implemented as a distributed architecture, 
where the subcomponents of the system 
communicate through the Internet platform. 
Communication and data sharing follow the 
distributed component object model (DCOM) 

protocol enabling software components to 
communicate directly over a network in a reliable, 
secure, and efficient manner (DCOM 2004). This 
distributed structure provides scalability, incremental 
growth, and enhanced performance derived from 
parallel operation. Thus, VIOLAS software is 
divided into server and client tiers (Fig. 1).  

Application server lies on the server tier. It is 
responsible for two important activities, resource 
management and data integration. Concerning its 
resource management activity, application server 
controls the distributed components, including the 
sensors and client modules, lying on the client tier. 
Network cameras are the sensors in this structure. 
They convey video images as distributed network 
devices. Client modules are the image processing 
units (IPU) implemented on different computers 
scattered across a facility. They process the input 
images captured from netcams. Application server is 
responsible for connecting the IPUs with the 
available netcams in the system. Concerning the data 
integration activity, application server combines the 
results obtained from multiple IPUs, and 
subsequently transfers them to the self-updating 
model and the applications served by this model. 
Database server is the second subcomponent that lies 
on the server side. This component handles the data 
access demands of other components and connects 
them with the VIOLAS database. User interface 
server is the last component of the server tier. It 
maintains the communication between the operator 
and VIOLAS. The activities undertaken by each 
VIOLAS component are described in the following 
sections in more detail. 

Image Processing Units 

Image processing units (IPUs) are the programs that 
lie on the client side, and run parallel on different 
computers scattered around the facility. IPUs are the 
consumers of sensors (cameras). They acquire 
images from the cameras and process them to extract 
the context information (Fig. 2). 

Hardware interface 

Hardware interface facilitates the communication 
with the cameras. The required communication 
parameters are retrieved from a camera table located 
in the VIOLAS database. In case of pan-tilt units, it 
also permits controlling the motion of these devices. 
Thus, the pan-tilt unit is successively guided through 
a certain path so as to scan the entire space.  
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Figure 1 Distributed structure of VIOLAS 
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Figure 2  Structure of the Image Processing Units 

 

Object identification and location sensing 

Amongst vision-based methods, the algorithm 
proposed in TRIP (Lòpez et al. 2002) provides in our 
view a suitable basis for object identification and 
location sensing in buildings. For location sensing, 
TRIP uses "pose from circle" algorithm (Forsyth et al. 
1991, Trucco & Verri 1998), estimating the pose of a 
circle in space from a single intensity image. The 
algorithm can be concisely described as follows: A 
circle on the target plane generates an ellipse on the 
image plane of the camera. From the known 
parameters of the ellipse, it can be back-projected to 
the original circle, enabling the extraction of the 
orientation and the position of the target plane with 
respect to the camera origin. If tags with reference 
circles are attached to the objects, their location can 
be estimated with respect to the viewing cameras.  

In TRIP system, object identification is performed 
with a method similar to the barcode principle: 
special marks are placed around the reference circle 
used for location sensing. We also utilized the same 
method, but applied a different coding structure. This 
coding structure enables the definition of 2031 
distinct tagged objects. The tag size is 12 by 12 cm. It 
can be printed using regular black-and-white printers. 
Thus, tags are low-cost, low-maintenance, and 
require no power input. As previously mentioned, 
netcams provide lower image quality (low resolution, 
less sharp images) than CCTV or digital photo 
cameras. In order to compensate these drawbacks, 
image enhancement methods are applied prior to the 
implementation of location sensing and object 
identification. The details of the enhancement 
methods and the location sensing and object 
identification algorithms utilized in VIOLAS are 
given in İçoğlu & Mahdavi (2005).  

Occupancy detection 

In addition to the object location data, occupancy 
information is needed for a comprehensive model 
construction. Even though there are off-the-shelf 
products for this purpose, we explored the potential 
of our vision-based solution for occupancy detection, 
thus benefiting from an already established 
infrastructure. Occupancy sensors typically operate 
based on detection of motion. We thus implemented 
a method to detect motion from sequential camera 
images. The temporal changes in the intensity 
(brightness) values of the pixels are evaluated to 
sense the motion within the camera’s field-of-view. 
However, the intensity values may change even 
though there is no motion. Illuminance variations in 
the scene may cause false occupancy reports. 
Additionally, the aperture of the camera is managed 
automatically by the camera mechanism, leading to 
intensity changes in image pixels. To deal with these 
problems, a model was adapted, in which the image 
intensity is considered to be generated by incident 
light, which is reflected by the surfaces of the objects 
in the observed scene. For diffuse surfaces, the 
relation between observed intensity, illumination, and 
reflectance is multiplicative, and the images can be 
decomposed into their illuminance and reflectance 
components utilizing homomorphic filtering (Toth et 
al. 2000).  

In many realistic cases, a reflectance map contains 
the object information, whereby the effects of 
illumination are typically suppressed. Therefore, it is 
more convenient to utilize reflectance maps rather 
than the intensity images for evaluating the pixel 
changes in image sequences. Thus, the raw camera 
images are decomposed into their illuminance and 
reflectance components, and subsequently, the 
reflectance components of the successive images are 
compared to detect occupancy.  
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Coordinate transformation 

The extracted location data is the position and 
orientation information with respect to the 
coordinates of the camera from which the processed 
image is acquired. In this state, the location data is 
not usable for model generation. By using 3D 
transformations, "coordinate transformation" 
converts the position and orientation data with 
respect to camera coordinates to the position and 
orientation data with respect to the real-world 
coordinates (İçoğlu & Mahdavi 2005). The 
coordinate transformation is also applied in 
occupancy detection, if the camera is mounted on a 
pan-tilt unit. The position of the camera is known 
with the provided pan  and tilt  angles. Together 
with the camera’s field-of-view range information 
retrieved from the camera table, this information 
allows for the determination of the region within 
which the occupancy is detected. The calculation 
does not provide a precise location data, but it allows 
for the spatial derivation of the occupancy region. 
Once the context information is obtained via IPU, the 
results are conveyed to the application server (Fig. 1). 

Application Server Responder 

Located within the IPU, "application server 
responder" is an auxiliary module that provides the 
communication to the application server. The tasks 
undertaken by this module are as follows: i) Register 
the IPU in the system when it is initiated; ii) Respond 
to the application server's "control" request sent for 
checking the status of the IPUs. The application 
server obtains the status of the IPUs (active or not) 
by sending this request message; iii) Fetch the 
application server's "new resource sharing" request. 
The cameras assigned for the IPU are informed 
through this message. Thus, the IPU recognizes the 
cameras to be connected for image acquisition. Note 
that, at the startup of the IPU, no cameras are 
assigned. "Application server responder" first 
registers the IPU in the system. After recognizing the 
new IPU client, application server rearranges the 
assignments between the cameras and the IPUs. 
Consequently, the application server informs all IPUs, 
whose camera assignments are changed by sending a 
"new resource sharing" request. This is how the IPU 
lines up its cameras at the initial state. Subsequently, 
the IPU connects to the designated cameras and 
applies the aforementioned sensing methods to the 
images acquired. 

Application Server 

As the key component in VIOLAS, the application 
server controls the overall system. First, it manages 
data integration by combining the results coming 
from parallel running IPUs. Second, it dynamically 
performs the assignment of resources to consumers. 
In other words, the application server detects changes 

in the status of the cameras and IPUs in the system, 
and accordingly rearranges the assignments of 
cameras to the existing IPU clients. While 
performing these assignments, application server also 
balances the workload of IPUs.  

The structure of the application server is illustrated in 
Figure 3. It is comprised of five distinct modules.  
The first three modules undertake the resource 
management activities, whereas the last two modules 
implement data transfer and integration. 
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Figure 3  Structure of the application server 

Resource management 

It is not feasible to assign an operator to continuously 
and manually manage the large amount of distributed 
components (cameras and IPUs). To support resource 
management in VIOLAS, the three following 
modules are implemented. 

The first modul, "IPU controller", continuously 
checks the state of IPU clients. It sends a "control" 
request to each IPU (see also "application server 
responder" in Fig. 2). The IPU’s status is assumed as 
"active", if it responds within a certain time.  

The second module, "camera controller", checks the 
status of the cameras in a similar way. It reads the 
available cameras and their communication details 
(Fig. 3) from the camera table, and then sends a 
"control" request to each of them. The netcams have 
a built-in FTP server. If the camera's FTP server 
responds within a certain time, the camera's status is 
updated as "active". 

The third module, "resource sharing and load 
balancing", is executed at the initial run of the system 
and whenever the status of cameras or IPUs change. 
This module assigns the active cameras (resources) to 
the active IPUs (consumers). This assignment is 
performed in a manner so as to continuously balance 
the workloads of IPUs. Thus, the application server 
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computes the number of cameras that will be 
assigned to each IPU in the next run. In addition to 
the number, the "resource sharing and load 
balancing" module also determines which cameras 
will be assigned to a specific IPU by taking the 
network domain of the cameras into consideration. 
The cameras that lie on the same network area or on 
a network area close to the IPU are assigned to 
reduce the network load and increase the image 
transfer speed. Consequently, multiple IPUs can 
share a single camera, when the number of 
processing units exceeds the number of available 
sensors. This arrangement prevents jobless IPUs. In 
order to eliminate inconsistencies, the application 
server selects one of the IPUs as the "master". The 
master IPU is authorized to control the pan-tilt unit if 
one is available for the shared camera. 

Data integration 

Data integration is vital for handling multiple results 
coming from concurrent IPUs. Towards this end, 
"data fusion" module is implemented. This module is 
activated regularly, whereby the context data 
acquired from all IPUs are combined. There are two 
phases of the data fusion, namely "tag-level fusion" 
and "object-level fusion". The same tag can be 
detected with more than one camera. Likewise, one 
camera can be assigned to multiple IPUs. This leads 
to repeated tag records coming from multiple 
cameras (or IPUs) in the system. In the tag-level 
fusion phase, data fusion combines these records. 
The second phase of the data fusion is implemented 
at the object-level. The system enables the 
attachment of multiple tags on a larger object to 
reduce the occlusion possibility and to increase the 
line-of-sight between tags and cameras. This requires 
the second level fusion in order to prevent redundant 
object records when both tags are identified.  

In addition to location, occupancy data is considered 
in data fusion. IPU assigns time stamps to detected 
occupancies, as it is done for tag identifications. 
Based on the detection times, occupancy durations 
are determined. The ones that exceed a predefined 
time interval (elapsed since the last occupancy 
detection report) are removed. Consequently, the 
output of the data fusion (the final and consistent 
context data) is stored in a fusion table in the 
VIOLAS database. The results are also transformed 
into XML-like data packets for convenient data 
communication. Thus, they can be transferred to 
operational applications (such as the office lighting 
control system in our project) through the 
"communication interface" module.  

User Interface Server  

User interface server provides the communication 
between VIOLAS and the operator. It enables an 
operator to add and modify system data and to see 

system results on screen. The location values 
retrieved from the fusion table are combined with the 
values retrieved from the object inventory, and 2D 
graphical representations of the objects within the 
room are generated. Towards this end, the system 
represents every object as a minimum bounding-box 
covering the original object shape.  

The communication is achieved by a method called 
common gateway interface (CGI). CGI programs are 
special applications that can run upon the initiation of 
a web server. This method allows for the remote 
execution of programs on the server platform, 
eliminating any hardware or software requirement on 
the client side. The operator can run the program 
through his/her web browser, from any computer on 
the network.  

Database Server 

Database server is an important module in VIOLAS, 
as its underlying structure enables the access to 
distributed COM (component object model) objects 
over a network. COM is a software architecture that 
standardizes the programming interfaces, 
implementation models, and the data structures. 
Based on this architecture, distributed COM objects 
(DCOM 2004) are developed that can be employed 
by other applications remotely in a network 
environment. This allows the software components to 
access data or to implement a function remotely from 
multiple distributed computers. In this context, the 
software components of VIOLAS (image processing 
units, application server, and the user interface server) 
act as client applications that request service from the 
database server. Database server manages the 
communication between these programs and the 
VIOLAS database. The programs can also 
communicate with each other utilizing the database 
as a broker. Note that simple text messages between 
the applications server and the distributed 
components (for camera and IPU status-checking or 
new-resource-sharing) are carried out with TCP 
socket connection rather than DCOM. 

A DEMONSTRATIVE TEST 

Test-bed configuration 

To evaluate the performance of VIOLAS, a 
demonstrative test was performed in an office space 
of the Department of Building Physics and Building 
Ecology, Vienna Technical University. The building 
is equipped with a local area network, thus offering 
the required infrastructure. A netcam attached on a 
P/T unit is connected to the network. Within this 
network, our department possesses a domain via a 
mainframe computer. The server applications 
(database server, application server, and user 
interface server) are installed in the mainframe 
together with the VIOLAS database. This computer 
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also runs a web server. The user interface server is 
placed under a specific folder where the web server 
can access and execute CGI applications. Prior to the 
initialization of VIOLAS, required parameters are 
defined via user interface server. However, the 
database server is activated first so that the user 
interface can access the database.  

Towards the implementation of the test, a typical 
office environment (test-bed) is used that involves 25 
objects relevant for the demonstrative operational 
application (lighting control system). First, these 
objects are defined. For each object, a tag is 
generated. Consequently, the tags are printed and 
attached on the corresponding objects. Figure 4 
shows the 2D sketch of the entire test-bed together 
with the tagged objects and sensor devices. As also 
depicted in the figure, motion was generated at three 
points to test the occupancy sensing capability. 

VIOLAS in operation 

Following the configuration, application server is 
initiated. Application server immediately starts 
checking the status of the cameras and the IPUs in 
the system, and finds the netcam connected to the 
network. However, the camera is not assigned to an 
IPU, since no IPU was activated before. Therefore, 
an IPU is initiated from a computer in the department. 
After its initiation, the IPU client registers itself to 
the system and responds to the application server’s 
control request. Detecting an active IPU client, 
application server executes a resource management 
computation and assigns the netcam to the IPU. To 
test the system’s behavior with multiple clients, a 
second IPU is initiated from another computer. This 
IPU also registers itself successfully in the system, 
and responds to the application server’s control 
request. After the detection of a second active IPU, 
application server enacts a reassignment, linking the 
camera to the IPUs, whereby the second IPU is given 
the "slave" role. Thus, the first IPU controls the pan-
tilt unit attached to the network camera. 
Consequently, both IPUs successfully run in parallel 
and scan the test-bed. They extract the context 
information in the test-bed and concurrently transfer 
the results to the VIOLAS database. 

The output of the IPUs is fetched by the application 
server. The incoming results are fused by the internal 
data fusion module, and subsequently recorded in the 
database. In this test, the system achieves a 100% 
identification performance, extracting all tag codes 
and recognizing all objects. To evaluate the accuracy 
of location results, "position error" is defined as the 
distance between the ground-truth position (actual 
position information) and the sensed position of the 
tag. "Orientation error" is defined as the angle 
between the tag’s true surface normal and the sensed 
surface normal. Generally, the test implies for the 
system an average position error of 0.18 meters and 

an orientation error of 4.2 degrees on aggregate. The 
position error percentage has a mean value of 7.3% 
(cp. İçoğlu & Mahdavi 2005). 
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Figure 4  2D sketch of the test-bed ("A" to "D" refer 
to Cabinets; "E" refers to Camera and P/T unit. The 

marks, ⊗, refer to the occupancy events) 
 

Occupancy in the test-bed was detected consistently 
and without false reports. The system is robust 
against illumination changes due to opening or 
closing of the aperture in the camera mechanism. 
Likewise, slow changes in the intensity of the light 
sources do not cause false reports. As mentioned 
before, the system does not provide an exact 
occupancy location. However, the general region 
within which the motion takes place can be specified. 
A graphical representation of the test-bed, as 
generated and displayed by the user interface, is 
illustrated in Figure 5. The object location results can 
be seen together with the sensed occupancies. 

MODEL VISUALIZATION AND 
REUSABILITY 
As seen in Figure 5, VIOLAS can present the results 
in a 2D display. However, this display is not very 
convenient for the visualization of the resulting 
model. A more proper visualization can include the 
3D display of the model, and enable the model’s 
examination by an operator with rotation and walk-
through capabilities. Towards this end, VRML 
(virtual reality modeling language) function is added 
to the user interface server. A sample VRML model 
of the test-bed constructed by the user interface 
server is shown in Figure 6. Moreover, VRML 
enables the reusability of the models generated by 
VIOLAS. Other 3D model editing applications can 
import the VRML files. This allows the user to 
modify and store the VIOLAS outputs in different 
platforms offered by commercial CAD vendors.   
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Figure 5  Graphical representation of the test-bed 
generated by the user interface server. The objects 
are drawn with the extracted locations. The slides 

are caused by orientation errors that have an 
average value of ~5° 

 

 
 

Figure 6   3D model of the test-bed (VRML) 
 

ONGOING WORK  
The initial VIOLAS implementation was based on 
network cameras. To achieve the required level of 
scene coverage, most of such cameras in a facility 
need to be augmented with pan-tilt units. While our 
experience with this technology has been promising, 
certain problems exist, such as the intrusiveness of 
this technology both in terms of the camera size and 
the existence of moving parts. Thus, to explore an 
alternative that would not involve moving parts yet 
would offer a wide scene coverage, we are currently 
testing the potential of static cameras with fisheye 
lenses as the primary visual sensing device. Toward 
this end, we have performed an initial test, whereby, 

other than the cameras, all other components of the 
previous implementation (tags, detection algorithms, 
test space) are unchanged. The test involved the 
following steps: i) we equipped an ordinary digital 
camera with a fisheye lens; ii) we mounted this 
camera in the center of the test space. Altogether 17 
tags were used to mark various room surfaces and 
furniture elements; iii) four fisheye images of the test 
space were generated by the camera from four 
different vantage points close to the center of the 
room (see Figure 7 as an example); iv) These four 
images were dissected into nine partially overlapping 
segments (see, for example, Figure 8) via the 
application of an equi-rectangular projection 
technique (Iris 2006); v) the resulting image 
segments were analyzed using the image processing 
methodology described in the previous section. 

 
Figure 7  Sample fisheye image of the test space 

 

Figure 8  Examples of image segments extracted 
from the fisheye picture using equi-rectangular 

transformation (Iris 2006) 
Figure 9 shows the tag detection performance in 
terms of the percentage of correctly identified tags as 
a function of the distance of the tag from the camera. 
Figure 10 shows the relationship between the actual 
and computed tag-camera distances. Even though this 
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initial test resulted in a rather modest tag detection 
performance (67 %) and distance estimation accuracy 
(6 ± 10%), further calibration of the camera and 
improvements in the application of the equi-
rectangular projection are likely to improve the 
performance of the system in the near future.  
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Figure 9  Percentage of correctly identified tags in a 

scene captured as a fisheye image 
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Figure 10  Actual versus computed tag-camera 

distances  
 

CONCLUSION 
Operational applications (such as control systems for 
heating, cooling, and lighting in buildings) require 
high-resolution self-updating spatial models with 
context awareness, if they are expected to implement 
advanced simulation-based control approaches. This 
necessitates identifying objects, sensing their location, 
and detecting occupancies. To explore how these 
requirements can be met, we developed VIOLAS. 
Thereby we selected network cameras as sensors, 
implemented assorted sensing algorithms, and the 
designed the system software architecture. 

The system's sensing performance currently covers a 
4 meters range and 75 degrees incidence angle, 
enabling the identification of all objects in the test-
bed, and locating them with an accuracy of 0.18 
meters average position and 4.2 degrees average 
orientation error. Thus, assuming a single netcam and 
pan-tilt unit, VIOLAS possesses an effective 
scanning area of approximately 50 m2 (for both 
object location sensing and occupancy detection). 

The initial results obtained from VIOLAS as well as 
recent experiments with cameras with fisheye lenses 
suggest that vision-based sensing, when enhanced 
computationally and integrated with appropriate 
hardware, may offer a promising technology for 
application domains such as facility management and 
indoor-environmental control applications in 
buildings.  
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