Improvement of existing windows

Agneta Olsson, architect, research engineer, Department of Building Science, Lund Institute of Technology, Lund, Sweden.

Windows in old blocks of flats have been studied in respect to draught-proofing and heat flow. The measurements of draught-proofing show that the majority of the windows are not well draught-proofed. Measurements have been carried out on old windows before and after the renewal of the draught excluders between the window frame and the casement. These experiments show that the draught-proofing can be very much improved with new rubber draught excluders and with precise adjustment of casements and window fasteners. The measured U-values of double-glazed windows corresponded to an average of 2.40 W/m²K in the middle of the pane. Two different systems of converting double-glazed windows into triple-glazed windows have been studied in the laboratory. These experiments show that the U-values were improved by 25-30%.

Amélioration des caractéristiques thermiques des fenêtres des habitations anciennes.

On a étudié les fenêtres dans les immeubles collectifs anciens en vue de serrer contre coulage d’air et en vue de transmission de chaleur. Les mesures de l’étanchéité contre l’air indiquent que la majorité des fenêtres sont mauvaises. On a mesuré le coulage entre le châssis et le dormant des fenêtres avant et après réparages. Des bouchons neufs et un réglage dispositif de fermeture fait du bon. Les valeurs de k obtenues pour des doubles vitrages se situent autour de 2.40 W/m²K au milieu du panneau. Il y a présenté deux systèmes différents de survitrage d’une vitre supplémentaire de transformer les doubles en triples-vitrages. Ce survitrage diminue d’environ 30% la conductibilité thermique des fenêtres.
Improvement of existing windows

Agneta Olsson, architect, research engineer, Department of Building Science, Lund Institute of Technology, Lund, Sweden.

The results of the measurements presented below are part of the research project entitled "The Saving of Energy in Existing Blocks of Flats by Means of Building-technology Measures". The project has been sponsored by the National Swedish Council for Building Research.

The project has concerned blocks of flats built during the period between 1860 and approx. 1960. Surveys have been concentrated on three different towns in Sweden - Malmö (large city), Eksjö (a town of timber houses) and Gavle (a town in the northern half of Sweden).

Measurements of draught-proofing of windows

The draught-proofing of the windows was measured according to the so called "guarded pressure box" principle. This means that with the aid of fans, an over- or underpressure is created on the inside of the window in relation to the outside. As a result of the difference in pressure between the two sides of the window, air will flow inwards or outwards through cracks in the window. The volume of air flowing inwards or outwards is recorded. In this way the amount of air leakage through the window, created by various pressure differences, can be determined. The volume of this air leakage is obtained as a function of the pressure difference between the inside and the outside of the window.

Totally 21 windows were investigated. The results of this investigation are illustrated in Figure 1. In the figure the air leakage of the windows can be compared to the air leakage of a modern window. The figure shows that the majority of the windows are not well draught-proofed. Only three windows are draught-proofed to an acceptable level.

According to new standards (Swedish Building Code, 1975, SBN, 1975, Supplement 1) the leakage of air through new windows should not exceed 1.7 m³/m² per hour with a pressure difference of 50 Pa (5 mm vp) and 5.6 m³/m² per hour with a pressure difference of 300 Pa (30 mm vp) respectively. Among the windows examined, only two windows meet this requirement. The other windows are above this level.

Figure 1 The air leakage of the investigated windows. Overpressure on the inside of the windows.

In order to find out if the draught-proofing of old windows can be improved, measurements in the laboratory and in the field were carried out before and after the renewal of the draught excluders between the window frame and the casement. These experiments show that the draught-proofing can be very much improved with new rubber draught excluders and with precise adjustment of casements and window fasteners.

As an example, one of the investigated windows is shown in Figure 2. The figure illustrates the air leakage between the window frame and the casement when there is overpressure on the inside of the window. The window had a center mullion and two outward-opening linked casements, a usual type of window in the 1940's. The figure shows that the window in its original condition, with draught excluders made of foamed plastic, is rather draughty. After the renewal of
the draught excluders, the window as become 60% less draughty. The case-
ments were then adjusted in the window-frame and, compared with the origi-
nal condition, the window has become over 85% less draughty. The window
now fulfills the requirements according to SEN 1975. The diagram shows
clearly the importance of adjusting the casements.

Figure 2 The air leakage before and after the renewal of the draught ex-
ccluders. Overpressure on the inside of the window. Outward-opening linked
casements. Window-area 1.44 m².

From the experiments it appears that old windows can be fully acceptable
in terms of draught prevention. This means that energy can be saved by just
checking the condition of windows. Improvement of the draught-proofing of
windows often has a double energy-saving effect. Not only is the leakage
of heat prevented, but the draught from windows also disappears. This mak-
es the indoor climate more comfortable, with the result that the indoor
temperature can often be lowered a few degrees.

Measurements of heat flow through windows

The heat flow through the windows has been measured with the aid of heat
flow meters. These have been placed in the middle of the pane. Totally 18
windows were investigated. All were double-glazed windows. 11 windows had
linked casements and 7 windows had double non-linked casements. The measu-
red U-values of the windows corresponded to an average of 2.40 W/m²K.

Two different systems of converting double-glazed windows into triple-
glazed windows were studied in the laboratory. The systems were studied in
respect to heat flow. In the first system the third pane is placed on the
inside of the window. The pane is mounted in a frame made of PVC, which on
one side is screwed to the inner casement. This side of the frame is hing-
ed. The other three sides are fastened to the casement with special fast-
eners. This means that the pane can be opened for cleaning (Figure 3).

Figure 3 The third pane is mounted on the inner casement.

In the other system the pane in the inner casement is replaced by a sealed
glazing unit, double glazing. The double glazing is mounted in the inner
casement with the aid of aluminium profiles (Figure 4).

These two systems were mounted on an outward-opening window with linked
casements as well as on an inward-opening window with linked casements.
Both windows were of the same size.