
Proceedings: Building Simulation 2007 

- 1299 - 

APPLICATION OF MODELING AND SIMULATION IN FAULT DETECTION AND 

DIAGNOSIS OF HVAC SYSTEMS 
 

Lili Lan and Youming Chen 
 

College of Civil Engineering, Hunan University, 
Changsha 410082, China 

 

ABSTRACT 
Failures can lead to a series of problems in the 
complex heating, ventilation and air-conditioning 
(HVAC) systems in buildings. Fault detection and 
diagnosis (FDD) is an important technology to 
solve these problems. Models can represent the 
behaviors of the HVAC systems, and FDD can be 
realized with models. Using the model as 
intermediary, a link between system simulation and 
FDD can be built. Simulation has provided a 
convenient platform of operation for FDD, the 
overall simulation methodology in FDD of HVAC 
systems is briefly introduced. Various reference 
models, faulty behaviors, modeling environments, 
and algorithms for FDD are discussed or compared. 
Finally, the model-based FDD schemes for HVAC 
systems proposed by many researchers in various 
ways have been reviewed. 
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INTRODUCTION 
As the problems that appeared at various stages of 
the building life cycle, from design planning to 
operation, many buildings frequently fail to perform 
as well as expected and satisfy performance 
expectations envisioned at design phase (Haves 
1999). The types of faults occurring in HVAC 
systems include process parameter changes, 
disturbance parameter changes, actuator problems, 
and sensor problems (Xu 2005). Furthermore, such 
failures often go unnoticed for extended periods of 
time. Therefore, the methodology which can apply 
proper operation-that can weaken or eliminate these 

problems-conveniently and effetely is needed 
urgently. FDD technology was introduced into 
HVAC systems from 1970s, and the systematic 
research of FDD for HVAC systems began in the 
late of 1980’s. However, the evolution was not 
appeared until the 1990s principally, IEA endorsed 
the ANNEX 25 collaborative research project on 
real time simulation of HVAC systems for building 
optimization, fault detection and diagnostics. 
Furthermore, the ANNEX 34 was published in 2001. 
Recent years, with the development of information 
technology and building technology, such as CAD, 
building energy management system (BEMS), and 
building automation system (BAS), the research of 
FDD are becoming more and more active and 
intensive (Bing et al. 2002). FDD is an investigation 
or analysis of the cause or nature of a condition, 
situation, or problem. There are two levels or stages: 
fault detection is the determination that the 
operation of the building is incorrect or 
unacceptable in some respects, and fault diagnosis 
is the identification or localization of the cause of 
faulty operation. FDD can improve indoor 
environment quality (IEQ), occupant comfort and 
health, and energy efficiency; reduce unscheduled 
equipment shut down time and maintenance costs; 
longer life cycle of equipments (Haves 1999). 

FDD methods can be roughly divided into two 
categories as model-based and model-free. The 
model-based methods do employ explicit 
mathematical models of the target systems, while 
the model-free methods do not. Compared with the 
model-free methods, the model-based methods can 
hardly avoid the complexity of setting up models, 
but it is stronger in dealing with various faults 
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appeared in the large-scaled, distributed and 
dynamic HVAC systems, and more widely accepted 
in HVAC systems because of their better final 
solvability (Xiao 2004). Model is a mathematical 
description of a system, component, process, theory, 
or phenomenon that accounts for its known or 
inferred properties. The model-based FDD methods 
fully make use of deep level knowledge of system 
models, i.e. system construction, behavior and 
function etc., to carry out reasoning and diagnosis 
on system. Also, model performs as an evaluation 
tool for building performance diagnosis (Balqies 
2000, Li 2004). The main compromise with 
model-based schemes is between model accuracy 
and configuration effort: the greater the potential 
accuracy of the models, the greater the effort 
required to configure the models for use. Simulation 
technology, as a kind of computer technology, is the 
imitation of the operation of systems or processes 
over time. The establishment of models is the core 
of system simulation (Clarke et al. 2002). The 
models are configured using design information and 
component manufacturers’ data, and then fine-tuned 
to match the actual performance of the equipment 
by using data measured during functional tests of 
the sort using in commissioning (Xu and Haves 
2002). Using the model as intermediary can build a 
link between system simulation and the FDD. 

This article compared reference models, modeling 
environments and algorithms, discussed the overall 
simulation process for FDD and abnormal operation, 
and reviewed the model-based FDD schemes. 

MODELING BASIC 

Model-based FDD methods  

The model-based methods can be divided into two 
groups according to how models are used, i.e. 
analytical redundancy (AR) and statistical process 
control (SPC) methods (Xiao 2004, Xu 2005). 

In AR methods (Figure 1), models are acting as a 
reference for real processes. Residuals are used as 
fault indices, and are obtained by the comparing 
differences between process outputs and model 
outputs, or the comparison of two analytically 

generated quantities, which are usually 
characteristic parameters of the concerned process. 
The process variables are usually divided into two 
groups: inputs and outputs, and the outputs 
variables can be predicted by the model with the 
inputs and parameters. The applications and 
performances of AR methods are limited by the 
difficulties in setting up accurate models, e.g. the 
black-box models used in AR methods demand a lot 
of high quality data which are often very difficult to 
obtain, and training black-box models is 
time-consuming as well. 

But in SPC methods (Figure 2), model is employed 
to determine the thresholds of the statistics, and to 
calculate the statistics of new observations. 
Statistics are used as fault indices, and all system 
variables concerned are used as the inputs of the 
models. SPC methods can statistically monitoring 
correlations among process variables using statistics, 
and require pre-testified statistics and fault-free 
training data. The statistics that widely used include 
mean, variance, moving average cumulative sum, 
HotellingT2 and Q-statistic. 

Types of models 

According to the criterion of modeling method, 
three kinds of models are classified: First principle, 
black-box and gray models (Li 2004, Qin 2006). 

First principle models (physical models or white 
box models), whose parameters and structures have 
some physical significance, are derived from 
fundamental physical laws. Physical models include 
detailed and simplified models (Mclntosh and 
Mitchell 2000). Usually, physical models can obtain 
the best final results of FDD, because the 
parameters of a physical model are meaningful and 
can be used directly for diagnosis. An accurate 
model can not only reveal the behaviors and 
characteristics of the systems being modeled, but 
also extrapolate performance expectations well in 
case of limited training data. However, it is often 
difficult and expensive to develop and solve an 
accurate physical model for some complicated 

components or the whole system (Li 2004). 
Furthermore, the complex physical models may 



Proceedings: Building Simulation 2007 

- 1301 - 

involve large collections of nonlinear equations 
which are difficult to solve, and many parameters 
must be specified and several must be tuned in 
order to match specified measurements. Also, the 
calibration error of physical models can be large, 
because researchers’ experiences may vary. 
Physical models are usually not as accurate as 
black-box models because of some simplifying 
assumptions and requirement of detailed input data 
and data for tuning. Physical modeling approaches 
are good for relatively simple components such as 
expansion devices that are tuned using 
manufacturers’ performance rating data. In this case, 
the models can be developed inexpensively. 
Salsbury and Diamond (2001) develop a simplified 
physical model-based approach to both control and 
detect faults in an air handling unit (AHU). Three 
separate models (mixing box, heating coil, and 
cooling coil) act as a reference of correct operation. 
A field test on a single AHU demonstrated the fault 
detection capabilities but also highlighted some of 
the practical implementation difficulties including 
selection of model parameters, reliability of sensor 
signals, and difficulty in establishing a baseline of 
“correct” operation of the AHU. 

Black-box models (empirical models or data-driven 
models), derived only from measurement data from 
the process itself, use purely empirical input/output 
relationships that are fit to training data, and may 
not have any direct physical significance. There are 
many black-box modeling approaches: polynomial 
curve fits, ANN, ARX/RARX, state space equations, 
PCA, regression, etc. (Rossi and Braun 1997, 
Sreedharan and Haves 2001). Black-box models are 
able to avoid the complexity of setting up physical 
models and have great challenge to obtain good 
final results, but require a lot of fault-free data with 
high quality and high mathematic techniques for 
training. When enough training data are available, 
black-box models are preferred for the whole 
system e.g. an overall system performance model, 
or some complicated components e.g. heat 
exchangers. And most sensor FDD methods used in 
HVAC field adopted black-box models. Rossi and 

Braun (1997) presented a black-box model-based 
FDD method for packaged air conditioners, in 
which nine fundamental measurements were used to 
detect and diagnose five faults. A steady-state 
polynomial regression model was used to predict 
temperatures in a normally operating unit in order to 
generate residuals for classifier in the FDD method. 

Gray models (semi-physical models), a combination 
of both physical and black-box models, use lumped 
system parameters and some semi-empirical 
expressions. They assume that the model structure 
can describe the behaviors of the concerned system 
and explain the system physically, and the 
parameters of model structure are back-out with the 
measured data. Parameter estimates from gray-box 
models tend to be more robust than those from 
black-box models, which can lead to better model 
predictions. In general, black-box models have a 
simple form and are, therefore, easy to use. 
However, the demand on model training technique 
is also very high, e.g. gray models do not 
sufficiently use the building information which may 
be easily obtained and may lead to too many 
parameters needed to be identified, or the models 
are not stable using measured operation data in a 
short period. Stylianou and Nikanpour (1996) used 
a model-based FDD technique for a reciprocating 
chiller. A gray-box model was used for fault 
detection. The model correlated the equipment COP 
with the condenser and evaporator inlet water 
temperatures, and this performance index is used to 
decide when the impact of a fault is significant 
enough to warrant repair. For fault diagnosis, 
black-box polynomial models were developed for 
predicting internal temperatures and pressures. 

As explained above, these three types of models 
have their own merits, and in some cases, it would 
be possible to combine them into one practical 
method. In this way, employing hybrid models can 
effectively use the building information which can 
be obtained easily, and assume a physical structure 
to handle the building information which may not 
be obtained easily or even impossible to obtain, and 
obtain good results. For example, Li (2004) 
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developed a decoupling-based FDD technique that 
handled multiple-simultaneous faults and had low 
implementation costs. Instead of system-specific 
overall system models, various component models 
and virtual sensors were used to generate decoupled 
features: Physical models for expansion devices, a 
gray-box model for compressor, and a polynomial 
plus general regression neural network black-box 
model for the overall system. These models were 
low-cost in that they exploited manufacturers’ 
performance rating data and only required limited 
and readily available data for training. 

Abnormal Operation 

The fault-free data were used to train the models for 
normal operation and determine statistical 
thresholds for fault detection, while models of 
faulty components or processes may either be used 
on-line as part of an FDD system or may be used in 
simulations to train or test FDD procedures. Some 
faults may be modeled by choosing suitable values 
of the parameters of fault-free models (e.g. coil 
fouling may be treated in a simple coil model by 
reducing the UA value), whereas other faults 
require specific extensions to fault-free models (e.g. 
fouling may be defined by a parameter that specifies 
the thermal resistance of the deposits in a detailed 
coil model) (Haves 1997). Simulated faults are 
useful in situations where it is physically impossible 
or too expensive or too dangerous to introduce the 
actual faults. Therefore, whether there is a need to 
model faulty behaviors is depended on the system 
under study and the specific FDD approach which 
we employ. For example, Dexter and Ngo (2001) 
proposed a multi-step fuzzy model-based approach 
to improve their earlier diagnosis results for AHUs. 
This approach was based on two kinds of models, a 
fault-free model and models describing faulty 
behavior, to perform multiple-diagnosis. 

Modeling environments 

A handful of software tools have been developed to 
provide modeling environments for FDD, which 
making the modeling for FDD of HVAC systems 
more convenient and efficient. These tools include 

component-based simulators such as TRNSYS or 
HVACSIM+, equation-based tools like SPARK or 
IDA (Sowella and Haves 2001), numerical basic 
tools such as MATLAB or EES, and so on. 

TRNSYS and HVACSIM+ are both based on 
subroutines containing algorithmic models of the 
underlying physics for the represented building 
system component. TRNSYS, a transient system 
simulation program with a modular structure, is 
used to simulate the energy and control 
characteristics of HVAC systems. It allows 
performing detailed simulations of multizone 
buildings and their equipments, as well as thermal 
systems in general. And it facilitates the addition to 
the program of mathematical models not included in 
the standard TRNSYS library. HVACSIM+ 
assembles a vector of the interface variables 
throughout the model and employs a Newton-like 
solution strategy. Although the advantages of 
HVACSIM+ are robustness and efficiency, it is 
often less efficient than TRNSYS in practice for the 
need to calculate Jacobian and solve linear equation 
set that it represents at each iteration. 

SPARK and IDA represent a new departure in that 
they formulate the model and its solution, in terms 
of equations rather than the algorithmic subroutines 
employed in TRNSYS and HVACSIM+. SPARK 
establishes object oriented modeling and graph 
theoretic solution techniques for building simulation. 
The distinctive attributes of SPARK are that: The 
graph, rather than the matrix, is the primary data 
structure for storing the problem structure and data, 
and graph algorithms are employed to determine a 
solution sequence that operates directly on the 
nonlinear equations; The model equations are stored 
individually, rather than packaged into modules, 
and are treated as equations rather than as formulae 
with assignment. Differently, the equations are 
formed as residual formulas In IDA. IDA can solve 
non-linear algebraic problems without requiring 
initial guesses from the user. The advantage of IDA 
is that Modeling is input/output free, i.e. the same 
component model can be used for a variety of 
different input and output designations. 
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MATLAB provides ready access to many 
mathematical models. The most important feature 
of MATLAB is easy to expand, which allows users 
to set up their own designated function of M 
documents. The system simulations in HVAC 
systems mainly use the Simulink Module. EES, the 
solution of a set of algebraic equations, can 
efficiently solve hundreds of coupled non-linear 
algebraic equations and initial value differential 
equations. A major difference between EES and 
existing equation solving programs is the many 
built-in mathematical and thermophysical property 
functions, which are helpful in solving problems in 
thermodynamics, fluid mechanics, and heat transfer 
for HVAC systems. 

Reference algorithms 

Nowadays, some more powerful algorithms have 
been introduced to solve simulation models and 
obtain the solution values, such as principal 
component analysis (PCA) method, genetic 
algorithm (GA), and artificial neural networks 
(ANN). They’re stronger in dealing with problems 
than traditional methods and have their special 
merits: PCA method produces a lower dimensional 
representation in a way that preserves the 
correlation structure between the process variables, 
and uses pure mathematic models (Xiao 2004). GA 
can find a sufficiently good solution quickly 
without initialization while other methods have to 
start from initial guesses of parameter, and GA 
estimator is developed for model parameter 
optimization. ANN can provide solutions for 
problems that do not have an algorithmic solution or 
for which an algorithmic solution is too complex to 
be found, and they allow going directly from factual 
data to the models without any human subjective 
interference (Niculescu 2003). 

SIMULATION PLATFORM 

Benefits of simulation platform 

Simulation has provided a convenient platform of 
operation for FDD of HVAC systems, which 
improves the reliability of FDD, and offers the 
following benefits (Juricic et al. 1996, Balqies 2000, 

Bing et al. 2002): It can simulate organizational and 
environmental changes and obtain the effect of 
these changes on the model's behavior, and no need 
to disturb the real system. The internal interactions 
of the complex HVAC systems and subsystems are 
able to be studied. It strengthens the research and 
the analysis of process characteristics, with dynamic 
analysis method substituting tradition static state 
analysis method. And it provides the analyst with a 
tool to conduct some FDD experiments that doing 
them could be expensive. These experiments often 
require some expensive measurements, such as 
enough sensors installed at the building system 
level or component level of the HVAC terminals to 
provide enough information. As a good testing tool, 
it gains a computer-aid FDD environment 
substitutes tradition experimental technique, 
researchers are able to test a variety of FDD 
methods in a simulation environment, find possible 
shortcomings and obtain new ideas for further 
development, which saves the massive manpower, 
contributes to lowering the cost of FDD, and finally 
enhances the FDD development efficiency. 

Simulation process 

Generally, the three main factors that constitute 
system simulation are: system, model, and computer. 
The FDD process is simulated with computer 
through the life cycle helping the designer in 
problem solution, and the simulation environment 
has the ability to allow for experiments on the 
model and highlight the relevant aspects of the 
problem. The overall simulation methodology (as 
shown in Figure 3) consists of the following four 
major steps (Balqies 2000): 

 Pre-modeling or planning step: Define the 
purpose of FDD system, and use system analysis, 
including physical construction of the object, 
preliminary requirements of the FDD system, 
potential fault sources etc., to describe and extract 
the relevant causal relationships in the FDD system 
under study. 

 Modeling step: Models are the main components 
of simulation programs, and the behavior of HVAC 
systems as it evolves with time can be studied with 
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models. Such models take the form of a set of 
assumptions about the system under study. The 
assumptions are represented by mathematical, 
logical or symbolic relationships. Fault symptoms 
are voluntarily generated via changes in model 
parameters or expert system for the purpose of FDD. 
Once the symptoms have been defined, the decision 
making in terms of fault detection follows instantly, 
and then the solution of problems can be obtained. 

 Verification and validation step: In this stage, 
whether the modeling satisfies the requirement is 
determined. Verification is the process of 
determining that the simulation model accurately 
represents the developer's conceptual description of 
the system. Validation is the process of determining 
whether the model is an accurate representation of 
the real-world from the intended use of the model. 
The model validation for FDD of HVAC systems 
may carry out under different weather conditions 
using either laboratory or field data. 

 Experimentation and application step: The 
solution is tested and evaluated by performing 
various simulation experiments in this last stage. 
Simulation runs are made under different conditions 
and inferences are drawn about the relationship 
between the controllable variables and measured 
performance matrixes. It is important to conduct 
experiments because they reveal many of the 
characteristics of the system being modeled, and a 
wide variety of questions and behaviors for FDD of 
HVAC systems can be investigated. 

APPLICATION SURVEY 
The model-based FDD schemes have been proposed 
with a variety of models by many researchers in 
different respects. 

Methods comparison 

Sreedharan and Haves (2001) evaluated three 
different modeling approaches for their applicability 
to model-based FDD of vapor compression chillers. 
The models included: the Gordon and Ng Universal 
Chiller model and a modified version of the 
ASHRAE Primary Toolkit model, which are both 
based on first principles, and the DOE-2 chiller 

model, which is empirical. Shaw et al. (2002) 
compared results of two techniques for using 
electrical power data for FDD in AHUs. One 
technique relies on gray-box correlations of 
electrical power with such exogenous variables as 
airflow or motor speed. The second technique relies 
on physical models of the electromechanical 
dynamics that occur immediately after a motor is 
turned on. Norford et al. (2002) compared results of 
two methods for FDD in HVAC equipment from 
controlled field tests. One method used 
first-principles-based models of system components; 
the second method was based on semi-empirical 
correlations of sub-metered electrical power with 
flow rates or process control signals. 

For different HVAC systems or components 

Benouarets et al. (1994) presented two model-based 
schemes and examined their ability to detect 
water-side fouling and valve leakage in the cooling 
coil subsystem of an AHU. Haves et al. (1996) 
employed first principles models to diagnose faults 
appeared in cooling coils. Ahn et al. (2001) used a 
model-based method for FDD in the cooling tower 
circuit of a central chilled water facility employing 
a simple model for the cooling tower. Wray and 
Matson (2003) used a hybrid DOE-2/TRNSYS 
sequential simulation approach to model the energy 
use of a low-pressure terminal-reheat VAV system 
with six duct leakage configurations in nine 
prototypical large office buildings. Wang and Qin 
(2005) have built and employed a PCA based sensor 
FDD strategy. PCA models at both system and 
terminal levels were constructed. 

Some new approaches 

Bechtler et al. (2001) described a new approach to 
modeling dynamic processes of vapour compression 
liquid refrigeration systems using a dynamic neural 
network model for the performance prediction. 
Henry et al. (2002) proposed a new approach to the 
problem of on-line model-based FDD for 
multivariable uncertain systems. The method was 
based on frequency-domain model invalidation 
tools. 
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CONCLUSION AND IMPLICATIONS 
Model-based FDD are useful for the operator of 
building HVAC system to recognize the faults and 
disturbances. Reference models can be categorized 
into three types: First principle, black-box and gray 
models. The use of software support is of great 
practical interest in order to make the modeling for 
FDD more convenient and efficient. Simulation 
technology is the imitation of the operation of HVAC 
systems and the establishment of model is its core. In 
order to carry out FDD in HVAC systems through 
simulation, it is needed to observe the operation of 
the system, formulate assumptions that account for 
its behavior, predict the prospective behavior of the 
system based on assumptions and compare predicted 
behavior with real behavior. Simulation together with 
modeling provides a convenient platform of 

operation for FDD of HVAC systems. 

Due to the complexity of the real HVAC systems, 
appearance of multiple failures simultaneously and 
the limitation of every kinds of FDD methods, it is 
impossible to solve practical problems only utilizing 
one method. The more attractive employ is 
integrating multifarious FDD algorithms and 
methods, e.g. expert system, fuzzy mathematics and 
ANN, which should gain more effective results. 
Such as, introduce simulation technology into 
failure diagnostic expert system to form a new fault 
diagnosis knowledge acquisition mode, or bring 
simulation into failure analysis to come up with 
flexible residual generation algorithms which use 
simulation system as baseline. And much further 
work is waited for us to investigate and research.
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