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SYNOPSIS. 

The methods available for the measurement of air infiltration and air 

movement in large industrial halls are restricted by the size of the building 

and the nature of the operations which take place within it. Single tracer 

decay measurements are the easiest to perform and this paper examines the 

possibility of extracting useful information from them. Using a multi-zone 

representation of the building volume, the properties of tracer decay curves 

are considered, and the ease of extraction infiltration and air flow data 

examined by means of simulations. The results show how the error in the 

derived infiltration rates grow with error in the tracer gas concentration 

measurements for various methods of treating the results. The simulations 

are compared to the results of measurements made in a typical industrial hall. 

Despite the shortcomings of the multi-zone model and the single tracer decay 

method, it appears possible to obtain reasonable results for the overall air 

infiltration rates. 

1. Introduction, 

In recent years there have been many improvements and new developments 

in the tracer gas methods available for the measurement of infiltration and 

air movement in buildings. Nevertheless there are some cases in which the 

choice of method is limited by the characteristics of the building. This is 

especially true of industrial halls, which are often characterised by large 

internal volume, continuous operation, unusual contaminants in the 

atmosphere, and an unwillingness on the part of management to allow 

interruption of normal activities. Artificial stirring of the air is often 



impossible, making it difficult to use constant concentration, constant 

injection, or any of the pulse methods. In addition the large volume and the 

presence of other contaminants place restrictions on the choice of tracer. 

Consequently the single tracer gas decay method is the easiest to use, and a 

number of reports of its use in large buildings have been published [I, 2, 31. 

However, there is little evidence to indicate their reliability, because of the 

difficulty of validation. Having considered the alternatives, we have returned 

to the single tracer gas decay method, and attempted to evaluate its reliability 

and performance in the context of large spaces. 

2. Theory. 

In the absence of full stirring, there will always be significant spatial 

variations throughout the air volume of a large building. It is therefore 

necessary to use some kind of discretisation of the volume into sub-volumes 

(or zones) in order to model these variations. The greater the number of 

zones the more closely will the discretisation approach the real case. A 

system of interconnected zones may be treated by means of the well known 

multi-zone air movement model. Unfortunately this assumes that the air in 

each zone is fully mixed, an assumption which is unlikely to hold in the sub- 

volumes of the real building. Nevertheless, this mismatch may not be serious 

enough to prevent useful information being obtained, and the agreement 

between the actual discretisation and its multi-zone representation can always 

be improved by increasing the number of zones. Assuming that the multi- 

zone model is acceptable, our problem is the extraction of inter-zone flows 

from single tracer gas decay experiments in such a model. 

The multi-zone model is sufficiently well known to require no special 

description. Following Sinden [4] and Sandberg 151, the relevant equation (in 

the absence of a source term) is 

where V is the zone volume matrix, F the flow matrix, and c(t) is the vector 



of the contaminant concentrations at time t. The solution for a model of N 

zones is 

where A, and 2, are the eigenvalues and eigenvectors of the matrix F-AV; and 

a, are a set of constants determined by the initial distribution of tracer gas. 

In what follows, it is convenient to define: 

F j  the volumetric flow rate from zone i to zone j, where zone 0 

represents the outside. 

Si the total inflow/outflow to zone i, F' or C Fy 
id id 

Fu flow rate per unit volume, fv = - 
5 

Si ri total flow per unit volume, ri = - 
Vi 

The most relevant features of multi-zone single tracer decay may be listed as 

follows: 

a) The decay curves are governed primarily by the eigenvalues A, and zk 
their eigenvectors zp There as many eigenvalues as there as zones, the 

largest is real, and some or all of the remainder may be complex. 

Repeated eigenvalues occur when some or all of the ri are equal and 

some of the internal flows are zero. Physically such cases are likely to 

occur when at least one zone receives fresh air and supplies air to other 

zones, but receives no recirculated air, a condition similar to 

displacement flow. The largest eigenvalue, I,,  becomes dominant as time 

progresses, and eventually governs the rate of decay in all zones. If the 

time constant of the process is taken as the reciprocal of A,, then 

whatever the initial tracer gas distribution, I ,  is dominant after 



approximately two time constants. Thus if the decay is allowed to 

proceed long enough, A, can always be determined. However, A, is only 

equivalent to the fresh air infiltration rate when certain conditions are 

satisfied. There are two types of condition. One occurs when internal 

flows, jjj, become very large compared to external flows, A,. This is 

obvious because it corresponds to full internal mixing. The other occurs 

when either all A. are the same or all foi are the same, which in turn 

means that, 

foi = -A, for all i 

or h, = -A, for all i 

The significance of this is that if either the infiltration or the exfiltration 

is well distributed between the zones, the dominant eigenvalue will be a 

good representation of the fresh air infiltration rate. 

b) In the region where A, is dominant, the ratios of the zone concentrations 

approach the components of the dominant eigenvector. Hence, x, can be 

determined. If the concentrations in this region are a,, a,, .... then 

z 1 = [a,, a2, a3 ...I 3 

This must be a solution of the eigenvalue equation, which gives: 

If the concentrations in all zones are essentially equal at this stage, 

ie. x, = [I, 1, 1, . . .I, then, remembering that ri = foi + fIi + fZi + . . ., 
the eigenvector equation reduces to 

-(fm + A , )  = 0 



Again we have the condition 

foi = - 1, for all i 

but NOT fro = - 11 

If the concentrations are not all equal, then by noting that 

ri = ho + A, + Ji, + . . ., and summing the eigenvalue equations, we get, 

after some rearrangement, an equation connecting the outflows: 

c) It has previously been pointed out [6] that it is sometimes possible to 

derive information from the intersection of the decay curves from two 

zones. If it is observed that ci(t) = cj(t) when ci(t) = 0, and if cj(t) is the 

maximum at time t in the subset of zones which have a possible 

connection to zone j, then it may be inferred that the flows into j, Fkj, are 

all zero except for Foj and Fij. 

d) If only one zone, say zone i, contains tracer gas at time zero, the tracer 

gas balance equations simplify to 

This would allow determination of Si and Fij, except that in practice it is 

difficult to measure concentration gradients near the origin. 

The extraction of the flows Fj from the measured decay curves requires 

the solution of a set of linear equations of the type 

In a typical experiment there is usually no difficulty in obtaining more 

equations than is necessary in order to find the @ independent 

unknowns. A least squares method seems appropriate, but has some 



drawbacu. Firstly the equations are not truly independent. Secondly the 

large number of unknowns makes it difficult to achieve satisfactory 

precision. Thirdly the concentration gradients are difficult to measure 

with adequate accuracy. The first problem cannot be avoided, the second 

can be ameliorated by introducing prior knowledge and known 

constraints, and the third can be dealt with either by smoothing 

techniques or by integration of the equations. 

3. The Solution Procedure and the Scope of the Investi~ation. 

Equation 8 is an over-determined set of linear equations of the form 

where the vector Y contains the values of y.cj(t), the matrix X is assembled 

from the concentrations, and the vector b contains the solution for the flows. 

Three methods of filling Y are: 

i) for simulated data, using exact gradients, 

ii) using gradients obtained by smoothing, 

iii) after integration, using (ckt + n) - ckt)) where n is the integration 

interval. 

In general the solution contains a constant, which is expected to be zero 

because the concentration gradients and the concentrations all approach zero 

as time progresses. Nevertheless it is better to retain the constant to allow for 

an offset in the solution. The simple (or straight) least squares solution is 

If some of the flows are known, either individually or in combination, they 

may be expressed in the form 

where C is an identification matrix and d contains the known values. The 



constrained solution is then 

B = b + (x'x)-' c'[c(x'x)'~ c']-' (d - Cb) 

This assumes that the values in the vector d are known precisely. If they are 

subject to error, and have a variance of a, we may write (Sherman [7] and 

Tarantola [8]) 

B = b + (x'x)-' c'[c(x'x)-' c'+ a]-' (d- Cb) 

Because the flows Fij cannot be negative, a non-negative constraint may also 

be introduced. The NNLS method of Lawson and Hanson (9) is well known, 

and may be applied to the simple solution (equation 10) or to the fixed value 

constrained solution (equation 12). Already we have four possible solutions: 

1. Simple (or straight) least squares. 

2. Simple least squares with NNLS applied. 

3. Constrained least squares. 

4. Constrained least squares with NNLS applied. 

The quality of the solution may be examined by the usual analysis of variance 

table. Other indicators are the variance-covariance matrix, and a suitable 

condition number of the XT matrix. Where the original data was produced 

by a simulation, a root mean square error may be formed from the difference 

between the derived flows and their original values. It is.also of interest to 

compare the fresh air infiltration rate found by summing F,, with the 

dominant eigenvalue and with the true value. 

The main purpose of this study, therefore, was to apply the solution 

procedures to simulated data sets in order to investigate the error in the 

solution due to each of the following: 

1. Error in the original tracer gas concentrations (0 to 5%). 

2. The method of treating the concentration gradient (exact, smoothed 

or by integration). 

3. The time scale of the experiment (one time constant, two time 



constants or the full data set). 

4. The number of zones (2 to 6). 

5. The choice of solution procedure. 

4. Results and Discussion. 

Table 1 shows the flow matrices used in the simulations. Simulated data for 

a time period of approximately 2.5 time constants were prepared for each of 

these flow regimes, and for a range of error levels in the tracer gas 

concentrations. In most cases, the starting condition corresponded to the 

seeding of one zone only. The results were analysed by the four LSQ 

methods listed in section 4, and for each of the three methods of treating the 

gradient. Table 2 shows the results for the two zone model when analysed 

by means of the 'straight' LSQ. In the table the codes for the data sets are: 

F = analysis using the full data set. 

1 = analysis using the first time constant of data only. 

2 = analysis using the first two time constants of data. 

The codes for the condition numbers refer to the norms on which they are 

based: 

1 = Chebysev 

2 = Manhattan 

3 = Frobenius 

4 = Eigenvalue 

The RMS error in the output is given in absolute units of flow, and the fresh 

air infiltration rate is given in air changes per hour. The results for the data 

sets with zero input error and analysed using exact gradients confirm the 

correctness of the procedures. The effect of particular parameters may be 

highlighted by grouping the results into subsets, and finding the average RMS 

error in that subset. This has been done for the two zone model in tables 3, 

4 and 5. Inspection of these tables leads to some useful conclusions: 

1. From tables 3 and 5, using only the first time constant of data creates 

significantly higher RMS errors than using two time constants. 

Going beyond two time constants to the full data set produces only 



a slight improvement. Thus it is better to use two time constants of 

tracer concentration data. This agrees with the theoretical prediction 

that in single zone seeded decay mode, uniform decay is established 

after approximately two time constants. 

2. From tables 3,4 and 5, the integral treatment of gradient produces 

substantially lower errors than smoothing. 

3. From table 4, increasing the applied error increases the RMS error. 

However, an increase in the applied error from 0.1% to 1% often 

produces a proportionally smaller increase in the RMS error. 

4. From table 5, the RMS error is significantly lower when zone 1 is 

seeded. This agrees with the prediction that it is better to seed the 

zone with the smallest component of the dominant eigenvector. In 

this case x,, = 1 and x,, = 2. 

5. Referring again to table 2, it can be seen that there appears to be no 

correlation between any of the condition numbers and the RMS 

error. 

These conclusions were confirmed by similar analyses of the results for the 

3, 4, 5 and 6 zone models. In view of the first two conclusions, the more 

detailed analyses were restricted to using the first two time constants of data 

and the integral treatment of gradient. 

The two zone model was too simple to explore the effect of constraints. As 

the number of zones increased, both fixed value and NNLS constraints 

became more important. Table 6 shows the effect of applying these 

constraints to the 5 zone model. Both the fixed value constrained solution 

and the NNLS constrained solution reduce the RMS error substantially 

compared to the straight solution, with the NNLS constraint being the more 

effective. Applying both constraints reduces the RMS error even further. 

The five zone model was used to explore further the effect on RMS error of 

seeding different zones. In this case the dominant eigenvector is 

x, = [0.309, 0.434, 0.650, 0.416, 0.3471 

suggesting that best results are obtained when zone 1 is seeded. Table 7 



shows that this is not so, and that there is little difference between the five 

possibilities. However, this is not surprising as the components of xl are very 

nearly equal. 

When considering the errors in the output, whether they be RMS errors in 

the flows or errors in the air change rate, it must be borne in mind that the 

errors in the input data, that is in the original tracer gas concentrations, were 

generated by a normally distributed random error generator. Thus each data 

set at any given error level is unique, and the error in the output is just one 

value in a normally distributed set of possible errors. This can be explored by 

repeat runs at the same error level. Table 8 shows the result of repeat runs 

for the six zone model, using two time constants of data and integration, and 

table 9 shows the average RMS errors together with the standard deviation 

of the set and the estimated standard deviation of the population. Clearly, 

it is the spread of the RMS error that is of particular concern. If this is 

known it is possible to make an estimate of output errors from an estimate 

of the measurement error in the original tracer gas concentrations. Because 

of the small number of repeat runs (only six in each case) the Chi-square test 

was used to estimate the confidence limits of the population standard 

deviation, as shown in table 10. It appears from this that the spread in the 

output error distribution could be quite large. Consequently, where there is 

only one data set available, as is often the case with field measured 

experimental data, the error in the result could also be large. On the other 

hand, the spread in the RMS error does not grow with the applied input error 

as quickly as may have been expected. This is shown in figure 1. Figure 2 

shows the same thing for the percentage difference between air change rate 

found from the calculated flows and the air change rate found from the exact 

flows. Finally, the increase in the errors as the number of zones is increased 

is shown in figure 3, which shows the errors found for the data sets including 

a 1% applied error level when employing a non-negative least squares and a 

constrained/non-negative least squares analysis where appropriate. 



5. Field measurements, 

Analysis of data sets from measurements in real buildings introduce some 

additional difficulties, especially the identification of zones and zone volumes 

and the positioning of sampling points. Figure 4 is a typical set of decay 

curves for an industrial hall, and the results of analysing it are shown in table 

11. The solution with fixed value and NNLS constraints gave flows which 

were plausible in terms of the geometry of the building, and it is interesting 

to compare the air change rates found by the two methods. In this case it 

may be presumed that the air change found from the slope of the long term 

decay is the more reliable, because the decay curves approach each other as 

time progresses. It often transpires in measured data that the readings from 

two sample points are essentially equal, suggesting that the zones they 

represent are indistinguishable. The solution will not be able to separate the 

flows associated with these two zones, in which case it is better to merge the 

readings and reduce the number of zones in the model by one. The effect of 

merging down to a three zone representation is shown in the final column of 

table 11. Note that it was not possible to merge zones for all the cases. 

5. Conclusions. 

The single tracer gas decay technique is inherently inaccurate for the 

measurement of inter-zone flows. Nevertheless it can provide useful 

information on air change rates and the distribution of air, provided that the 

analysis includes the points discussed above. In particular, the analysis must 

include all the prior knowledge that is available, it must take advantage of 

any of the special properties of the decay curves, and it must use at least non- 

negative constraints. 
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General Case. 

Fij denotes flow from zone i to zone j, (m3/s). 

2 Zone Model. 

-6.00 3.00 3.00 

5.00 -7.00 2.00 

1.00 4.00 -5.00 

3 Zone Model. 

-6.00 0.00 2.00 4.00 

4.00 -7.00 1.00 2.00 

1.00 3.00 -4.00 0.00 

1.00 4.00 1.00 -6.00 

4 Zone Model. 5 Zone Model. 

-12.00 3.00 3.00 1.00 5.00 -14.00 1.00 5.00 0.00 5.00 3.00 

0.00 -4.00 2.00 2.00 0.00 3.00 -4.00 1.00 0.00 0.00 0.00 

4.00 1.00 -9.00 0.00 4.00 4.00 0.00 -11.00 4.00 0.00 3.00 

7.00 0.00 0.00 -11.00 4.00 1.00 0.00 2.00 -5.00 0.00 2.00 

1.00 0.00 4.00 8.00 -13.00 1.00 3.00 0.00 0.00 -9.00 5.00 

5.00 0.00 3.00 1.00 4.00 -13.00 

6 Zone Model. 

-17.00 1.00 5.00 0.00 5-00 3.00 3.00 

3.00 -4.00 1.00 0.00 0.00 0.00 0.00 

4.00 0.00 -11.00 4.00 0.00 3.00 0.00 

1.00 0.00 2.00 -5.00 0.00 0.00 2.00 

1.00 3.00 0.00 0.00 -9.00 5.00 0.00 

5.00 0.00 3.00 0.00 4.00 -13.00 1.00 

3.00 0.00 0.00 1.00 0.00 2.00 -6.00 

Table 1. Flow matrices for simulated models. 



Table 2. Results for the simulated two zone model. 
Diff in 

Grad Seeded Emr Data Condition Numbers RMS ACR 
Calc Zone Applied Set 1 2 3 4 Error fmm Flaws 

Method (%) (xlg) (x102) (x102) (xl0-l) (~10-I1 (h-l) 

E 1 0.0 F 2.045 2.045 5.622 0516 0.000 0.0000 
X 1 11.850 11.850 40.960 1.241 0.000 0.0000 

A 2 2.839 2.839 8.475 0.745 0.000 0.0000 

C 0.1 F 2.043 2.043 5.614 0517 0.054 0.0009 

T 1 11.950 11.950 41.280 1.243 0.205 0.0128 

2 2.829 2.829 8.440 0.746 0.050 -0.0017 

1.0 F 2.108 2.108 5.815 0511 0.509 0.0133 

1 10.630 10.630 36.650 1.227 1.817 -0.1368 

2 2.857 2.857 8527 0.736 0.271 -0.0022 
-----------------------*----------------------------- 

2 0.0 F 10.320 10.320 28.230 0.745 0.000 0.0000 

1 29.310 29.310 119.400 1.703 0.000 0.0000 

2 10.900 10.900 34.480 1.056 0.000 0.0000 

0.1 F 10.390 10.390 28.440 0.754 0.220 -0.0020 

1 29.460 29.460 120.200 1.703 0.280 -0.0037 

2 11.060 11.060 35.040 1.056 0.203 0.0042 

1.0 F 9.298 9.298 25.350 0.755 2.183 -0.0907 

1 25.630 25.630 103.900 1.703 2.423 -0.1769 

2 10.160 10.160 32.100 1.057 1.770 -0.0858 

S 1 0.0 F 2.045 2.045 5.622 0.516 0.169 0.0021 



Table 2. Results for the simulated two zone model. 
- 

Diff in 
Grad Seeded Emr Data W i t i o n  Numbera RMS ACR 
Calc Zone Applied Set 3 4 Emr fmmF?avs 

Method 

E 1 0.0 F 2.045 2.045 5.622 0516 0.m o m  



Table 3. Average RMS errors for each portion of data - two zone model. 

Least Gradient Average Root Mean Square Error 
Squares Calculation for portion of data set 

Technique Method 
full set first T, second T, 

- 

Straight Exact 0.049 0.079 0.038 

Smoothed 0.631 1.651 0.683 

Integral 0.050 0.490 0.076 

Non-negative Exact , 0.048 0.066 0.038 

Smoothed 0.410 1.570 0.450 

Integral 0.050 0.348 0.057 

Table 4. Average RMS errors for different applied error levels - two zone 
model. 

Least Gradient Average Root Mean Square Error 
Squares Calculation for Applied Error Level 

Technique Method 
0% 0.1% 1.0% 

Straight Exact 0.000 0.017 0.150 

Smoothed 0.019 0.451 2.496 

Integral 0.003 0.018 0.586 

Non-negative Exact 0.000 0.017 0.097 

Smoothed 0.019 0.421 1.154 

Integral 0.003 0.018 0.434 

Table 5. Average RMS errors for seeding of each zone - two zone model. 

Gradient Seeded Average Root Mean Square Error 
Calculation Zone for portion of data set 

Method 
full set first T,  frrst two T, 

Exact 1 0.019 0.067 0.011 

2 0.080 0.090 0.066 

Smoothed 1 0.206 0.759 0.174 

2 1.056 2.544 1.192 

Integral 1 0.041 0.363 0.061 



Table 6. Average RMS errors for each analysis technique - five zone model. 

Least 
Squares 

Technique 

Average Root Mean Square Error 
for applied error level 

0% 0.1% 1.0% 

Straight 0.008 5.842 6.048 

Non-negative 0.009 1357 1.760 

Constrained 0.959 2.934 3.993 

Const/NNLS 0.232 1.101 1.667 

Table 7. Average RMS errors for each zone seeded - five zone model. 

Analysis Average RMS error levels for each zone 
Method 

Zone 1 Zone 2 Zone 3 Zone 4 Zone 5 

LSQ 4.338 3.669 4.530 4.225 3.018 

Table 9. Statistical analysis of average RMS errors - six zone model. 

Applied 
Error Level 

(%I 

Analysis Technique 



Table 8. RMS Errors for each data set - six zone model. 

Root Mean Square Error 
Applied Data for analysis techniques 

Error Level Set 
(%I LSQ CONST/NNLS 

0.0 1 0.007 0.016 

0.1 1 9.718 0.374 

2 5343 0.600 

3 3.571 1.018 

4 8.048 0.749 

5 10.251 0.139 

6 10.083 1.523 

Average 7.863 0.734 

1.0 1 9.824 2.283 

2 8.330 2.039 

3 7.650 2.259 

4 10.838 2.230 

Average 8.836 1.897 

2.0 1 8.164 1.356 

2 6.447 1.256 

3 7.640 1.937 

4 6.903 1.312 

5 9.590 1.053 

6 8.026 2.126 

Average 7.795 1.507 

5.0 1 13.288 1.681 

Average 11.126 2.047 



Table 10. Estimates of population standard deviation for RMS errors. 

Applied Confidence Estimates of Population Standard 
Error Level Limit Deviation 

(%I LSQ CONST/NNLS 

Table 11. Air Change Rates for experimental test runs. 
- - - - -- 

ACR ACR from 
Building Seeded Data Openings from Time calculated flows 

Zone Set Constant 
(h-l) 6 Zone 3 Zone 

Structures 6 1 0 0.4% 0.995 1.080 
Lab 



Av RMS Error 'v' Applied Error Level 

0.0 1.0 2.0 3.0 4.0 5 .O 

Applied Error Level (%) 

Figure 1. Average values of RMS Error plotted against Applied Error Level. 



W Diff in ACR 'v' Applied Error Level 

0.0 1 .O 2.0 3 -0 4.0 5.0 

Applied Error Level (%) 

Figure 2. Percentage Difference in Air Change Rate plotted against Applied 

Error Level. 



2 3 4 5 6 

Number of Zones in Model 

Figure 3. Average values of RMS Error and Percentage Difference in Air 

Change Rate for each model. 



Tracer Gas Concentration versus Time 
- - - - _. - - -1 

Figure 4 Typical set of decay curves for an industrial hall. 


