FINAL REPORT

ASHRAE RESEARCH PROJECT 438-RP

FOR THE MEASUREMENT OF AIR LEAKAGE OF BUILDING COMPONENTS

Submitted by:

Dr. Donald G. Colliver, P.E. Dr. William E. Murphy, P.E. Wei Sun

Agricultural Engineering Department University of Kentucky Lexington, KY 40546-0276

December 30, 1992

TABLE OF CONTENTS

Introduction		1-1
Research Objectives		2-1
Background		3-1
Definition of Ter	ms	3-1
Methods of Mea	suring Air Tightness/Leakage	3-2
Methods of Mea	suring Air Infiltration	3-5
Methods of Repo	orting Air Leakage/Infiltration	3-6
	ermining Building Component Air Leakage	3-11
Methods		4-1
Literature Invest	gation	4-1
	ent of Database	4-1
	ation to Common Base Pressure	4-7
	rimential Investigation	4-10
	I Analysis - Single Openings	4-10
	I Analysis - Multiple Openings	4-16
Experimen	tial Procedure	4-20
	tial Design	4-27
	tial Data Analysis	4-31
	nclusions	5-1
	386	5-1 5-1
		5-1 5-5
	Independent C ₁ , C ₂ and C ₃ Parameters	5-5 5-10
	tion	
	ysis	5-33
Summary	************************	6-1
References		7-1
Bibliography	ANYO NI LI OLI	
	AIVC Number Code	8-1
	Author	8-10
Appendices		
	iterature Leakage Values (Raw Data)	
	iterature Leakage Values (Transformed Data)	
C - Notes to Ta		
D - Conversion		
	of Dimensionless Crack flow Equation	
F - Definition a	and Combination of Crack/Position Coding	
G - Data Table	s for Individual Openings	
H - Data Table	s for Openings in Parallel	
 I - Data Table 	s for Openings in Series	
	s for Component Leakage Tests	

INTRODUCTION

Knowledge of the amount of air leaking into a building through the various building components is important for a wide variety of reasons. Initially the interest in these values was so that estimates could be made on the amount of energy to be added or removed to heat or cool air that was infiltrating into the structure. Selection of new and replacement building materials was done partially on the amount of energy costs that would be saved by the selection of that component.

More recently however as structures are being built to tighter standards in order to conserve energy, there has been an increasing interest in determining the air flow though building components in order to predict the amount of outside air entering the structure through the building envelope. There is a need to be able to estimate the air leakage in a building envelope in order to estimate the forced ventilation which might be required in the structure. These values are also used by designers as they locate the leakage for ventilation purposes. Rather than sealing the structure airtight and going back and installing openings at the desired locations, if we were able to accurately predict the leakage it would be possible to design the envelope with sufficient (but not excessive) leakage.

As more locations have energy and indoor air quality codes and standards being applied to buildings in their jurisdiction, it will be even more critical to have good estimation methods to predict the amount of leakage in a structure. This will be important not only for the code enforcement official who might be applying a performance based code but also for designers and builders attempting to meet performance requirements. It is even more important for those developing prescriptive codes and standards since they must know a-priori that their specifications will meet or exceed the desired leakage recommendations.

The establishment of the appropriate air leakage value to use for the various components is not an easy task. There has been much discussion about testing techniques, values to be used and the accuracy of the data. The problem is confounded even further when it is considered that many of the air leakage components or sites are manufactured on the construction site and not on an assembly line where quality control can be maintained.

Therefore the goal of this research was to evaluate the existing data of component leakage and determine an appropriate technique to enable the estimation of potential rates of air leakage through various building components.

RESEARCH OBJECTIVES

The objectives of this research were:

- Compile and catalog from the recent available literature, the available data on leakage areas of building components commonly used in North America in residential construction,
- Assess the adequacy of the component ELA concept and develop and test alternates which would be based on the fundamental principles governing flow through openings,
- 3. Evaluate the different methods of reporting the air leakage, and
- 4. Recommend a system of reporting air leakage for components.

CHAPTER 3 - BACKGROUND

The concept of a term which can be used to describe the flow of air into a structure is an commendable one. A method is needed to estimate the leakage of a structure before it is built. The development of a term to accurately predict the leakage of the structure over varying weather conditions would also be helpful so that evaluations such as the blower door test would not have to be run on the structure.

3.1 Definition of Airleakage, Airtightness, Air Infiltration

Several key terms which oftentimes are used interchangeably in the building industry need to be discussed and differentiated between in order to understand the research being reported.

Airleakage refers to the movement of air across or through the building envelope due to some differential pressure. In this report the term airleakage will be referring to the case in which testing is being done where the differential pressure is artificially imposed at levels above those found due to weather conditions and typical operation. When testing for airleakage, this pressure is artificially imposed by some device such as a fan and the measured flow required to maintain that pressure is considered to be the airleakage.

Airtightness refers to the ability of the envelope of the structure to resist the flow of air through it. The more airtight a structure, the higher the pressure must be to maintain flow of air through it. Airtightness can be thought of as the resistance of an enclosure to allow air to cross its boundaries. It is the inverse of airleakage. Typical units of airtightness are volumetric flow rate per unit of surface at some stated constant differential pressure.

Air infiltration refers to the naturally occurring flow of air across the building envelope due to differential pressures naturally occurring during the operation of the building such as weather effects (stack and wind), occupant effects (opening and closing doors) and equipment effects (vented combustion equipment, vents, etc). Air infiltration varies depending upon the response of the building to these effects. It is not constant over time and therefore the value must be time-averaged or the rate stated for some given condition such as the differential pressure. Typically air infiltration will be quoted in units of volume per unit time.

In order to completely evaluate the leakage performance of a building or its components it is necessary to eliminate the other variables which influence

infiltration and evaluate the air leakage characteristics of the building envelope and its components only.

3.2 Methods of Measuring Air Tightness/Leakage

The measurement of either the building leakage or air tightness is done to describe the building envelope without weather, equipment or operator influence. Since one is basically the inverse of the other, only one of the parameters needs to be measured. Two major approaches have been used to determine the airtightness; DC pressurization and AC pressurization. DC pressurization is the predominate technique used.

3.2.1 DC Pressurization

DC pressurization has been used for many years, studied considerably and there are several commercially available units available (ASTM, 1987; CGSB, 1986; Gadsby and Harrje, 1985; and Murphy et al 1991). Commonly called the "blower door" or "fan pressurization device (FPD)", it serves as the basis for several national standards and is used by both researchers and field personnel to identify the airflow-pressurization characteristics of buildings and/or locating sources of air flowing through the building skin. The majority of the air leakage data reported in the literature were obtained with this technique. It can be assumed that the data from the literature reported in this work was obtained using this technique unless stated otherwise.

The technique involves placing a powerful variable speed fan in an opening in the building envelope (usually by replacing a door or window) through which air is blown into (pressurization) or out of (depressurization) the building. A uniform, artificial, static pressure is imposed across the entire building envelope and the amount of air being moved by the fan to create this pressure differential is determined. A relationship between the imposed pressure difference and flow rate through the fan may then be determined. The amount of air leakage or building tightness is determined from this relationship.

The air flow rate through the fan is usually determined from: a) measurements of the pressure drop across a known flow restriction, or b) the fan rotational speed and calibration curve. The differential pressure across the building shell is determined from internal and external static pressure taps and a differential pressure transducer.

There are several standards which use the FPD (Canadian Standard CAN/CGSB 149.10 M86, ASTM E 779-87, ASTM E 783-84 and ISO DP 9972). All these standards use the DC pressurization technique, however they differ in salient points such as: pressurization/depressurization, pressure tap location, differential pressure range, limiting weather conditions (wind and temperature differences), expression of results and stated accuracy (Charlesworth, 1988). A summary of comparison between the ASTM 779 and CAN/CGSB 149.10 is

Table 3-1 A Comparison Between Air Tightness Measurement Standards
(From Cherlesworth, 1988)

Standard	Pressure Tap Location	Differential Pressure Renge	Number of Readings	Preparation of Openings	Results	Equation for Linear Least Squares Regression	Limiting Conditions
CAN/CGSB 149.10 - M86	Minimum of four taps - located around building connected to an averaging container to dampen flucutations	15-50 Pa - depressurization	Every 5 Pa from high to low	Detailed instructions as to position of dampers and sealing of vents	Equivalent Leakage Area at 10 Pa, Cd = 0.611	Log transformation of flow weighted by flow squared	Wind speed < 5.6 m/s
ASTM E 779-87	One tap - location not specified	12.5-75 Pa - pressurization or depressurization	Every 12.5 Pa	Dampers closed - other openings as normal operation	Effective Leakage area at 4 Pa, Cd = 1.0	Log transformation - no weighting for equal spacing	Wind speed < 2 m/s Temperature 5-35°C

given in Table 3.1. There have been no direct comparisons between the various standards so there are no recommendations as to validity of one over the other or standard calibrations for converting the data between them. The 1989 ASHRAE *Handbook - Fundamentals* gives equations to make conversions between leakage and flows given different discharge coefficients and reference pressures.

It has been assumed that the air leakage of the structure when it is under pressurization (air being blown in) is different than when it is being depressurized (air being blown out of the structure) because many times the two curves do not look the same. It has also been assumed that this nonreversibility is due to some building element (such as the vapor retarder) acting as a flap valve, the asymmetric geometry of some of the cracks or the presence of wind and stack pressures during the measurement. In a study of pressurization/ depressurization measurements on 196 houses, Sherman et al. 1986, found that there were no significant differences (i.e. the differences are within the measurement errors) in either the flow exponent or leakage area or a systematic difference between pressurization and depressurization but that significant uncertainty is associated with an individual measurements.

In addition it has been found (Murphy et al. 1991) that there can be substantial differences between different FPDs on the same house with the same operators and data analysis technique. It was found that ordinary use of FPDs by typical operators to determine envelope airtightness levels in existing houses may do little better than $\pm 25\%$ accuracy.

Therefore there are substantial difficulties in attempting to make subtle comparisons between data in the literature which has been collected from different sources using different equipment.

3.2.2 AC Pressurization

The AC pressurization technique is another technique which has been used to examine building air leakage (Modera and Sherman, 1985). While the quantity of data collected with this technique is very small, the technique used is substantially different and merits mentioning. It was developed for determining air tightness directly at the small pressure differences typically found in natural infiltration conditions without introducing large flows through the building envelope or introducing atypical pressure differences (and thus atypical flow regimes [turbulent rather than laminar] through the openings).

AC pressurization creates a periodic pressure difference across the building envelope that can be distinguished from the naturally occurring pressure fluctuations. This pressure change with its amplitude and phase cause a corresponding volume change. The flow through the envelope can then be determined from the continuity equation for a compressible medium, provided accurate estimates are provided of the building's capacity, internal pressure and

its derivative.

3.3 Methods of Measuring Air Infiltration

There are several methods which have been used to determine the air infiltration characteristics of a structure. All the most common ones use some form of gas tracing. Gas tracing is the addition of a detectable gas into an airstream or air volume for the purpose of tracking the mass movement of air; or, more typically, the determination of the amount of exchange of air contaminated with the tracer with non-contaminated air. The tagging of air with tracers is usually done by inserting the tracer gas or volatile liquid into the air and then quantitatively detecting or tracing its presence over time.

There are three major techniques of determining the air infiltration rates using gas tracers: a) slug injection/exponential decay (concentration decay), b) variable injection to achieve constant concentration and c) constant emission/injection. The general governing mass balance equation is the same for all three techniques.

The concentration decay is the most straightforward technique of the three. In this method the tracer is released into the space, time is allowed for it to thoroughly mix with all the air volume and then periodically the decay of the concentration is measured (Hunt, 1980). The decay is due to the dilution of the tagged air with incoming fresh air not containing the tracer. The faster the decay, the higher the input rate of fresh air. This technique is commonly used when large numbers of samples or structures need to be tested with minimal equipment setup or on-site maintenance. Grab bag sampling is often used.

The second major technique varies the source generation or injection to achieve constant concentration. A direct-feedback, automated control system is required for this technique. The infiltration rate becomes directly proportional to the tracer gas generation/release rate. This technique can detect short term variations in infiltration rates and can do multizone measurements. It can only be used when the injection is controlled automatically and typically is used only on structures requiring elaborate testing. Examples of this type technique are Princeton's CCTG and Lawrence Berkeley Laboratory's MTMS systems.

In the constant emission technique, the tracer is released at a constant known rate and the concentration is monitored over time. After steady state is reached, the average concentration may be used to determine the average air exchange over the time period the sampler was exposed. Thus this technique corrects for variations of air exchange over time due to fluctuations in weather conditions, operator effects or equipment effects. Multiple tracers which do not interfere with each other may be used for multizone applications. The Brookhaven PFT method is an example of this technique.

The result of all these techniques is an estimation of the amount of

outside air that has infiltrated into the building envelope through openings due to the driving pressure forces which existed during the sampling period.

Thus if we were able to determine a) the driving forces and b) the response of the openings in the building envelope to these driving forces we would be able to estimate the air infiltration over time.

3.4 Methods of Reporting Air Leakage/Infiltration

Several different empirical methods of reporting air leakage characteristics have been used previously. This also makes it difficult to make comparisons between different values in the literature. In most fan pressurization measurements, the flow is recorded as a function of the imposed differential pressure for several (5 to 10) different pressures between the range of 10 to 75 Pa. The way the data are reduced after these five to ten data points are found is where there are significant differences, so it is important to identify them and how they are used.

Reporting in situations where there were several replications was usually done by giving the average value and some measure of dispersion. This is usually the maximum and minimum values or the standard deviation value. It was noticed that in some cases when both the max/min values and the standard deviation values were given that the average minus the standard deviation was less than the reported minimum value. It is assumed that this is due to a log normal distribution of the readings rather than the Gaussian distribution commonly associated with the standard deviation term.

3.4.1 Flow Coefficient and Flow Exponent (C and n, dimensionless)

Empirically it has been found that the pressure vs flow data follow a power law relationship. Gabrielesson et al. (1968) proposed the expression:

$$Q = C A (\Delta P)^n$$
 3.4.1

where:

Q = volumetric flow rate, m³/h

C = crack flow coefficient, m3/h(Pa)n

A = crack section flow area, m³

 ΔP = pressure drop across the opening, Pa

n = flow exponent, dimensionless

Shaw (1974) presented another equation on the basis of mass flow rate:

$$F = K (\Delta P)^n \qquad 3.4.2$$

where:

F = mass flow rate, kg/h

 $K = constant, kg/(hr \cdot Pa^n)$

Warren (1978) considered that the flow length might make a difference and introduced length into the formula:

 $\Delta P = [Q/KL]^{1/n} \qquad 3.4.3$

where:

K = constant, m²(Pa)ⁿ/h L = crack length, m.

The most common form of equation to describe air leakage characteristics is the "power law" equation (Irving 1979, Sherman 1980, ASHRAE, 1989):

 $Q = C (\Delta P)^n \qquad 3.4.4$

where:

Q = Air flow, m³/s

 ΔP = Pressure differential, Pa

C = Flow coefficient, (m³/s at 1 Pa)

n = Flow exponent, dimensionless

The most common way of determining coefficients is to do a log transformation on the data:

$$\ln Q = \ln C + n * \ln(\Delta P)3.4.5$$

and then do a least squares regression on the linear transformed data to determine the slope (n) and the intercept (C) of the line.

There are no fundamental fluid flow principles for this relationship. We expect that the exponent should lie between 0.5 (approximating orifice flow) and 1.0 (approximating fully developed laminar flow). There is no physical interpretation beyond this explanation. It is commonly assumed that the variations between these two values account for the physical changes which occur between fully developed turbulent flow and fully developed laminar flow. This includes such things as the development of laminar flow and its effect by the entrance/exit losses, the developing length and other minor loss parameters such as bends, area changes, etc.

Etheridge (1977) and Chastain et al. (1987) derived a semi-empirical dimensionless flow equation based on the distribution of total pressure drop in the loss of fully-developed flow in constant area opening and the loss of developing section, inlet-outlet friction, area change and bend effects:

$$\frac{\Delta P}{\frac{1}{2}\rho \,\overline{V}^2} = \frac{B}{Re} \frac{Z}{D_h} + K$$
 3.4.6

The derivation of this dimensionless crack flow equation and further discussion of this analysis is done in Section 4.2.1.

3.4.2 Air Flow Rate at 50 Pa (Q₅₀, m³)

Several countries have adopted an air flow rate with 50 Pa imposed differential pressure as a standard when classifying buildings in terms of airtightness (Charlesworth, 1988). This single point reference number can be easily obtained. It is obtained by simply pressurizing or depressurizing the structure to 50 Pa and determining the fan flow rate required to achieve this pressurization (depressurization) or by substitution into Eqn 3.4.1.

3.4.3 Air Change Rate at 50 Pa (N₅₀, ACH or h⁻¹)

This term is also commonly used as a single point reference. It is found from the Q_{50} value described above divided by the building volume, V (m³).

$$N_{50} = Q_{50} / V$$
 (ACH or h⁻¹) 3.4.7

The major difficulty in determining this number is estimating the applicable building volume. Questions arise about inclusion of closet volume, interior walls, cabinets, etc.

3.4.4 Effective Leakage Area (ELA₄ or EfLA, cm² or m²)

Another popular measure of leakage introduced by Sherman and Grimsrud (1980) is the building *Effective Leakage Area*. They identified that the behavior of the actual leakage curve closely resembles that expected for turbulent flow and could be modeled by the classical flow equation for a sharpedge orifice if the discharge coefficient is defined to be unity. (See Appendix E for a theoretical derivation from first principles.) Thus they assumed that the flow was proportional to the square-root of the applied pressure:

$$Q_{ref} = A C_d (2\Delta P_{ref}/\rho)^{0.5}$$
3.4.8

where:

 Q_{ref} = flow at the reference pressure, (m³/s)

A = effective leakage area (m²)

C_d = Discharge coefficient (1.0)

 ρ = density of the air, (1.22 kg/m³)

 ΔP_{ref} = the applied reference pressure, (4 Pa)

Thus a term which lumps the area and the orifice discharge coefficient together representing the effective area of an orifice (with $C_d = 1.0$) to produce the same amount of flow at a reference can be described as:

ELA₄
$$\triangleq$$
 A C_d = A

ELA₄ = 10,000 Q_{ref} ($\rho/2\Delta P_{ref}$)^{0.5}

3.4.9

where:

 ELA_4 = effective leakage area, (cm²).

The ELA does not bear any simple relationship to physical opening areas in the building but instead represents the summation of the overall effect of all the openings. One thing to note is that it is the opening area of an effective orifice with a discharge coefficient of one. It should be stressed that the effective leakage area is <u>not</u> the actual leakage area and it should not be confused.

The ELA depends upon which pressure is used to calculate its value. An applied reference pressure of 4 Pa is used to calculate the ELA₄. This value is commonly used in the USA.

3.4.5 Equivalent Leakage Area (ELA₁₀ or EqLA, cm² or m²)

Another commonly used term (and often confused with the Effective Leakage Area term) is the *Equivalent Leakage Area*. This also comes from the theoretically derived orifice equation. The derivation of the effective leakage area follows the derivation of the orifice equation with the exception of the assumption of a orifice discharge coefficient of 1.0 is relaxed and replaced with a value of 0.611 (a value found to be representative of the types of openings being described):

ELA₁₀
$$\triangleq$$
 A C_d = A • 0.611
ELA₁₀ = 10,000 (O_{ref} / C_d) $(\rho/2*\Delta P_{ref})^{0.5}$ 3.4.10

where:

ELA₁₀ = equivalent leakage area, (cm²) $Q_{ref} = \text{flowrate at the reference pressure difference, (m³/s)}$ $C_{d} = \text{discharge coefficient, 0.611 (dimensionless)}$ $\Delta P_{ref} = \text{reference pressure difference, (10 Pa).}$

The equivalent leakage area is used by several countries in their standards (eg. Canada and the Netherlands). The potential exists for errors to occur by interchanging the ELA₄ and ELA₁₀ values. In this report the C_d value

will be listed in the data tables to avoid confusion. It will be assumed that reported ELA values from Canada and the Netherlands will be equivalent leakage areas unless otherwise noted.

3.4.6 Specific Leakage Area (SLA₄ or SLA₁₀, cm²/m²)

The effective or equivalent leakage area is representative of the total leakage of all the envelope of the building. It is possible that two buildings could have the same leakage yet differ in envelope area. Thus the development of a "normalizing" term which would take into account the size of the building. The specific leakage area is either the $\mathsf{ELA_4}$ or the $\mathsf{ELA_{10}}$ divided by the floor area of the building:

$$SLA_{4 \text{ or } 10} = ELA_{4 \text{ or } 10} / A_{f}$$
 3.4.11

where:

 A_f = floor area, (m²) ELA_{4 or 10} = ELA at reference pressure of 4 or 10 Pa, (cm²).

The specific leakage area enables the comparison of leakage between buildings. The floor area is chosen as the normalizing term because it is easily obtainable since it is the most distinguishable number to be recalled by the resident. It should be noted that the value used for floor area can be a source of error. Care must be used in determining if this represents net area (outside dimensions less any area for exterior and interior walls, closets, etc.) or it represents the gross floor area (the outside dimensions).

3.4.7 Normalized Leakage Area (NLA₄ or NLA₁₀, cm²/m²)

A building's leakage areas are in the building envelope which consists of more than just the floor area. It is possible to have structures to have the same floor area yet differ widely in exposed surface areas. The normalized leakage area term was developed to take into consideration the area of the building envelope which may be exposed to the pressure differentials which drive airflow through the skin of the building. This is all the exposed surfaces above the grade line and includes the walls, ceilings, and floor above grade (but not the floor on a slab in direct contact with the soil). The CGSB standard uses all the envelope area except the basement floor to normalize. Thus the normalized leakage area was defined as:

$$NLA_{4 \text{ or } 10} = ELA_{4 \text{ or } 10} / A_{0}$$
 3.4.12

where:

A_e = exposed envelope surface area, (m²).

It is assumed that the normalized leakage area is considered to be the most comprehensive, and best representative number of the leakage area for

comparison purposes on surfaces.

3.4.8 Leakage per Unit Length (Q/L, I/s-m)

The leakage flow rate per unit length of crack has commonly been given when well defined, easily measured openings are present (eg. window sash or door seal length). It is known in these circumstances that the amount of flow is proportional to the length of the crack - not to the surface area. Thus the leakage is expressed as the flow rate per unit length of opening:

$$Q_{ref} = k_{ref} 3.4.13$$

where:

Q_{ref} = the flow rate per unit length at the reference pressure, (I/s-m)

ref = reference pressure for the flow determination, (Pa).

 k_{ref} = constant at the reference pressure

3.4.9 Percentage of Total Leakage (%)

There are several cases in the literature when the authors reported only the flow through a particular opening relative to the total flow for the entire structure (ie. % of flow). There was not sufficient information to determine the flow rate through the particular opening. This happened most often when the primary interest was in locating and sealing the leaks in the building and not on quantifying the volumetric flow rate.

3.5 Methods of Determining Building Component Air Leakage

The leakage characteristics previously discussed were primarily developed to report the air leakage of entire buildings as determined by pressurizing and/or depressurizing the entire building and analyzing the resulting flow-differential pressure data. The ASTM Standard E779-87 and Canadian CGSB Standard 149.10-M86 standards are commonly applied to whole house testing in North America. The purpose of these two standards is to establish a uniform technique to determine the leakage rates through a building envelope under controlled fan pressurization or depressurization. The leakage characteristics of individual building components can also be determined from on-site measurements (ASTM E1186-87 and others). These techniques will be discussed individually. Charlesworth (1988) should be consulted for more specific in-depth details.

The desire is to determine the leakage characteristics of the building component insitu in order to be able to accurately predict the leakage of individual parts of the building so tradeoffs might be made.

3.5.1 Sealing the Component with a Chamber

This is the simplest form of direct measurement of the component leakage. It consists of putting a chamber over the interior face of the building element; supplying air (pressurization) or pulling air (depressurization) out of the chamber at a rate required to maintain a pressure difference; and then measuring the flow rate required to maintain this pressure. The analysis and data reporting may be done using any of the methods in Section 3.4.

This method can be made more accurate by balancing the pressure in the room containing the chamber with the pressure in the chamber. This is used to assure that the leakage flow being measured is that flowing through the component in question rather than around or through the chamber.

Another technique used to compensate for the chamber flow resistance is the compensating flow rate meter (Phaff, 1987). This measuring device has a resistance compensating device (an integral fan) to make up for any resistance that the chamber placed over the component might add to the flow path. When this device is correctly adjusted the device does not influence the airflow and the rate through the component sealed by the chamber may be directly obtained.

3.5.2 Balanced Fan Pressurization

This technique is used primarily in situations where the component can not be isolated or sealed and it is known that typically the component does not have a pressure differential across it (Shaw, 1980). A prime example is the party wall between two townhouses. The party wall can not be sealed to prevent the air leaking through it when one of the townhouses is pressurized. Thus an erroneously high reading of leakage would be obtained because during normal operations there would not be a significant differential pressure across the party wall. However the pressurization device creates a uniform static pressure in the structure which is "seen" by all surfaces (including the party wall). The balanced fan pressurization technique provides for a compensating pressurization device to be located on the opposite side of the building component not to be included in the test (eg. party wall). The same pressure would be applied to both sides of the component so that there would not be a driving force creating air flow through the component. Thus there would not be additional air flow required of the testing fan (and the component flow measuring device) to blow through the party wall.

3.5.3 Selective Progressive Sealing

Selective progressive sealing is an indirect determination of the air leakage through a building component which has been sealed with an impermeable cover. This technique assumes that all the air flowing through a component can be stopped by sealing and the resulting reduction or subtraction

in total air flow in the building can be attributed to stopping the flow penetrating the component which was sealed. The subtraction of the two tests then quantifies the air leakage through the component sealed.

This technique has been commonly used to identify and quantify large leakage sites. In most situations this has involved retrofit applications to quantify the effects of various retrofit options. However a thorough analysis of the errors involved has not been completed. A potential problem has been noted in that usually the accuracy errors involved in readings of the total airflow might make the errors in the differential readings quite large compared to the actual values of the readings. Another item often noted is that there appears to be some hysterisis in the sealing order. The reduction in building leakage does not match the increase in building leakage if the components are unsealed in a different order. This might indicate that the sealing is not independent of what other components are sealed. This could possibly indicate that there is some communication of air between the components being sealed.

3.5.4 Controlled Laboratory Conditions

Building component measurements can also be made under the controlled conditions of a laboratory. A number of standards exist which specify how these measurements are to be made. Usually the test specimens are placed in a test chamber where the airflow and pressures can be carefully monitored. The airflow to and through the specimen and the pressure differentials across the specimen can be accurately monitored and controlled without the influences of wind, stack or occupant induced pressures, drastic humidity changes and equipment calibration errors due to transportation. In addition, replications can be made under similar conditions to get a better understanding of the systematic errors and biases.

It has been noted that laboratory based measurements have produced significantly different results from site measurements of similar components (Charlesworth 1988, Weidt et al. 1979). There may be several factors which contribute to these differences such as installation differences, weathering, workmanship, etc.. However it should be noted that the instruments used in the laboratory typically have much higher accuracies with lower error bands, greater access to calibration standards and there are no effects of climate which may indicate that the field values have more instrument and systematic errors than anticipated.

CHAPTER 4 - METHODS

In order to accomplish the objectives previously stated, the problem was broken down into two major parts: the literature investigation and analysis, and the theoretical and experimental development of a more well defined term(s) to accurately describe the air leakage characteristics of the building component openings.

4.1 LITERATURE INVESTIGATION

4.1.1 Development of Database

A through examination of library records and discussions with internationally recognized air infiltration researchers revealed that the most comprehensive source of air infiltration related literature in the world was held by the Air Infiltration and Ventilation Centre (AIVC) located in Coventry, Great Britain. This centre is Annex V of, and is supported by, the International Energy Agency, Energy Conservation in Buildings and Community Systems Programme. Its purpose is to "provide technical support to those engaged in the study and prediction of air leakage and the consequential losses of energy in buildings. The aim is to promote the understanding of the complex air infiltration processes and to advance the effective application of energy saving measures in both the design of new buildings and the improvement of existing building stock." (General cover statement on their documents.)

The AIVC's library has extensive documentation from the IEA participating countries on many items relating to air infiltration. An electronic database (AIRBASE) covering their extensive library holdings has been developed (Limb, 1989). Each source previously identified was found to also be in this database. A copy of this database was obtained and installed on a PC in our department.

A general search of this database was undertaken using an extensive keyword search including broad topic, narrow topic and related topic terms contained in the AIRBASE thesaurus. This identified approximately 3500 references. Each abstract was then read and evaluated for its potential use as a source of data for this study. Those articles which were not originally in English or did not have an English translation were not investigated further and were dropped from the list. The source list was narrowed to approximately 425 references which included mainly journal articles, books, and technical research reports.

Each of these references was then subjectively rated into five groups on its potential source of useful data. The groupings were based on indications in the abstracts that the paper included information on:

- Component leakage data
- 2. Whole buildings leakage or pressurization data
- 3. Air infiltration data
- IAQ, moisture or heat transfer data

5. Non-North American or pre-1970 data

Attempts were then made to obtain copies of the papers or in the case of the research reports at least the sections which might have available useful data. Approximately 98% of the articles in the first two groupings were obtained. Each paper obtained was then scanned to see if it contained potential data or additional reference sources. Additional references located in this manner were then included in the active search list and processed like the others.

With the concurrence of the Project Monitoring SubCommittee, it was decided that the scope of the data should be limited to data obtained after 1970, structures in North America, and not include data that was questionable or obtained from public press type articles. These restrictions significantly reduced the amount of information that was available. There were several articles published in the 1920's and 1930's which presented air leakage test values of building components. However the construction appeared to be significantly different from what is common today. The restriction of limiting the data to construction of North America was a more limiting constraint however. There has been much more research in Europe than in North America on measuring the flow of air through specific building components. It is believed however that this restriction is justified due to the differences in construction techniques and materials.

The remaining approximately 175 papers were then read, analyzed and data extracted. Data was pulled from the papers as they were read and put into a database format.

A list of the references included in the database are included in the Bibliography. Since AIRBASE was the primary source of information, the AIRBASE source identification number was also used in this work as the reference number. Part I of the Bibliography is given in numerical order based on the reference code. Part II is given in the traditional reference notation, alphabetized by author.

A major task of the literature search was sorting and grouping the leakage values obtained. The data collected was initially categorized by the source of leakage (ie. component type) based upon the grouping of leakage areas found in Table 3, Chapter 23 of the 1989 ASHRAE Handbook - Fundamentals.

As the database grew the classification evolved to that presented in Table 4-1.

Table 4-1. Components Used to Classify Leakage

CG Ceiling - General CG Ceiling - Drop CH Chimney CP Ceiling Penetrations - Whole House Fans CP Ceiling Penetrations - Recessed Lights CP Ceiling Penetrations - Ceiling/Flue Vent CP Ceiling Penetrations - Surface Mounted Lights CS Crawl Space CS Crawl Space - 8x16" Vents DAC Doors - Attic/Crawl Space DAFD Doors - Attic Fold Down DAG Doors - Attic from Garage DD Doors - Double DE Doors - Elevator (passenger) Door Frame - General DFRAME **DFRAME** Door Frame - Masonry **DFRAME** Door Frame - Wood Door Frame - Trim DFRAME Door Frame - Jamb DFRAME **DFRAME** Door Frame - Threshold DG Doors - General DIP Doors - Interior Pocket **Doors - Interior Stairs** DIS DMS Door Mail Slot DSP Doors - Sliding Exterior Glass Patio **DSTW** Doors - Storm (difference with/without) DS Doors - Single DV Doors - Vestibule Electrical Outlets/Switches EOS F Furnace - Sealed or no combustion F Furnace - Retention Head or Stack Damper F Furnace - Retention Head and Stack Damper **FLCS** Floors over Crawl Spaces **FWDOC** Fireplace W Damper Open/Closed Fireplace with Glass Doors FWG **FWIDOC** Fireplace with Insert & Damper Open/Closed **GWH** Gas Water Heater J Joints (general) JCW Joints - Ceiling-Wall Joints - Sole Plate JSP JTP Joints - Top Plate **PPWP** Piping/Plumbing Wiring Penetrations

Vents

V

Table 4-1. Components Used to Classify Leakage (Continued)

VBWDO	Vents - Bathroom With Damper Closed/Open
VDWOD	Vents - Dryer With (O)ut Damper
VKWDO	Vents - Kitchen With Damper Closed/Open
VKWDO	Vents - Kitchen With Tight Gasket
WAEX	Wall Exterior
9	Cast-in-place Concrete
	Clay Brick Cavity Wall - Finished
	Continuous Air Infiltration Barrier
	LW Concrete Block - unfinished/finished
	HW Concrete Block - unfinished
	Precast Concrete Panel
	Rigid Sheathing
WIA	Window - Awning
WICA	Window - Casement
WIDH	Windows - Double Hung
	with/without storm
WIDS	Windows - Double Horizontal Sliders
WIFM	Windows - Framing Masonry
WIFW	Windows - Framing Wood
WIJ	Windows - Jalousie
WIL	Windows - Lumped
WISHS	Windows - Single Horizontal Slider
WISH	Windows - Single Hung
WISILL	Windows - Sill
WIST	Windows - Storm

After going through several papers it was realized that some structure to the information obtained would have to be developed. Data was being reported using several different methods of leakage indication (see Section 3.4). The key methods of reporting air leakage/infiltration were investigated to attempt to structure the information. The parameters to be obtained from the papers were those most commonly given.

It was decided to record the information in Table 4-2 about each test reported (one test per line) if the information was given in the paper. Very few cases provided sufficient information to complete all the fields of a single line. Often there would be multiple lines of data from a single reference due to the reporting of the details of individual tests. For example, if a paper contained the average ELA4 for 6 windows, the average and range (if given) would be reported as a single entry. If however the values for each of the six windows were given, there would be six lines of information. The exception to this general operational rule was when whole house information was being reported. Although initially detailed information was recorded on the individual houses, this was discontinued in favor of retaining the grouped or averaged data due to the magnitude of the records involved and the inability to obtain sufficient house descriptive information to derive the leakage of individual components.

The data were entered into a Quattro Pro 3.0 spreadsheet running on a 386 DOS machine. Putting the data into a spreadsheet allowed the data to be sorted by columns which was used extensively for error checking, converting to metric units, assuring all data entries for the same reference used a similar reference pressure and discharge coefficient, sorting components, etc.

A copy of the data obtained from the references is contained in Appendix A. The data in fields 7-11 and 13-17 have been converted to metric units using the conversion factors contained in Appendix D.

A metric conversion of the constants C and n were done in order for the result of the equation to be in metric. The following equations were used to make the transformation:

$$C_{s-1} = C_{LP} * (1.572)(1/248.66)^{n-LP}$$
 4.1.1

$$n_{S-I} = n_{+P} 4.1.2$$

In several cases pressurization-flow data were presented in graphical or tabular form. If an equation was not given for this data, the data were fit to the power law equation (3.4.4) using a least squares regression on the linearly transformed data. Data points given in graphical format only (ie. graphs only - no numerical data) were digitized using an enlarged photocopy of the graph and a digitizing pad. When observed data points were not indicated on the plot, five equally spaced points along the line were digitized.

Table 4-2. Database Format for Information Recorded From Literature

F: -1-1	14
Field	ltem

- AIRBASE reference number This is the number assigned to the reference by the AIRBASE literature data base. The complete reference citation is included in the Bibliography
- Class or category of leakage An identification of the component or source of the leakage. See Table 4-1 for a listing of the leakage categories. For those cases where it was not possible to get a clear indication of the type of component, were lumped together under "general" by component.
- 3 Identifier tag or ID number of test If the reference indicated an identifier for the particular test or site it was included in this field.
- 4 Number of cases or replications
- Technique the source used to obtain the data point (See Appendix C for explanation of the code number)
- 6 Code to identify units and explain how C and n values were obtained (See Appendix C for explanation of the code number)
- 7 Reported C value The constant for the power equation
- 8 Reported n value The exponent for the power equation
- 9 Flow value The flow through the opening at the reference pressure specified. This value included in this column is the value reported in the reference. For situations with multiple samples, this is the average value reported.
- Minimum flow value If a range for multiple samples was given the smaller number was assumed to be the minimum flow value.
- Lower limit sample standard deviation flow The average value minus the standard deviation when the range of values was given by the standard deviation.
- 12 Upper limit sample standard deviation flow The average value plus the standard when the range of values was given by the standard deviation.
- 13 Maximum flow value The maximum flow value with multiple replications.
- 14 Units for flow Units reported in the reference (conversions to other flow units ie. I-P to S-I are given in Appendix D)
- Leakage area term The leakage area reported in the reference, expressed in units as given in column 18. No attempt has been made here to change the discharge coefficient or reference pressure
- Minimum area value If a range of values was given the smaller number was assumed to be the minimum area.
- 17 Area lower limit sample standard deviation The average value minus the standard deviation when the spread of values was described by the standard deviation
- Area upper limit sample standard deviation The average value plus the standard deviation when the spread of values was described by the standard deviation.
- 19 Maximum area value The maximum area value reported with multiple replications.
- 20 Units for area Units reported in the reference (conversions to other area terms are given in Appendix D)
- 21 Discharge coefficient Value reported or assumed. This was not easily determined. A value of 1 was assumed when 4 Pa was the reference pressure.
- Reference pressure for reported values (Pa) Reference pressure reported for the flow or area terms.
- % of total building leakage Often reported in whole house or selective sealing testing methods.
- 24 Note # Notes to aid in further describing the data. A key to the numbers is in Appendix C.
- Other key or descriptive information Other brief descriptive information indicated in the reference.

Initially all data was entered into the database. When one paper reported data which was obtained from another source, the data was entered with the original reference in the source field with a notation in the "other" field that this data was reported by the second source. These data were deleted from the data base when it was verified that the original data from the original source was included in the database. There were many cases which were found in which a data value in one reference had propagated to several references. Thus, several times initially it was incorrectly assumed that there were considerable data on a component when in reality it was several duplications of previously reported data.

4.1.2 Transformation to Common Base Pressure and Discharge Coefficient

As previously discussed, the data found in the literature was reported different ways, obtained at several different pressures and used different discharge coefficients. In general however the data could be broken into three main categories:

- a. An equation was given for the data (or curves were presented),
- The flow was given at a particular pressure difference, and/or
- The leakage area was reported for a given reference pressure and discharge coefficient.

In order to make comparisons between the sources it was necessary to transform the results to a common reference. It was decided to transform all the data to an ELA using 4 Pa as the base and a discharge coefficient of 1.0 since this was the most common format.

When an equation was given for the data, the flow at 4 Pa was calculated. The effective leakage area was then calculated (using a discharge coefficient of 1.0 and a reference pressure of 4 Pa) from (eqn 23.28, HOF):

$$L = (Q_{ref}/C_d)[\rho/(2\Delta P_{ref})]^{0.5}$$
4.1.3

where:

L = Effective Leakage Area at reference pressure

 Q_{ref} = Flow at reference pressure

C_d = Discharge coefficient

 ρ = Air density (assumed standard value of 1.2 kg/m³)

 ΔP = Reference pressure

When the source had reported the data in terms of the flow at a given reference pressure and discharge coefficient, the leakage area at the reference pressure was calculated from Eqn 4.1.3. The effective leakage area at 4 Pa was then calculated from (eqn 23.29 HOF):

$$L_{r,2} = L_{r,1} (C_{d,1}/C_{d,2}) [\Delta P_{r,2}/\Delta P_{r,1}]^{n-0.5}$$
4.1.4

where:

 $L_{r,1}$ = area at P_1 $L_{r,2}$ = area at P_2 $C_{d,1}$ = discharge coefficient at 1 $C_{d,2}$ = discharge coefficient at 2 (=1.0) $\Delta P_{r,1}$ = reference pressure used by literature source $\Delta P_{r,2}$ = reference pressure used in calculation (4.0 Pa) n = flow exponent

A value of 0.65 was assumed for the flow exponent if an equation for the data was not given.

When the source reported the data in terms of leakage area, the effective leakage area at the reference pressure of 4 Pa with a discharge coefficient of 1.0 was calculated from Eqn 4.1.4.

The effective leakage area was calculated for each of the values reported for the minimum, average and maximum flows and areas. A single effective leakage area was calculated when the data were reported in the power equation form.

The effective leakage areas thus calculated are found in columns 13-19 in the data contained in Appendix B.

The units for the ela are cm² per whatever unit was used by the source. For example, if the source gave the flow in I/sm² of component, the ela would be cm²/m² of component area. In some instances for the same component there were units of cm² per: entire house, unit (eg. door), m² of floor area, and/or per linear unit (m) of crack or sash.

Weidt et al (1979) indicated that varying the expression of air leakage rate between crack length, sash area and free ventilating area dramatically shifts the relative performance of the tested window operation type. Data concerning the area of the component were included in the "other" field when it was available, however only limited attempts (when sufficient information was given) were made to transform the data from one set of ela units to another (eg. cm²/m² to cm²/lmc). When this was done it was indicated in the "other" field.

The selection of the ela to represent a component was made by selecting the minimum and maximum elas and then attempting to subjectively determine a weighted average for the overall average ela. The weighing was based upon: the number of samples, the source of data, the age of data, and the grouping of independent data.

There was a large number of references which reported whole house or ductwork leakage values without supplying sufficient information about the structures to separate the component values from the data. It was determined that cataloging of this data was not going to yield usable information for the project and was beyond the scope of this project. In addition it is known that there are currently several significant

projects underway to obtain the leakage of ductwork. Since these data were not available, they could not be included in this report. Therefore the whole house and ductwork data were not included in the database.

4.2 THEORETICAL/EXPERIMENTAL INVESTIGATION

4.2.1.1 Theoretical Analysis - Single Openings

As discussed in a previous section, there are three major ways to deal with the Q- Δp relation. These are:

- 1) Power equation,
- 2) Orifice equation, and
- 3) Dimensionless crack flow equation.

It is convenient to use the <u>power equation</u> for any shaped crack when the dimensions of the cracks are not known. However C and n are the products of regression only and they have no corresponding physical meaning since the equation is not theoretically derived. A further disadvantage is that the equation lacks generality because it is not dimensional homogenous. Hence its application is mainly because it is easy to use and it statistically fits data well. There is no theoretical basis involved.

The <u>orifice equation</u> is theoretically derived from the Bernoulli equation. The constants C_d , A_0 and ρ have clear physical meanings. However the relation that Q is proportional to the square root of ΔP is restrictive because it neglects minor losses.

Using the <u>dimensionless crack flow equation</u> is an improvement; however, there are still restrictions in its application: a) the cross-section area of crack needs to be known to calculate the average velocity, \overline{V} , thus it is difficult to calculate for cracks with irregular or unknown shapes, and b) there is not an easily solved relationship which can be derived from a pressurization test.

In general, it can be seen that using the dimensionless crack flow equation is a better approach. However the restrictions need to be loosened before it can be used. If the dimensionless crack flow equation can be arranged so as to have Q as a function of ΔP , then the equation developed will have the benefits of the power equation and the orifice equation. Besides, if an approximate cross-sectional area of a crack can be determined automatically and statistically with original data sets rather than using an assumed dimension as an input, this will be a great improvement.

The dimensionless crack equation has been derived from first principles for idealized openings in Appendix E in the form of:

$$\frac{\Delta P}{\frac{1}{2}\rho \overline{V}^2} - \frac{B}{Re} \frac{Z}{D_h} + K$$
4.1

The volumetric flow rate $Q = \overline{V}*A$, and D_h is the hydraulic diameter of cracks. After obtaining a new equation, it will be expanded to irregular cracks in a later section.

Substituting for velocity and the Reynolds Number into equation [4.1],

$$\frac{\Delta P}{\frac{1}{2}\rho(\frac{Q}{A})^2} - \frac{B}{(\frac{QD_h}{A\nu})}\frac{Z}{D_h} + K$$

and simplifying, yields:

$$\frac{2\Delta P A^2}{\rho Q^2} = \frac{BZvA}{Q D_h^2} + K$$

Multiplying Q²/K to both sides of the above equation and rearranging in the form of a quadratic equation, it can be solved (only the positive root is meaningful) as:

$$Q^2 + \frac{BZvA}{KD_h^2}Q - \frac{2\Delta PA^2}{K\rho} = 0$$

$$Q = A \left[\sqrt{\left(\frac{BZv}{2KD_h^2}\right)^2 + \frac{2\Delta P}{K\rho}} - \frac{BZv}{2KD_h^2} \right]$$
 4.2

This Q- Δ P expression is derived from the dimensionless crack flow equation and is still based on the Q- Δ P data obtained from blower door tests. Each parameter or constant has a clear meaning. Now the question is can the equation be expanded to also include openings with irregular shapes and sizes?

Equation 4.2 may be rewritten in simplified form:

$$Q - C_1 \left[(C_2^2 + C_3 \Delta P)^{0.5} - C_2 \right]$$
 4.3

where:

$$C_1 = A$$
 m^2
 $C_2 = BZv/2KD_h$ m/s
 $C_3 = 2/K\rho$ m^3/kg

For well-defined openings, it is not difficult to use the above equation because each geometric term has a clear meaning. For irregular cracks, where the sectional area, A, is variable, we can still use equation (4.3) to get an area value, but it will be the equivalent sectional area. D_h may be approximately defined as:

$$D_h = \sqrt{\frac{4A}{\pi}}$$

which is derived from $A = \pi D_h^2/4$. Based on this definition, D_h will be the equivalent diameter of the crack.

Thus the three geometric parameters C_1 , C_2 , and C_3 may be determined from dimensional measurements for well defined openings. (It can be shown that Eqn 4.3 reduces to the orifice equation for a flow length equal to zero.) A problem however occurs with openings where B, Z, D_h , and K are not well defined and there is not a single solution to the set of equations.

Nonlinear regression techniques were used to determine values for the constants which minimized the error between the prediction equation and the data obtained from the fan pressurization tests.

It is known that the coefficients have some physical limits, so bounds were placed on the range the coefficients could assume so that physically infeasible solutions would not be provided.

Let's consider coefficient C_3 . The density of air, ρ , has a limit on the variation of its value. If the test is conducted at sea-level atmosphere pressure (101,325 Pa), and temperature of air is in range of -30°C to +40°C, the variation of air density is about 1.453 to 1.128 kg/m³. The minor loss coefficient, K, also has a limited variation (1.2-2.3) as shown in previous literature (Etheridge 1977 and Chastain et al.1987). Therefore it is not difficult for us to estimate the C_3 range, and provide bounds on C_3 in the regression routine.

It is also clear that $C_1 > 0$ and $C_2 > 0$. Therefore, let C_3 be a bounded-coefficient and C_1 , C_2 be semi-free coefficients to be determined in regression.

There are several nonlinear statistical packages available. The routine selected for this work was the SAS procedure NLIN (SAS, 1985). This procedure produces least squares estimates of the parameters of a nonlinear model. The form of the equation, initial estimates of parameter starting values, and derivatives of the model with respect to the parameters are required inputs. It evaluates the residual sum of squares at each combination of initial parameter values over the range provided to determine the best set of values to start the iterative algorithm. The Marquardt method of iteration was used. This method regresses the residuals onto the partial derivative of the model with respect to the parameters until the iterations converge.

The three coefficients C_1, C_2 and C_3 obtained from the regression analysis can then be used to estimate the parameters of the openings. If the air density value in the test was known, a value of the minor loss, K, can be calculated from C_3 directly. (It should be noted that this minor loss value is just an average value.) Then by substituting C_1 , C_2 and C_3 values, we can obtain the $B \cdot Z/(Re \cdot D_h)$ vs. $\Delta P/(\frac{1}{2}\rho \cdot \overline{V}^2)$ relationship which is the dimensionless crack equation representation of the $Q \cdot \Delta P$ data set:

$$\frac{BZ}{\text{Re}\,D_{h}} = \frac{BZ}{\left(\frac{\overline{V}\,D_{h}}{\nu}\right)D_{h}} = \frac{\frac{BZ\nu}{D_{h}^{2}}}{\frac{Q}{A}} = \frac{A\frac{BZ\nu}{2KD_{h}^{2}}}{\frac{2}{k\rho}} \frac{4}{\rho\,Q} = \frac{C_{1}\,C_{2}}{C_{3}} \frac{4}{\rho\,Q}$$

$$\frac{\Delta P}{\frac{1}{2}\rho \vec{V}^{2}} - \frac{2\Delta P}{\rho (\frac{Q}{A})^{2}} - A^{2} \frac{2\Delta P}{\rho Q^{2}} - C_{1}^{2} \frac{2\Delta P}{\rho Q^{2}}$$

This means each $\Delta P/(\frac{\nu}{2}\rho\ \overline{V}^2)$ value and the corresponding $B\cdot Z/(Re\cdot D_h)$ value can be obtained directly from the $Q-\Delta P$ data set and the nonlinear regression products C_1 , C_2 and C_3 . In this technique there is no need to make further assumptions or provide the dimensions of the crack to get the $B\cdot Z/(Re\cdot D_h)$ and $\Delta P/(\frac{\nu}{2}\rho\ \overline{V}^2)$ values. This is a significant improvement over the previous methods of evaluating the physical based models (Etheridge 1977, Chastain et.al 1987).

From equation (4.1), it can be shown that the minor loss is the difference between the total pressure and the major loss (all three terms have dimensionless units):

$$K = \frac{\Delta P}{\frac{1}{2}\rho \overline{V}^2} - \frac{BZ}{ReD_h}$$
4.4

It can be seen that as ΔP changes, the K value is not a constant after the above subtraction for each data point. We know that for a certain crack; D_h , Z and B are constants, leaving only the variables, ΔP , Q or Re to account for the change in K. Actually Re is a function of Q only for a certain crack, while ΔP is independent of Q. Hence one ΔP is exactly corresponding to one Q or Re; they are not independent of each other and have some functional relationship. For most air leakage studies, ΔP is used as the independent variable, hence we define:

$$K(\Delta P) - K(Q) - K(Re) - \frac{\Delta P}{\frac{1}{2}\rho \vec{V}^2} - \frac{BZ}{ReD_h}$$
 [4.5]

The original minor loss coefficient, K, was previously taken as a constant. It is actually the average residual between the total and major loss:

$$\overline{K} - \frac{\sum_{i=1}^{n} K(\Delta P_i)}{n}$$
 [4.6]

Where n is the number of data points.

A number of different functional forms may be regressed to get the $K(\Delta P)$ expression. If the scatter plot of $K(\Delta P)$ - ΔP appears linear, we may use a simple linear approximation:

$$K(\Delta P) - a(\Delta P - b) + \overline{K}$$
 [4.7a]

Or if the scatter points fits a curve, a quadratic approximation may be applied.

$$K(\Delta P) = a(\Delta P - b)^m + \overline{K}$$
 [4.7b]

Theoretically describing the functional form of the minor loss is beyond the scope of this project. From the $K(\Delta P)$ - ΔP relation, in practice, we can regress and predict to get a $K(\Delta P)$ to substitute into equation (4.1) and (4.3), where constants a and b, or a, b and m can be determined consequently. For a simple calculation, the linear approximation may be suggested as a better choice:

$$Q - A \left[\sqrt{\left(\frac{BZv}{2K(\Delta P)D_h^2}\right)^2 + \frac{2\Delta P}{K(\Delta P)\rho}} - \frac{BZv}{2K(\Delta P)D_h^2} \right]$$
 [4.8]

where $K(\Delta P)$ is defined by [4.7a].

The orifice equation previously discussed is a special case of this equation. For the dimensionless crack flow equation, if Z/D_h^2 is close to zero (flow length approximating zero), then $C_2=BZv/(2K(\Delta P)D_h^2)$ will approach zero also. Equation [4.8] reduces to:

$$Q - A \sqrt{\frac{2\Delta P}{K(\Delta P)\rho}} - \frac{A}{\sqrt{K(\Delta P)}} \sqrt{\frac{2\Delta P}{\rho}}$$

Comparison with the orifice equation in which flow length Z=0, and EQLA=A yields:

Q - EQLA
$$C_d \sqrt{\frac{2\Delta P}{\rho}}$$
 - $AC_d \sqrt{\frac{2\Delta P}{\rho}}$

Hence another discharge coefficient expression for the orifice is:

$$C_{d} - \frac{1}{\sqrt{K(\Delta P)}}$$
 [4.9]

This indicates that the orifice equation is just a special case for the derived dimensionless crack flow equation. On the other hand, we find that the curve performance of the new model is very close to that of the power equation for different kind of cracks. That is, it is a theoretical derivation of the orifice equation and yields statistical results as good as the power equation. Therefore the new equation has the benefits of the power and the orifice equations plus sufficient parameters to make judgement on how the air is flowing in complex flow paths.

It can also be shown that the ELA and C_d are dependent on ΔP in the general case. By definition, ELA is:

ELA -
$$\frac{Q}{\sqrt{\frac{2\Delta P}{\rho}}}$$
 - C_d EQLA

substituting for Q of equation [4.8] yields:

ELA - A
$$\left[\sqrt{\frac{C_2}{\sqrt{\frac{2\Delta P}{\rho}}}} \right]^2 + \frac{1}{K(\Delta P)} - \frac{C_2}{\sqrt{\frac{2\Delta P}{\rho}}}$$
 [4.10]

Thus the importance of treating K as a function rather than a constant can be shown by looking at the change in the discharge coefficient:

$$C_{d} = \sqrt{\left(\frac{C_{2}}{\sqrt{\frac{2\Delta P}{\rho}}}\right)^{2} + \frac{1}{K(\Delta P)} - \frac{C_{2}}{\sqrt{\frac{2\Delta P}{\rho}}}}$$
[4.11]

4.2.1.2 Theoretical Analysis - Multiple Openings Connected in Series or Parallel

Crack flow resistance was defined previously as the inverse of the flow coefficient of the empirically regressed power equation (Cale and Zawacki 1980, Bassett 1986). That is,

Q - C(
$$\Delta P$$
)ⁿ - $(\frac{1}{R})(\Delta P)^n$

where R = 1/C and is called the "resistance to crack flow" with units of Pan-S/m3.

There is limited literature which gives the definition of resistance of crack flow, and there is no theoretical derivation. The basic idea for the concept should be:

- 1) crack flow resistance is the ratio of the driving force and the transfer
- 2) it is necessary to satisfy the "parallel and series theorem", i.e, for parallel path flow, $R_{total} = 1/\Sigma(1/R_i)$; for series path flow, $R_{total} = \Sigma R_i$.

Figures 4-1 and 4-2 illustrate the cracks in parallel and series connections with their resistance relationships.

Figure 4-1. Crack parallel connection

Figure 4-2. Crack series connection

An analogy can be made between the concepts of resistance in electrical circuits and heat conduction and crack flow resistance.

In electrical circuits:

In heat conduction:

$$q - \lambda \Delta T - \frac{\Delta T}{B}$$

where I and q are the transfer rates, called current intensity and heat flux respectively, V and ΔT are the driving forces, called voltage and temperature difference respectively.

The relationship between the driving force and transfer rate depends on the characteristic of the resistance. If the electrical resistance R and heat resistance R are constant, the I-V and q- ΔT relationships should be linear, otherwise, they will be nonlinear for nonconstant R.

In the problem of flow through cracks, ΔP or some term involving ΔP , is the driving force and Q is the transfer rate. Before trying to make judgement on the validation of the previous concept of the crack flow resistance, we look at an example to explore some of the problems involved in the previous definition.

In Figure 4-3 two power equations are presented which were fit to fan pressurization test data on two different cracks.

Crack 1:
$$Q = C \cdot (\Delta P)^{0.5}$$

Crack 2: $Q = C \cdot (\Delta P)^{1.0}$

Figure 4-3. Two power equations with n = 1 and n = 0.5

On the basis of the previous definition, if the values of flow coefficients are identical then the flow resistances for the two cracks will be the same. That is,

$$R_1 - \frac{1}{C} - R_2$$

However, when these two curves are plotted, it can be seen that:

- a) When $\Delta P < 1$ Pa, crack 1 allows more flow than crack 2 for the same pressure difference, thus, $R_1 < R_2$ and
- b) When $\Delta P > 1$ Pa, $R_1 > R_2$ for the same reason. Unfortunately there is only one point, $\Delta P = 1$ Pa which satisfies $R_1 = R_2$.

This example illustrates the fallacy the original definition of crack flow resistance being the inverse of the regression coefficient C.

Another proposed definition is based on the effective leakage area (ELA) which characterizes the air leakage. The resistance of crack flow with units of m⁻² can be defined as:

$$R - \frac{1}{ELA}$$

Based on the ELA definition formula:

$$Q = \frac{1}{R} \sqrt{\frac{2\Delta P}{\rho}}$$

where $\sqrt{\frac{2\Delta P}{\rho}}$ is considered as a driving force.

These two definitions create different formulas for the resistance of flow through openings which are in parallel and series connections. Table 4-3 presents the difference between these resistance definitions. Examples to test if there is any improvement in prediction due to the use of the new definition will be given in the Results Section.

Table 4-3. Crack flow resistance definition

	Previous definition: R = 1/C	New definition: R = 1/ELA
Parallel path	$\frac{1}{R_{\text{total}}} - \sum \left(\frac{1}{R_{\text{I}}}\right)$ $\leftrightarrow C_{\text{total}} - \sum C_{\text{I}}$	$\frac{1}{R_{total}} - \sum \left(\frac{1}{R_i}\right)$ +ELA _{total} - $\sum ELA_i$
Series path	$R_{total} - \sum R_{l}$ $\frac{1}{C_{total}} - \sum (\frac{1}{C_{l}})$	$R_{total} - \sum R_{i}$ $\frac{1}{ELA_{total}} - \sum (\frac{1}{ELA_{i}})$

4.2.2 Experimental Procedure

A series of experiments were run in order to verify and validate the theoretical developments of the previous section and to gather additional information about the parameters for actual building components. A series of pressure-flow data were taken in the laboratory over a wide pressure range for:

- a) a number of geometrically well defined, straight opening specimens tested individually,
- b) pairs of well defined openings placed in parallel such that flow would go through them independently,
- pairs of well defined openings placed in series so that the air would have to travel through both of them, and
- d) a number of building components mounted in 2.44X2.44m (8'x8') wood frame wall sections.

The basic idea for this experiment was to use well-defined openings (openings with straight walls and a flow path with known dimensions) with known C_1 values to find the other two opening flow characteristics C_2 and C_3 , and the n values from the power equation, to establish a numerical transform formula. Secondly, based on the established formula (Equation [4.3]), the constant C_2 was determined and the other two constants obtained for several building components. The quality of the new fitted model for analyzing building components was then statistically tested.

In addition to model calibration and validation there were other reasons to test the equation. There was a desire to check some of the coefficients to determine:

- a) if there was a difference between the goodness-of-fit of this equation compared to the power or orifice equations over the range of the data taken, and
- b) if any difference could be shown between the equation types between the flow and predictions at 5 Pa (Q_4 was not chosen because data were not taken at that pressure difference).

4.2.2.1 Test Apparatus

A system to produce and sense a differential pressure across the specimen was constructed in the Energy and Environment laboratory in the Agricultural Engineering Department. This system consisted of: a variable speed fan to produce the airflow and differential pressures; an airflow monitoring chamber to measure airflow; an air distribution and straightening plenum; a specimen and building component holder; temperature, and barometric and differential pressure transducers and the necessary electronics for data acquisition. A schematic of the test apparatus is given in Figure 4.2.1.

Figure 4.2.1 A schematic of the air leakage measurement system for testing the well defined cracks and building components.

Fan

A variable speed, six radial blade fan with a 26.8 cm (10 9/16") wheel was used to generate the pressure and airflow. The fan shaft was attached to a 1.5 kW (2 hp) variable speed DC motor via belt with 2:1 sheave ratio. The rotational speed of the fan was sensed with a permanently installed tachometer detecting light bouncing off a reflective tape strip attached to the fan shaft. The output of the tachometer was taken to a 4 digit LED display. Correct operation of the tachometer was checked at the beginning of the study. The DC motor speed was controlled with a variable 0-10V input which was adjusted with a 10 turn 5K ohm potentiometer. The speed controller specifications indicated a time constant of 6 seconds and a very stable long term speed control (within \pm 1.4%). Observation of the digital fan speed indicator showed the fan speed to be very stable. The fan was rated at 140 l/s (300 cfm) output at 17.8 cm (7") static pressure and 3500 rpm.

Airflow Measuring Station

The airflow was measured using a multiple nozzle outlet chamber built to the specifications of ANSI/ASHRAE Standard 51-1985 (ANSI/AMCA Standard 210-85). (See Figure 12 in Standard 51.) The chamber was 122x122x305 cm (48x48x120"), made with 2.54cm square steel tubing frame and covered with 18 gage steel sheets. The sheet metal was attached to the outside of the tubing frame with metal bonding, double-faced adhesive tape and blind pop rivets. All joints were sealed inside and out with a high grade silicone caulk. Access was provided to the inside of the chamber with a 45x45cm metal plate door on either side of the nozzle plane. A seal was produced at the edges of the doors where they overlapped the frame. Each door was held tightly closed with eight fasteners. The settling means was provided at the locations specified in the standard with one layer each of 40% and 60% open, 24 gage metal sheets attached to cross bracing on the interior of the chamber. Velocity readings were taken during system testing on a 10cm grid across the face of the settling mesh and indicated a uniform flow. Ten aluminum spun nozzles without throat taps (L=0.6D), (D=12.7, 17.5, 25.4, 40.6, 50.8, 63.5, 76.2, 101.6, 127, and152.4mm) were installed on the nozzle plane inside the chamber. The nozzles were located relative to each other on the plane so any combination of nozzles could be operated simultaneously. Static pressure taps constructed as specified in the standard (0.16cm diameter) were placed in the chamber as specified.

Differential pressure across the nozzles was measured with a 25cm WG f.s. variable capacitance diaphragm transducer (accuracy = $<\pm$ 1.0%fs, repeatability = <0.3%fs). All output voltages were obtained from 4 1/2 digit voltmeters with an RMS averaging function. Averaging time windows were approximately 30 seconds. Static pressure upstream of the nozzles was measured similarly with one side of the differential transducer being open to the room atmosphere. Barometric pressure was measured in the room with a mercury barometer with 0.1 mm resolution. Dry bulb room temperature was determined with a mercury thermometer and relative humidity was read from a recording hydrothermograph (\pm 5%rh). Incline manometers (resolution 0.05" wg) were piped in parallel to the electronic transducers to enable a quick periodic check on the electronic devices.

During data analysis an error was found which indicated that there was a significant systematic error in the measuring chamber. After considerable investigation with smoke pencils, it was found that there were some leaks across the nozzle plane through the structural tubing due to leakage through a weld. Substantial effort was spent calibrating this additional leakage across the nozzle plane. (See Section 4.2.2.3.1 Overall System and Chamber Background Leaks Correction.) These calibration data were obtained before the leakage was stopped thus calibration could be done on the original data. This systematic error will be referred to in the Results Section as the system and chamber background leakage.

Equations specified in the ASHRAE Standard 51-1985 were used to calculate the airflow at standard temperature and pressure.

Air Plenum

The output from the airflow monitoring chamber was ducted to a wooden plenum chamber which expanded from the 15cm (6") outlet to the 2.44x2.44m testing face. This expansion chamber was made of marine grade plywood, had two coats of varnish applied to the inside and outside surfaces, and was caulked extensively. The unit was checked for leaks with a smoke stick when the unit was pressurized to four times the maximum operating pressure.

Two planes of 6.3mm pegboard were installed between the inlet and exit to create backpressure and assure uniform air distribution at the testing face of the unit. Uniform air flow across the face of the pegboard was checked by taking air velocity readings with a hot wire anemometer on a 15cm grid at the face of the pegboard plane closest to the test face.

Static pressure taps for the high pressure side ("interior") of the differential pressure to be applied across the openings to be tested were mounted on the straight section sides of the plenum approximately 60 cm from the face of the test section.

The direction of airflow was always to the exterior, simulating building pressurization. Depressurization tests were not run.

Downstream Air Wind Shield

A shield was built to be placed downstream of the test specimen so the "outside" surface of the test specimens and the "exterior" static pressure taps would be shielded from any air currents produced by the diffusers of the building HVAC system. The shield had 1.22X2.44m top, bottom and two sides perpendicular to the specimen. After the specimen holder was put in place the shield would be rolled to meet with the specimen holder. Static pressure taps were mounted on the inside of each of the four sides of the shield for the low side of the differential pressure transducer across the specimen.

Specimen Holder

A wooden frame was built to mount the well defined cracks (Figs 4.2.2a-b). This frame was designed to be able to hold the openings individually, two in parallel or

Figure 4.2.2a Specimen Crack Holder Frame

Figure 4.2.2b Cross section of two cracks in series mounted on the outer and inner layers of the frame

two in series. The effective open face on the specimen holder was 91x122cm. The unit was sandwiched between the plenum and the air shield and pipe clamps were used to hold the three pieces together. It was recognized that these joints had the potential for creating a systematic error. Therefore extraordinary effort was expended putting in seals between the plenum and the specimen holder and/or wall sections to prevent air from leaking out around the joint. Pipe clamps were used extensively to apply pressure on the seals to prevent them from leaking. Attempts were made to tighten the clamps to the same pressure each time and the joints were checked to locate and fix any obvious leaks.

Well Defined Openings

Several well defined straight-through openings had been previously used in a study of determining the discharge coefficients for laminar flow in rectangular openings (Chastain and Colliver, 1987). These openings (See Figure 4.2.3) were thin rectangular openings with straight walls and square edged openings which were manufactured to very tight tolerances. They were made from 6mm clear acrylic plastic sheet. Six of these openings which varied in open cross sectional area by a factor of approximately 16, varied in flow length by a factor of 3 1/2 and opening height were selected. There were two geometries which had two crack specimens each which were used as replicates. The specifications for the openings are given in Table 4.4.

Building Component Wall Sections

A number of building components and wall penetrations were tested in 2.44x2.44m wall sections (Table 4.5). A separate 2x4 wood frame wall was constructed for each type component tested (with exception of things which could be changed without disturbing the wall such as outlet or switch gaskets). Typical single bottom plate, double top plate, 400mm (16") O.C. 50x100mm (2X4") SYP (southern yellow pine) stud walls were constructed by a summer student worker with supervision given by a carpenter. The side representing the interior wall surface was covered with 13mm gypsum board drywall which was tapped and mudded. The exterior side was covered with 13mm foil backed polyisosynurate insulating board fastened with 32mm drywall nails approximately every 150mm on the edges and 200mm on the interior. No vapor barrier was installed. Several components such as premium awning, premium double hung, economy double hung, premium casement, economy casement, copper pipes and electric outlets and switches were installed in wall sections made like the base wall. Six outlets/switches were installed on one wall with each plastic switch box in an individual wall cavity between the studs. Wire penetrations went through the top plate. (Airflow through penetrations in the top and bottom plates was not blocked by the experimental apparatus and was exposed to the same pressures as the "exterior" side of the wall.) There were no wire holes between the vertical studs. 1/2" copper water pipe was used in the 1" holes in the bottom plate between each stud space to represent water pipe penetrations. A list of the components tested is given in Table 4.5. Several different types of windows were tested. For each test case two windows from the same manufacturer of the same type, style and size were installed in a wall section constructed like Case A. The values presented are for the entire test section unless otherwise indicated.

Figure 4.2.3 A typical rectangular crack (opening)

Crack	Section Area	d	Z	w
Α	400	0.8	25.4	500.1
B1, B2	850	1.7	50.8	500.1
E	3145	6.3	88.9	499.3
F1, F2	6431	12.9	50.8	498.5
(Unit)	(mm²)	(mm)	(mm)	(mm)

Table 4.4 Crack Geometry Specifications

Table 4.5 List of the Building Components Tested

CO-1	Exterior Frame: Gypsum Board (Base Case A - no penetrations)
CO-2	Exterior Frame: Insulating Board (Base Case B - no penetrations)
CO-3	Wall Penetration: 6 Outlets with No Wire Holes in Studs, or Top and Bottom Plates
CO-4	Wall Penetration: 6 Outlets with Gaskets and No Wire Holes
CO-5	Wall Penetration: 6 Outlets, Wire Holes in Top Plate
CO-6	Wall Penetration: 6 Outlets, Top Wire Holes Sealed
CO-7	Wall Penetration: 6 Outlets with Gaskets, Top Plate Wire Holes Not Sealed
CO-8	Wall Penetration: 6 Outlets with Gaskets, Top Plate Wire Holes Sealed
CO-9	Wall Penetration: 6 Copper Water Lines through Bottom Plate
CO-10	Wall Penetration: 6 Switches, Wire Holes in Top Plate
CO-11	Wall Penetration: 6 Switches, Top Plate Wire Holes Sealed
CO-12	Wall Penetration: 6 Switches with Gaskets, Top Plate Wire Holes Sealed
CO-13	Wall Penetration: 6 Switches with Gaskets, Top Plate Wire Holes Not Sealed
CO-14	2 Premium Awning windows installed in Base Case Wall
CO-15	2 Premium Double Hung windows installed in Base Case Wall
CO-16	2 Economy Double Hung windows installed in Base Case Wall
CO-17	2 Premium Casement windows installed in Base Case Wall
CO-18	2 Economy Casement windows installed in Base Case Wall

Specimen Differential Pressure Measurement

The differential pressure across a test specimen was measured using the same equipment as the differential pressure across the nozzles with the exception that the full scale range of the transducer was 65Pa for low range and 625Pa for high pressure measurements.

4.2.2.2 Experimental Design

To verify and validate the proposed equation, several applications of the same experiment were run. This involved obtaining data for flow versus differential pressure

across an opening(s) for several points between 5 and 125 Pa. A description of the experiment and the application of this experimental procedure to the test cases will be presented.

Experimental Procedure

Each experiment involved placing an opening(s) in the specimen holder (for the case of the well defined cracks) or a wall section (in the case of building components) in the test apparatus and tightening the sandwich of plenum/specimen holder/air shield with pipe clamps. The seals around the joints were checked for leakage.

The fan would then be adjusted to produce at least 125 Pa across the specimen. Nozzles in the airflow chamber would then be opened or closed (and speed readjusted) to obtain the smallest nozzle which would allow the fan capacity to create sufficient airflow to provide the necessary 125 Pa. This procedure was done in an attempt to provide maximum resolution of airflow measurement.

Data would then be taken on the room air conditions (barometric pressure, dry bulb temperature, relative humidity) and transducers (S/N's and offset voltage with no pressure differential) being used. The wet bulb temperature used in the calculation of air density was obtained from a psychrometric program used in teaching the undergraduate environmental design classes.

The fan speed would then be adjusted to create a differential pressure of 5Pa across the specimen. After approximately 30 seconds, if the pressure had stabilized, a pressure reading across the nozzle would be initiated (ie. the RMS averaging function on the voltmeter turned on). The voltmeter would integrate the voltage signal coming in and output a time running average of the signal. The differential pressure across the nozzle would thus be averaged for approximately 30 seconds before the reading was recorded. (This averaging was necessary because there was a small, low frequency [approximately 0.5-1.0 hz as determined from a digital spectrum analyzer] signal that was superimposed on the transducer signal. It was concluded that this signal was coming from changes in the internal pressures of the airflow chamber due to the diaphragm action of the chamber walls moving very slightly. This conclusion was reached by noting the frequency of the movement of the walls.) The actual pressure readings across the test specimen and the static pressure on the upstream side of the nozzles would be taken during the time the nozzle pressure reading was being averaged. (The specimen pressures were stable and did not require any time averaging.) This process was repeated for each pressure/flow data point taken.

The actual pressure readings (± 0.25 Pa) across the test specimen and nozzle were thus taken for pressures from 5 to 125 Pa in nominal increments of 5 Pa.

The temperature, relative humidity and barometric pressure readings taken at the beginning of the test were retaken at the conclusion of each test. The starting and ending conditions were then averaged (if the temperature had changed) to estimate the air state points. No test was accepted unless the entire pressure range could be completed at one time.

A series of tests was initially run to determine if there was any hysteresis in the system. No significant differences were found in the readings if the order of pressures was increasing from 5 to 125 or if the data were collected with the setpoint pressures decreasing from 125 to 5. Therefore the tests only used the pressure increasing from 5 to 125 with increments of 5 Pa. Only the data between 5 and 75 Pa were used in the data analysis for this project since this is the range commonly used with blower door testing. A comparison of analysis techniques using the range of data collected as one of the parameters to be investigated is being planned for future work. The wide data range was collected for use in that project.

Experiments Performed

Four groups of tests were run using this method. They will be referred to as: individual openings, parallel, series and component openings. An identification of the cracks used for the various experiments and the experiment ID codes are presented in Appendix F.

Individual Openings

The purpose of this test was to obtain pressure-flow data on the well defined, simple geometry, straight-through cracks previously described (Table 4.1) when they were mounted in the specimen holder. The openings and flow covered a range of openings sizes and flow ranging from laminar to turbulent flow. There were two geometries which had two "identical" cracks each for replication purposes. Thus there were four different geometries tested.

An additional feature was added by testing the effects of mounting location on each of the four geometries. They were first tested mounted on the inner layer of the specimen holder (with only the mounting plate on the outer layer) and then mounted on the outer layer (with only the mounting plate on the inner layer). When there were no cracks installed on the outer layer there were two large openings ($\approx 100X520$ mm) for placement of the cracks in the mounting plate; thus it was possible for this plate to have some effect on the flow. The same is true for when the cracks were mounted on the outer plate with no cracks mounted on the inner plate.

Each test had three replications. The order of testing for the individual, parallel and series openings was determined from a random number table. If two tests of the same opening were in order, the crack was taken out and remounted.

Parallel Openings

The purpose of this test was to obtain the pressure-flow data on the well defined cracks when the air would be going through them in parallel. This would be a test to see how the flow coefficients for individual cracks would combine when there were multiple openings such as the case when there are many different components acting independently to the total static pressure which is applied to all surfaces in whole house testing.

The combination of cracks chosen for testing is presented in Appendix F. These combinations included pairs of "identical" cracks to see if the predicted area coefficient, C₁, doubled; and all possible combinations of the remaining geometries. Three replications were run on each test.

Series Openings

The purpose of this test was to obtain the pressure-flow data on the well-defined cracks when the air would be going through them in series. This would be a check to see how the coefficients would combine when the air would be flowing through multiple restrictions. An example would be the case when the air goes into the electrical outlet, through the box, up the cavity space and then out the hole in the top plate cut for the electrical wire.

The combinations used in this series of tests was to place the largest opening at the inner mounting position and then place all the other geometries individually on the outer plate. This would simulate air flowing through a large hole first and then smaller holes. Tests were also made on the reverse placement (large on outside and smaller on inside). Three replications were made of each test.

Building Components

The purpose of this test was to determine the flow coefficients for some typical building components ranging in quality from construction/economy grade units used in lower cost construction to premium grade, high quality units. In addition to the previous differences determined for the other groups of tests, there were additional differences to be investigated:

- a) Could any physical difference be shown by the coefficients (eg. Is the flow through one large leak or many small ones?), and
- b) Was there a general trend in the coefficients among the components?

A list of the building components tested was presented in Table 4.5. Tests were conducted on blank frame walls, a series of combinations of electrical outlets/switches and openings for the wire, and various types and quality of commercially available residential windows.

The building component tests were not completely randomized. All tests on a wall section that did not require sealing were run before caulking was applied to the openings. Sealing was done with high quality silicone caulk.

4.2.2.3 Experimental Data Analysis

4.2.2.3.1 Overall system and chamber background leaks correction

The measurement system was carefully sealed to prevent air leakage however calibration tests indicated that some air leakage existed in the system. The "overall system background leak" refers to the air leaks from the wooden collection chamber as well as from the frame holding the well-defined cracks. This term is only associated with testing the well-defined cracks.

The term "chamber background leak" refers to the leakage from the wooden collection chamber only, without including the leakage from the frame which holds the cracks. The chamber background leak is only for component testing.

Two leakage correction equations were used to deduct the air leakage from the data sets of flow measurements for well-defined cracks and building components individually. This correction procedure was included in the pressurization data of Appendices G-J. See the "Flow Rate" columns in the tables in Appendices G-J. The data in the replication column are the uncorrected values. The "System Leak" or the "Chamber Leak" refers to the "overall system background leak" or the "chamber background leak" respectively. The "Corrected Mean" values were obtained by subtracting the leak terms from the average values of the uncorrected three replications. Thus the "Corrected Mean" values are the actual flows entering the specimen being tested.

4.2.2.3.2 Nozzle chamber corrections

There were two problems in the air flow measuring system. The first was the Reynolds number test range for flow through the nozzles. Since the system was based on ANSI/ASHRAE Standard 51-1985, the Re through the nozzle should be greater than 12,000 for the minimum flow as a criteria in this Standard. (The formula used to calculate the discharge coefficient, Cd, was for Re greater than 12,000.) However due to low flow rates at the lower pressures, some of the measurements always occurred below the minimum Re specified even for the smallest nozzle (1/2"). To find a calibration method, the Cd curve produced by the equation given in the Standard with β =0 (β is the ratio of the nozzle exit diameter to the approach duct diameter) at lower Reynolds numbers was compared with another Cd curve with β =0.2 (ASME 1959). This was applicable for a Reynolds number range of 2500 to 12,000. It was found that these two curves are very close in the Re range of 2500 to 12,000 as shown in Figure 4.2.6. Therefore the error introduced by extending the previous curve to the lower Reynolds number range is not very significant (about 2% difference at most) compared to the second problem.

Cd Curve for Wide Re Range

Figure 4.2.4. Comparison of Nozzle Discharge Coefficient Variation over Wide Re Range

Note: Extrapolating the Cd curve (for chamber β =0) for Re>12000 range into lower Re range (Re<12000) would not introduce significant error since it is very close to another Cd curve with β =0.2 which is applicable over the lower Re range.

The second problem involved leaks in and through the metal nozzle chamber. A group of rotameters (Dwyer RMC-102&103, +-2% accuracy) was used to check the flow rate of the nozzle chamber outlet. There were significant differences between the nozzle readings and the rotameter readings especially for the smaller nozzles. The problem was later found to be caused by two leaks in the nozzle chamber. One was an "external leak", denoted $Q_{\rm el}$, which occurred at the corners of the chamber where an airtight seal had not been produced. The second one called the "internal leak", denoted $Q_{\rm il}$, was caused by leakage through the foam plugs which were used to seal the nozzles not being used and by leakage through a defect in a weld in the metal chamber. Thus the data previously obtained could not be used until the error from the flow through these leaks could be determined and taken into account.

It was assumed that these two leaks could be modeled by the power law, which led us to use pressurization tests on the two openings individually. Figure 4.2.5 contains data used in the calibration of these two leaks. The external leak, $Q_{\rm el}$, is a function of the pressure difference, $P_{\rm el}$, between the chamber on the downstream side of the nozzle and the room pressure. The expression to represent this leakage is:

$$Q_{el} = 0.6314 * P_{el}^{0.6445}$$

with r^2 = 0.9593 and C.V. = 6.2796% (Q unit is cfm, P unit is in.wg). The internal leak Q_{il} , is a function of pressure drop, P_{n} , across the testing nozzle plane. This leakage was represented by the relationship:

$$Q_{ii} = 15.782 * P_n^{0.8734}$$

with $r^2 = 0.9935$ and C.V. = 3.789%.

The relationship between the uncorrected nozzle flow, Q_n , rotameter flow, Q_r , (which is the actual flow amount entering the air plenum) and the "external" and "internal" leaks Q_i and Q_{el} is:

$$Q_r - Q_n|_{\Delta P_{nozzle}} + Q_{il}|_{\Delta P_{nozzle}} - Q_{el}|_{\Delta P_{el}}$$

These two leaks should be individually included in data corrections according to the referred pressure drop. All the pressurization flow data in Appendices G-J have been corrected for these two leaks.

Figure 4.2.5 External and internal leak calibrations of the nozzle flow measuring chamber

4.2.2.3.3 Statistical Techniques

The data collected were fit to the theoretical nonlinear model:

Q -
$$C_1 \left[\sqrt{C_2^2 + C_3 \cdot \Delta P} - C_2 \right]$$
 [4.3]

where:

$$C_1 = A$$
 m^2
 $C_2 = BZv/2KD_h^2$ m/s
 $C_3 = 2/K\rho$ m^3/kg

Each coefficient has a clear physical meaning in the model. The C_1 is the equivalent sectional area, C_2 is a constant involving geometry and minor loss K, and C_3 is proportional to the inverse of K, which may be thought as a friction indicator.

The flow, Q, and the pressure drop, ΔP , were used as the dependent and independent variables respectively to statistically determine the three coefficients. It is obvious that these three coefficients (parameters) have a nonlinear relationship.

The statistical technique used to solve the nonlinear regression was the SAS NLIN method (SAS 1985, section of NLIN) with the Marquardt option. This option was chosen because it is one which appears to work well in many circumstances and was a practical choice (Draper and Smith 1966, pp. 263-273; SAS 1985, section of NLIN). In this nonlinear regression package, the grid ranges for the relevant parameters need to be provided. The grid for C_2 was set from 0 to 10 by a step of 0.2, and C_3 from 0.6 to 1.7 by a step of 0.05. Different ranges and steps were tested. The results produced after these changes insignificantly different. This indicated that once the dependency problem was solved, the results were unique. Discussion about the dependency problem is contained in the Results section. A similar technique was used to determine the constants C_1 and C_3 for the building component testing.

CHAPTER 5 - RESULTS / DISCUSSION / CONCLUSIONS

5.1 LITERATURE DATABASE

The data from the literature were grouped by components and the effective leakage area for each citation was calculated as described in Section 4.1 at 4 Pa using a discharge coefficient of 1.0. The ela data and supporting material for each citation are contained in Appendix B. (A general shorthand notation throughout the project was used to identify the components and if there was weatherstripping applied. A "W" as the last letter in the component label indicates the presence of weatherstripping and "NW" indicates no weatherstripping.)

The minimum, maximum and best estimate ela values were determined for each component. A summary of the data is contained in Table 5-1. There was considerable variation in the units which were used to provide the basis for the flow or areas reported (eg. cm² per: house, each unit, meter of sash, meter of crack, m² of component area). Conversions between these units were not attempted unless there was sufficient information given in the reference to make a conversion. In general the units used in the summary were those used by the majority of the data sources.

The best estimate selected from the data was a weighted estimate based upon the number of samples, the age of the data, the "quality" of data (a "best estimate" versus a measured value), and if independent sources predicted similar values. There was somewhat of a problem in determining the best estimate for some of the components since there was considerable overlap of the sources with no independent replication. For several of the cases the "best estimate" was taken as that assumed by the original source.

The best estimate for cases in which there were values given before and after sealing (eg. chimney) was assumed to be an average of multiple replications of the differences and/or direct measurements.

Also contained in Table 5-1 are the values in the 1989 ASHRAE *Handbook* - *Fundamentals* Chapter 23 Table 3 Effective Leakage Area of Building Components also calculated at a reference pressure of 4 Pa. The new table greatly expands the table in the HOF. There is considerable similarity between the best estimate values selected from the two sources. The selection of the best estimate values to report were made without observation of the values contained in the ASHRAE *Handbook* - *Fundamentals* and thus were Independent of those numbers. The similarity of the two sets of data is indicative of the use of the same data and in many cases the data were identical. It should be noted that although many entries in the table are unchanged, they have been rigorously reviewed and checked for quality and consistency.

One of the most significant differences is in the data for windows. This is due to the units used as a basis for the ela. A major project to investigate the air leakage of installed windows was done by Weidt et al (1979). The variation of the

performance of a number of windows was demonstrated based upon the air leakage. Large shifts in relative performance of different types of windows was identified based on which expression of leakage was used. The air leakage rates were calculated using three different ways: per linear foot of crack, per square foot of window sash area, and per square foot of ventilating area. Since standards and specifications are based on a per linear measure of crack calculation this unit was the basis used for this project. Exceptions to this are the cases of the awning windows and window framing in which there was insufficient information to determine the leakage based upon a length of crack.

It was initially anticipated that there would be some differences that could be identified between the different methods of reporting air leakage, the reference pressures and discharge coefficients selected for the testing and the different testing methods. No significant differences could be detected due to the scatter and insufficient number of data. While this scatter may be due to the anticipated differences in testing and reporting, the results of the round robin testing of the fan pressurization devices suggests that the errors in the devices introduce similar or greater errors.

It should be noted that although the number of different building components listed in the table is greater than previously identified, there are still gaps in the data for some groupings of components which need estimates (or better estimates) of leakage values. There are currently several significant projects underway to obtain the leakage of ductwork. Since these data were not available, they were not included in this report. Other components which need data (or better additional data) include: building construction joints (joints of dissimilar materials like masonry and wood or insulating board and wood; sole plate/baseboard; band joists; building corner joints; butt joints of sheathing, etc), window and door framing in masonry and wood wall construction, and the combined effects of air infiltration barriers and vapor retarders.

TABLE 5-1 Summary of Effective Leakage Areas from Literature (cm2 at 4 Pa, Cd=1)

	Units	RP - 438		9	Chapter 2			
		Best	Minimum I	Maximum	Best	Minimum	Maximum	
		Estimate			Estimate			if D'''
CG Ceiling - General	cm2/m2	1.8	0.79	2.8				Different
CG Ceiling - Drop	cm2/m2	0.19	0.046	0.19				
CH Chimney	cm2/ea	29	21	36				
CP Ceiling Pentrations - whole house fans	cm2/ea	20	1.6	21				
CP Ceiling Pentrations - recessed lights	cm2/ea	10	1.5	21	10	10	20	
CP Ceiling Penetrations - ceiling/flue vent	cm2/ea	31	28	31				
CP Ceiling Penetrations - surface mounted lights	cm2/ea	0.82						
CS Crawl Space	cm2/m2 cm2/ea	10 129	8	17				
CS Crawl Space - 8x16" vents DACW Doors - Attic/Crawl Space - NonWS	cm2/ea	30	10	37	30	10	30	
DACW Doors - Attic/Crawl Space - WS	cm2/ea	18	8	18.5	18	8	18	
DAFDW Door - Attic Fold Down - NonWS	cm2/ea	44	23	86	100	7.55	10.00	
DAFDW Door - Attic Fold Down - WS	cm2/ea	22	14	43				
DAFDW Door - Attic Fold Down - w insulated box	cm2/ea	4						
DAG Doors - Attic from Garage - unconditioned space		0	0	0				
DD Doors - Double - Not Weatherstripped	cm2/m2	11	7	22	11	7	22	
DD Doors - Double - Weatherstripped	cm2/m2	8	3	23	8	3	15	
DE Doors - Elevator (passenger)	cm2/ea	0.26	0.14 2.4	0.35 25				
DFRAME Door Frame - General DFRAME Door Frame - Masonry - Not Caulked	cm2/ea cm2/m2	12 5	1.7	5	5	1.7	5	
DFRAME Door Frame - Masonry - Caulked	cm2/m2	1	0.3	1	1	0.3	1	
DFRAME Door Frame - Wood - Not Caulked	cm2/m2	1.7	0.6	1.7	1.7	0.6	1.7	
DFRAME Door Frame - Wood - Caulked	cm2/m2	0.3	0.1	0.3	0.3	0.1	0.3	
DFRAME Door Frame - trim	cm2/m	1						
DEPAME Door Frame - jamb	cm2/m	Ď	7	10				
DFRAME Door Frame - threshold	cm2/m	2	1.2	24				
DG Doors - General - average	cm2/lmc	0.31	0.23	0.45				
DIP Doors - Interior (Pocket) (on top floor)	cm2/ea	14	0.05					
DIS Doors - Interior (Stairs)	cm2/m	0.9	0.25	1.5				
DMS Doors - Mall Slot DSP Doors - Sliding Exterior Glass Patio	cm2/m cm2/ea	22	3	60				
DSP Doors - Sliding Exterior Glass Patio	cm2/m2	5.5	0.6	15				
DSTM Doors - Storm (difference between with/without)		6	3	6.2				
DS Doors - Single - Not Weatherstripped	cm2/ea	21	12	53	11	6	17	cm2/m2
DS Doors - Single - Weatherstripped	cm2/ea	12	4	27	8	3	15	cm2/m2
DV Doors - Vestibule (subtract per each location)	cm2/ea	10						
ESO Electrical Outlets/Switches (No gaskets)	cm2/ea	2.5	0.5	6.2	0.5	0	1	
ESO Electrical Outlets/Switches (w gaskets)	cm2/ea	0.15	0.08	3.5	0	0	0	
F Furnace - Sealed (or no) combustion F Furnace - Retention head or stack damper	cm2/ea	30	20	0 30	0 30	0 20	30	
F Furnace - Retention head & stack damper	cm2/ea cm2/ea	24	18	30	24	18	30	
FLCS Floors over Crawl Spaces	cm2/m2	2.2	0.4	4.9				
FLCS Fis over CS w/o ductwork in C.S.	cm2/m2	1.98	551	202				
FLCS Fls over CS with ductwork in C.S.	cm2/m2	2.25						
FWDOC Fireplace W Damper Closed	cm2/m2	43	10	92	69	54	84	
FWDOC Fireplace W Damper Open	cm2/m2	350	145	380	350	320	380	
FWG Fireplace W Glass Doors	cm2/m2	40	4	40	200	1222	823	
FWIDOC Fireplace w Insert & Damper Closed	cm2/m2	36	26	46	36	26	46	
FWIDOC Fireplace w Insert & Damper Open	cm2/m2	65	40	90	65	40	90 25	
GWH Gas Water Heater JCW Joints: Ceiling-Wall	cm2/ea cm2/m	20 1.5	15 0.16	25 2.5	20 1.5	15 0.5	2.5	
JSP Joints: Sole Plate, floor/wall - uncaulked	cm2/m	4	0.38	5.6	4	1	4	
JSP Joints: Sole Plate, floor/wall - caulked	cm2/m	0.8	0.075	1.2	0.8	0.4	1.2	
JTPO Joints: Top Plate - Band Joist	cm2/m	0.1	0.075	0.38				
PPWP Piping/Plb/Wiring Penetrations uncaulked	cm2/ea	6	2	24	6	2	10	
PPWP P/Plumbing/Wiring Penetrations caulked	cm2/ea	2	1	2	1	0	2	
VBWDC Vents: Bathrm W Damper Closed	cm2/ea	10	2.5	20	11	10	12	
VBWDO Vents: Bathrm W Damper Open	cm2/ea	20	6.1	22	20	18	22	
VDWD Vents: Dryer With Damper	cm2/ea	3	2.9	7	3	0	6	
VDWOD Vents: Dryer Without Damper	cm2/ea	15	12	34	20	20	40	4
VKWDC Vents: Kitchen With Damper Closed	cm2/ea cm2/ea	40 5	14 1	72 7	39 5	36 3	42 7	
VKWDC Vents: Kitchen With Damper Closed VKWDO Vents: Kitchen With Tight Gasket	cm2/ea cm2/ea	1		500	ə	3	,	
WAEX Wall: Exterior	Jingoa							
Cast in Place Concrete	cm2/m2	0.5	0.049	1.8				
L W Concrete Block - unfinished	cm2/m2	3.5	1.3	4				
LW Concrete Block - painted or stucco	cm2/m2	1.1	0.52	1.1				
H W Concrete Block - unfinished	cm2/m2	0.25						
Continuous Air Infiltration Barrier	cm2/m2	0.15	0.055	0.21				
Rigid Sheathing	cm2/m2	0.35	0.29	0.41				

TABLE 5-1 Summary of Effective Leakage Areas from Literature (cm2 at 4 Pa, Cd=1)

	Units	RP - 438			Chapter 2	23 - Table 3	1989 HOF		
		Best Estimate	Minimum	Maximum	Best Estimate	Minimum	Maximum	Units if Different	
Clay Brick cavity wall - finished	cm2/m2	0.68	0.05	2.3				Dilletetit	
Precast Concrete Panel	cm2/m2	1.2	0.28	1.65					
WIANW Window: Awning NotWS	cm2/m2	1.6	0.8	2.4	1.6	8.0	2.4		
WIAW Window: Awning w weatherstripping	cm2/m2	0.8	0.4	1.2	0.8	0.4	1.2		
WICW Windows: Casement w weatherstripping	cm2/lmc	0.24	0.1	3	0.8	0.4		cm2/m2	
WICW Windows: Casement w/o ws	cm2/lmc	0.28			1.6	0.8		cm2/m2	
WIDHSW Windows: Double Horiz Slider w/o ws	cm2/lmc	1.1	0.019	3.4	5.2	2.8	7.6	cm2/m2	
WIDHSW Windows: Dbl Hor Sldr - wood w w/s	cm2/lmc	0.55	0.15	1.72	2.6	3.8			
WIDHSW Windows: Dbl Hor Sldr - al w w/s	cm2/lmc	0.72	0.58	0.8					
WIDHW Windows: Double Hung w/o ws	cm2/lmc	2.5	0.86	6.1	6	3.2	8.8	cm2/m2	
WIDHW Windows: Double Hung w ws	cm2/lmc	0.65	0.2	1.9	3	1.6	4.4	cm2/m2	
WIDHW Wdows: Dbl Hung w/o ws, w storm	cm2/lmc	0.97	0.48	1.7					
WIDHW Wdows: Dbl Hung w ws, w storm	cm2/lmc	0.79	0.44	1					
WIDHW Wdows: Dbl Hung w ws, w pressurized trackst	cm2/lmc	0.48	0.39	0.56					
WIFM Windows: Framing - Masonary - uncaulked	cm2/m2	6.5	5.7	10.3	6.5	5.7	10.3	150	
WIFM Windows: Framing - Masonary - caulked	cm2/m2	1.3	1.1	2.1	1.3	1.1	2.1		
WIFW Windows: Framing - Wood - uncaulked	cm2/m2	1.7	1.5	2.7	1.7	1.5	2.7		
WIFW Windows: Framing - Wood - caulked	cm2/m2	0.3	0.3	0.5	0.3	0.3	0.5		
WIJ Windows: Jalousie	cm2/louvre	3.38							
WIL Windows: Lumped	cm2/lms	0.471	0.009	2.06					
WISHSW Windows: Single Horizontal Slider	cm2/lms	0.67	0.2	2.06	1.8	0.9	2.7	cm2/m2	
WISHSW Windows: Single Horizontal Slider w/o ws					3.6	1.8	5.4	cm2/m2	
WISHSW Windows: Single Hor Slider - aluminum	cm2/lms	0.8	0.27	2.06					
WISHSW Windows: Single Hor Sldr - wood	cm2/lms	0.44	0.27	0.99					
WISHSW Windows: Single Hor Sldr - wood clad	cm2/lms	0.64	0.54	0.81					
WISHW Windows: Single Hung - WS	cm2/lms	0.87	0.62	1.24	2.2	1.8	2.9	cm2/m2	
WISHW Windows: Single Hung - non ws					4.4	3.6	5.8	cm2/m2	
WISILL Windows: Sill	cm2/lmc	0.21	0.139	0.212					
WIST Windows: Storm Inside - heat shrink	cm2/lms	0.018	0.009	0.018					
WIST Windows: Storm Inside - rigid w magnetic seals	cm2/lms	0.12	0.018	0.24					
WIST Windows: Storm Inside - flex sheets w mech seals	cm2/lms	0.154	0.018	0.833					
WIST Windows: Storm Inside - rigid w mechanical seals	cm2/lms	0.4	0.045	0.833					
WISTM Windows - Storm Outside (Storm only)									
WISTM Windows - Storm Outside - pressurized track	cm2/lmc	0.528	+:						
WISTM Windows - Storm Outside 2 track	cm2/lmc	1.23							
WISTM Windows - Storm Outside - 3 track	cm2/lmc	2.46							

NOTE: Units are cm2 per

m2 = square meters of surface area lmc = lineal meter of crack lms = lineal meter of sash m = lineal meter

5.2 DETERMINATION OF INDEPENDENT C₁, C₂ AND C₃ PARAMETERS

Initially the statistical technique attempted was to make a direct nonlinear regression based on equation [4.3]. The three-parameter nonlinear regression results showed that the estimated constants were not stable as different grids (and therefore search starting points) were selected. In addition, the standard error for one of the parameters always went to zero. This numerical instability indicated that the direct three-parameter regression was over parameterized. When the model was mathematically analyzed further it was recognized that the constants are not independent of each other and actually only two independent parameters existed as in the following form:

$$Q = \sqrt{(C_1C_2)^2 + C_1^2C_3 \Delta P} - C_1C_2$$
 5.1

Thus there was a problem in attempting to determine the values for C_1 , C_2 and C_3 when there were only two independent parameters.

For well-defined cracks the section area of the crack is known. If the area is treated as an input, the model in the form [4.3] will automatically be reduced to a two-parameter non-linear regression model. When this was done for the well-defined cracks the resulting values of C_2 and C_3 were very stable. This is a significant improvement over a previous approach which needed the assumption of K=1.5 (Chastain et al.1987).

The original desire was to apply the model to openings in real building components with unknown crack geometries. None of the three parameters would be known in this case. Therefore a relationship was needed to find one of the three coefficients either theoretically or numerically. It was found that the theoretical relationship(s) derived from equation [4.3] are dependent on the equation and therefore the dependency problem could not be solved.

Thus an attempt was made to determine a numerical relationship between the parameters.

The power equation is presently the most common expression used to represent the Q- Δ P curve. It is also independent of the KY model since it is not theoretically based. Therefore it is a good reference to numerically relate the constants in the new model. The relationship of C₂ in the KY model and the n in the power model were investigated.

For the KY model case:

The model is defined by Eqn 4.3

$$Q - C_1[(C_2^2 + C_3\Delta P)^{0.5} - C_2]$$

where:

$$C_1 = A$$
 m^2
 $C_2 = BZv/2KD_h$ m/s
 $C_3 = 2/K\rho$ m^3/kg

When $C_2 = 0$ (i.e. flow length, Z = 0), the equation reduces to:

$$Q - C_1 \sqrt{C_3 \Delta P}$$

and therefore $Q \propto \sqrt{\Delta P}$.

The first derivative, $dQ/d\Delta P$ for the model is given by:

$$\frac{dQ}{d\Delta P} = \frac{C_1 C_3}{2\sqrt{C_2^2 + C_3 \Delta P}}$$
5.2

Figure 5.1 illustrates a typical plot of $dQ/d\Delta P$ vs. ΔP . When C_2 is increasing, the derivative term, $dQ/d\Delta P$, is approaching a constant. When C_2 increases to a large number, say $C_2 > 10$ m/s in this plot, it can be assumed that the derivative $dQ/d\Delta P$ will not significantly change with ΔP . This means that the slope of Q vs. ΔP is approaching to a constant, that is,

When
$$C_2^2 > C_3 \Delta P$$
, $\frac{dQ}{d\Delta P} \sim constant$.: $Q \propto \Delta P$

For the power model case:

When n=0.5, Q=C
$$\sqrt{\Delta P}$$
 Q $\propto \sqrt{\Delta P}$

When n-1, Q-C
$$\Delta$$
P, Q \propto Δ P

Comparing these two model cases suggests that the function of n in the power model plays a similar role as C_2 in the new model. This observation implies that there may be a numerical relationship between the C_2 and n.

Using data from well-defined cracks enabled the establishment of this

calibration relationship since the sectional area of crack, C_1 , was known and stable C_2 and C_3 values could be obtained by the two-parameter regression. Meanwhile the power model was also applied to fit the Q- ΔP data from the same well-defined cracks to produce the corresponding C and n. Figure 5.2 is the plot of C_2 vs. n for 19 well-defined cracks. This demonstrates a strong linear correlation between C_2 and n represented by:

 $C_2 - 11.85(n-0.5)$

5.3

dQ/dP vs. P when C2 increases

Figure 5.1 dQ/dΔP vs. ΔP relationship in the KY model

C2 vs. n plot for the same cracks

Figure 5.2 C2 in the KY model vs. n in the power model

It is recognized that an assumption is needed in order to apply this numerical relationship to real building components. It is assumed that there is no significant difference in the Q- ΔP relationship between the well-defined cracks and building components. This assumption had been recognized and used in previous research (Hopkins and Hansford 1974, Etheridge 1977 and Chastain et al.1987).

It is now easy to apply the model to evaluate the leakage performance of real building components. In summary, the following are the procedures for well-defined cracks and building components respectively:

For well-defined cracks:

Input the known crack sectional area C_1 into the model equation [4.3] to obtain the other two constants C_2 and C_3 by a two-parameter nonlinear regression.

For building components:

- 1) Obtain the regression exponent n based on the power model.
- Calculate the C₂ from the numerical relation of equation 5.3.
- Substitute the C_2 value into the new model [4.3] to obtain the other two constants C_1 and C_3 by a two-parameter nonlinear regression.

To determine the two estimated parameters, the least squares concept is still used. The error sum of squares, $\Phi(C_2, C_3)$ or $\Phi(C_1, C_3)$ for the nonlinear model and the given data is:

$$\phi(C_2,C_3) = \sum_{K=1}^{m} \left[Q_K - C_1 (\sqrt{C_2^2 + C_3 \Delta P_K} - C_2) \right]^2$$

$$\phi(C_1,C_3) = \sum_{K=1}^{m} \left[Q_K - C_1 (\sqrt{C_2^2 + C_3 \Delta P_K} - C_2) \right]^2$$

Where $(Q_K, \Delta P_K)$ is a group of m observations and $1 \le K \le m$. The parameter with " \cap " means that the parameter is known.

For example, take the equation of $\Phi(C_2,C_3)$ to obtain the least squares estimates of C_2 and C_3 . We need to differentiate this equation with respect to C_2 and C_3 respectively. This procedure provides a system of equations with two independent equations and two unknown parameters to be estimated. The equation for $\Phi(C_1,C_3)$ can be handled in a similar way. Finding the estimates by solving the system of equations is very complicated and iterative methods must be employed. There are several methods available for obtaining the parameters by routine computer

calculations. The Marquardt's method is one which appears to work well in many circumstances thus it is a practical choice (Draper and Smith 1966, pp. 263-273). The detailed information about the detail of solving the system of equations involving the Marquardt iterative methods can be found in Draper and Smith (1966). Commercial computer software is also available to solve nonlinear regressions. The SAS NLIN programs are very powerful in handling nonlinear regression (SAS 1985). This program was chosen with the Marquardt's method option to estimate the two parameters in this study.

All iterative procedures require initial values of the parameters to be selected. Applying different grids in these cases should not significantly impact the results. It is also clear from their physical meanings that $C_1>0$, $C_2>0$ and $C_3>0$. Hence these constants are set to be semi-free-positive coefficients to be determined by the regression.

From the regression of a specified Q- ΔP data set for building components, the three coefficients C_1 , C_2 and C_3 are then obtained. If the air density value in the test is known, the K value can be calculated from C_3 directly. The $B \cdot Z/(Re \cdot D_h)$ vs. $\Delta P/(\frac{1}{2}\rho \ V^2)$ relationship can also be determined by using the original Q- ΔP data set and the corresponding regression results of C_1 , C_2 and C_3 , i.e.

$$\frac{BZ}{\text{ReD}_h} = \frac{BZ}{\left(\frac{\overline{V}D_h}{\nu}\right)D_h} = \frac{\frac{BZ\nu}{D_h^2}}{\frac{Q}{A}} = \frac{A\frac{BZ\nu}{2KD_h^2}}{\frac{2}{k\rho}} \frac{4}{\rho Q} = \frac{C_1C_2}{C_3} \frac{4}{\rho Q}$$

$$\frac{\Delta P}{\frac{1}{2} \rho \overline{V}^2} = \frac{2 \Delta P}{\rho (\frac{Q}{A})^2} = A^2 \frac{2 \Delta P}{\rho Q^2} = C_1^2 \frac{2 \Delta P}{\rho Q^2}$$

This means each $\Delta P/(\frac{N}{2}\rho\ \overline{V}^2)$ value and the corresponding B·Z/(Re·D_h) value can be obtained directly from the Q- ΔP data set using the calculation and regression products C₁, C₂ and C₃. In this technique, no assumption has to be made about the dimensions of the crack in order to get B·Z/(Re·D_h) and $\Delta P/(\frac{N}{2}\rho\ \overline{V}^2)$ values. This is a significant improvement over the previous methods of Etheridge (1977) and Chastain et.al (1987).

5.3 FIT OF NEW EQUATION

5.3.1 Measure of Goodness-of-Fit

When a new model is proposed, it is essential to quantify how good it fits measured data. The power model is based on a linear regression of a log-transform of the Q- Δ P data. The KY model is derived from the nonlinear Q- Δ P relationship. Therefore a common measure should be chosen to judge their statistical performance.

Often the success of the analytical exercise depends on the proper choice of the quantitative criteria used to determine the quality of the fitted model. The coefficient of determination, R², is a commonly used measure; however it is often used improperly and is frequently misunderstood as a measure of the fit of the regression line (Raymond 1990). By definition,

$$R^{2} = \frac{SS_{Reg}}{SS_{Total}} = \frac{\sum_{i=1}^{n} (\hat{y}_{i} - \overline{y})^{2}}{\sum_{i=1}^{n} (y_{i} - \overline{y})^{2}} = 1 - \frac{SS_{Res}}{SS_{Total}}$$

where:

SS_{Reg} is the regression sum of square,

SS_{Res} is the residual sum of square, SS_{Totel} is the total sum of square,

y_i is the predicted y for the corresponding independent variable x_i.

This coefficient of determination represents the proportion of variation in the response data that is explained by the model. Clearly $0 \le R^2 \le 1$. Raymond (1990) illustrated that R^2 can appear to be artificially high either because the slope of the regression is large or because the spread of the regressor data x_1, x_2, x_n is great.

The coefficient of variation, CV, is a less common criterion but is a reasonable one for representing quality of fit and measuring spread of noise around the regression line. The CV is defined as:

$$CV - \frac{\sqrt{\frac{\sum\limits_{l=1}^{n}(y_{l}-\hat{y}_{l})^{2}}{n-2}}}{\overline{y}} \times 100$$

where n is the number of observations.

The CV is interpreted as the residual estimate of error standard deviation, measured as a percent of the average response values. The CV was chosen to be the criterion used for the comparison of the models.

5.3.2 Overall Fit

A summary of the results of the unweighted power model and the KY model applied to the data obtained from the well-defined cracks and building components are presented in Table 5.3.1 and Table 5.3.2 respectively. The arithmetic average CV value is 1.86% for the power model and 0.92% for the KY model for the same well-defined cracks. The CV value was lower for the new model in 22 of the 26 cases tested. For the building components tests, the CV is 2.63% based on the power model and 1.93% on the KY model. The CV was lower for the new model in 10 of the 18 cases tested.

These results indicate that the KY model statistically fits as well as the power model. However the efficacy of the new equation is measured in the ability to determine additional information about the openings. The model can predict the actual equivalent sectional area of any type of crack or openings in building components and other parameters such as the minor loss coefficient. This is considered as another factor that measures and describes the crack leakage performance. In other words, the model should provide a reasonable prediction of the sectional area chracteristics of the opening. The summary table of well-defined cracks also indicates that the average relative error between the predicted section areas and the section areas is 5.98%.

It should be noted that the five K values predicted which are out of the range previously suggested for well defined openings (1.2-2.3) are for component wall sections. This indicates that as expected the minor losses for complex openings is larger than well defined openings. Four of the five cases are associated with cases which substantially underestimate the flow at 5 Pa. This indicates that further investigation is needed on the relationship between C₂ and n. The equation developed relating these two was taken from data obtained from the well defined openings.

Comparisons were also made between the observed air flow at 5 Pa and the flow predicted for that pressure difference by both models. The predicted air flow using the new model was closer in 6 of the 26 well-defined crack cases and 3 of the 18 building component cases. It should be noted here that the measurement and computation of the observed air flow at 5 Pa has the following problems: 1) It has a higher inaccuracy of flow measurement than the higher pressure difference readings. 2) For most crack flow measurements, the 5 Pa pressure drop corresponds to the lowest Re (which is often lower than 12,000), therefore the discharge coefficient, C_d, which had the largest error had to be chosen to compute the flow. 3) Its reading may also be easily influenced by the surroundings (especially in field measurements). Because of these reasons, a wide pressure range from 5 Pa to 75 Pa is used to include more high accuracy data in order to obtain a general regression equation to extrapolate to the lower pressure data. Therefore the errors between the observed and the predicted data at 5 Pa are sometimes higher in the new model than that in the

Table 5.3.1 - Summary of Well Defined Cracks

Crack				Powe	r Model				New Model									
Orack		C (m*3{s*Ps*n))	n	C.V.	ELA (at 4 Pa) (m^2)	Q predi. (at 5 Pa) (m^3/sec.)	Q measured (at 5 Pa) (m^3/sec.)	Error of Q (at 5 Pa) (%)	C1 (m^2)	C2 (m/s)	C3 (m^3/kg)	C.V.	ELA (at 4 Pa) (m*2)	Q predi. (at 5 Pa) (m^3/sec.)	Error of Q (at 5 Pa)	A predi.	К	
	A-1	5,700E-05	0.8489	2.649	7.17E-05	2.23E-04	0.00022	1.58	4.000E-04	4.77	1.07	0.652	6.66E-05	2.12E-04	-3.42		1.56	
- 1	A-2	3,300E-05	0.9455	8.070	4.74E-05	1.51E-04	0.00012	25.95	4.000E-04	4.76	0.83	2012	5.22E-05	1,67E-04	39.20		2.00	
	B1-1	3.660E-04	0.6749	0,820	3.62E-04	1.08E-03	0.00106	2.31	8.500E-04	223	1.28	1,507	3.12E-04	9.71E-04	-8.39		1.3	
Individual	B1-2	3.180E-04	0.6852	1,905	3.19E-04	9.58E-04	0.00093	3.01	8.500E-04	1.96	1.03	1.009	2.84E-04	8.83E-04	-5.07		1.6	
Crack	B2-1	3.060E-04	0.6897	1.021	3.09E-04	9.29E-04	0.00090	3.17	8.500E-04	2.17	1.04	0.922	2.66E-04	8.31E-04	-7.65		1.6	
CROSSAG	B2-2	2.800E-04	0.7025	2.223	2.87E-04	8.67E-04	0.00083	4.50	8.500E-04	2.03	0.95	0.639	2.58E-04	8.06E-04	-2.87		1.7	
1	E-1	2.640E-03	. 0.5313	1.093	2.14E-03	6.21E-03	0.00601	3.30	3.145E-03	0.21	0.95	0.585	2.13E-03	6.23E-03	3.59	1	1.7	
1	E-2	2.440E-03	0.5441	1,506	2.01E-03	5.86E-03	0.00565	3.67	3.145E-03	0.29	0.92	0.791	2.01E-03	5.89E-03	4.33		1.8	
	F1-1	6,410E-03	0.5217	0.670	5.12E-03	1.48E-02	0.01457	1.87	6.431E-03	0.17	1.23	0.364	5.12E-03	1.49E-02	2.21	1	1.3	
- 1	F1-2	6.710E-03	0.5082	0.704	5.26E-03	1.52E-02	0.01482	2.59	6.431E-03	0.03	1.16	0.589	5.30E-03	1.53E-02	3.21		1.4	
- 1	F2-1	6.240E-03	0.5297	1.085	5.04E-03	1.46E-02	0.01411	3.73	6.431E-03	0.22	1.25	0,571	5.05E-03	1.47E-02	4.36		1.3	
	F2-2	7,340E-03	0.4865	0.250	5.58E-03	1.61E-02	0.01615	-0.56	6.431E-03	0.00	1.18	0.740	5.42E-03	1.56E-02	-3.28		1.4	
	A@B1	3.210E-04	0.7597	1.613	3.57E-04	1.09E-03		5.85	1.250E-03	3,45	1,20	1,184	3.09E-04	9.76E-04	-5.20		1.2	
	A@E	2.900E-03	0.5197	0.648	2.31E-03	6.69E-03		-2.14	3.545E-03	0.21	0.84	0.688	2.25E-03	6.56E-03	-4.11		1.5	
Parallel	A@F1	6.790E-03	0.5143	0.487	5.37E-03	1.55E-02		1.61	6.831E-03	0.11	1.14	0.366	5.37E-03	1.56E-02	1.86	/	1.4	
Crack	B1@B2	7.770E-04	0.6624	1.115	7.54E-04	2.26E-03		-4.79	1.700E-03	2.46	1.36	1.990	6.13E-04	1.91E-03	-19,31		12	
- 1	B1@E	2.640E-03	0.5862	1.608	2.31E-03	6.78E-03		5.47	3.995E-03	0.73	1.05	0.486	2.24E-03	6.69E-03	4.05		1.	
	B1@F1	7,330E-03	0.5154	0.421	5.81E-03	1.68E-02	0.01655	1.52	7.281E-03	0.13	1.18	0.315	5.78E-03	1.68E-02	1.29		1.	
	F1@F2	1,392E-02	0.5055	0.349	1.09E-02	3.14E-02	0.03127	0.42	1.286E-02	0.04	1.23	0.365	1.09E-02	3.14E-02	0.37		1,	
	A~B1	3.120E-05	0.9333	6,088	4.41E-05	1,40E-04		16.77	3.606E-04	5.10	1	1.897	4.72E-05		25.93	3.61		
	B1~A	3,580E-05	0.9511	6.797	5.19E-05	1.65E-04		27.27	4.262E-04	5.33		1.875	5.82E-05	1.86E-04	43.29	4.26		
Series	B1~E	3.400E-04	0.6628	1,633	3.30E-04	9.88E-04		4.00	7.269E-04	1.90		0.916	2.91E-04		-5.12	7.27		
Crack	E~B1	3.080E-04	0.6913	1.136	3.11E-04	9.37E-04		4.11	8.444E-04	2.25		1.320	2.68E-04	8.38E-04	-6.90	8.44		
	E~F1	2.150E-03	0.5534	1.572	1.79E-03	5.24E-03		4.99	1.808E-03	0.59	455573	0.735	1.79E-03	역 - 회에서(1) 1981년(1)	5.69	18.08		
	F1~B1	3.170E-04	0.6950	1.470	3.22E-04	9.70E-04		5.45	8.142E-04	237	1.26	0.770	2.82E-04		-4.24	8.14		
	F1~E	2.180E-03	0.5504	1,365	1.81E-03	5.29E-03	0.00502	5.31	1.750E-03	0.59	2.55	0,642	1.80E-03	5.30E-03	5.60	17,50	0.	
	(Average)	5		1.857	1							0.920					1.	

Table 5.3.2 - Summary of Building Components

Component	Power Model										New Model					
2.	С	n	C.V.	ELA (at 4 Pa)	Q predi. (at 5 Pa)	Q measured (at 5 Pa)	Error of Q (at 5 Pa)	C1	C2	СЗ	C.V.	ELA (at 4 Pa)	Q predi. (at 5 Pa)	Error of Q (at 5 Pa)	A predi.	К
	(m*3(s*Pa*n))		(%)	(m^2)	(m^3/sec.)	(m^3/sec.)	(%)	(m^2)	(m/s)	(m^3/kg)	(%)	(m^2)	(m^3/sec.)	(%)	(cm^2)	
CO-1	1.01E-05	1.0145	10.521	1.60E-05	5.17E-05	0.00004	29.23	1.260E-04	6.04	1.35	2.909	2.11E-05	6.74E-05	68,55	1.26	1.23
CO-2	8.19E-04	0.5554	3,469	6.86E-04	2.00E-03	0.00189	5.93	3.940E-04	0.71	7.11	2.446	7.13E-04	2.09E-03	10.37	3.94	
CO-3	3,12E-04	0.6720	0.935	3.07E-04	9.20E-04	0.00090	2.24	7.800E-04	2.01	1.07	1.159	2.64E-04	8.22E-04	-8.62	7.80	
CO-4	2.74E-04	0.6879	2.237	2.68E-04	8.03E-04	0.00078	2.92	5.810E-04	2.01	1.35	1.803	2.39E-04	7.41E-04	-5.04	5.81	1.23
CO-5	3,49E-04	0.6459	0.678	3.31E-04	9.87E-04	0.00098	0.71	7.730E-04	1.78	1.05	1.770	2.80E-04	8.67E-04	-11.54	7.73	1.58
CO-6	2.12E-04	0.7167	0.534	2.22E-04	6,72E-04	0.00066	1.80	7.590E-04	22.61	0.91	1,557	1.83E-04	5.77E-04	-12.51	7.59	1.83
CO-7	2.29E-04	0.7061	0.777	2.36E-04	7.13E-04	0.00070	1.92	7.210E-04	1149	1.01	1,450	1.98E-04	6.23E-04	-11.00	7.21	1.65
CO-8	1.70E-04	0,7047	1.287	1.75E-04	5.28E-04	0.00050	5.69	5.000E-04	2.37	1.09	0.926	1,53E-04	4,78E-04	-4.33	5.00	1.53
CO-9	1.67E-05	0.8518	5.119	2.11E-05	6.58E-05	0.00005	31.56	1.080E-04	4.15	1.10	2.771	2.09E-05	6.66E-05	33.23	1.08	1.5
CO-10	2.22E-04	0.7393	1.649	2.40E-04	7.30E-04	0.00068	7.30	8.040E-04	2.84	1.08	1.315	2.08E-04	6,56E-04	-3.53	8.04	1.5
CO-11	1.48E-04	0.7318	1.811	1.58E-04	4.81E-04	0.00045	6.80	5.130E-04	2.73	1.06	1.337	1.37E-04	4.31E-04	-4.11	5.13	1.5
CO-12	9.33E-05	0.6758	1.004	9.23E-05	2.77E-04	0.00028	-1.12	2.620E-04	2.13	0.94	1.795	7.62E-05	2.38E-04	-14.92	2.62	1.7
CO-13	6.62E-05	0.8962	5.858	8.89E-05	2.80E-04	0.00022	27,31	5.150E-04	4.74	1.17	1.466	9.39E-05	2.99E-04	36.11	5.15	1.4
CO-14	3.81E-04	0.7687	1.741	4.29E-04	1.31E-03	0.00131	0.22	2.567E-03	3.20	0.57	2.685	3.37E-04	1.07E-03	-18.09	25.67	2.9
CO-15	6.00E-04	0.7577	1.807	6.65E-04	2.03E-03	0.00211	-3.73	3.982E-03	3.08	0.54	2,581	5.13E-04	1.64E-03	-22.45	39.82	3.0
CO-16	5.05E-03	0.6222	0.821	4.64E-03	1.37E-02	0.01334	3.05	8.463E-03	1.42	1.32	0.725	4.20E-03	1.28E-02	-3.86	84.63	1.2
CO-17	7.77E-04	0.7721	2.349	8,78E-04	2.69E-03	0.00299	-9.96	6.701E-03	3.20	0.43	2.648	6.71E-04	2.14E-03	-28.30	67.01	3.8
CO-18	1.10E-03	0.7745	4.713	1.25E-03	3.83E-03	0.00416	-8.03	1.416E-02	3.20	0.26	4.033	8.70E-04	2.79E-03	-32.92	141.60	6,4
(Average)			2.628								1,965					2.0

power model.

The plots in Figures 5-3-3 through 5-3-11 illustrate the curve performances of the power equation and the new dimensional flow equation. The pressurization data sets of the 18 building components are used as a sample. The conclusion gained from these plots is that the KY model curve fits the data as well and is very close to the power equation model.

The following symbols are used in Figure 5-3-3 to Figure 5-3-11:

- **** 1: Average value of the three observed data points
- ----- 2: Power model predicted curve
- 3: New model predicted curve

Figure 5-3-4. Model comparison on component 3 and 4

Figure 5-3-3. Model comparison on component 1 and 2

Figure 5-3-5. Model comparison on component 5 and 6

Figure 5-3-6. Model comparison on component 7 and 8

Figure 5-3-7. Model comparison on component 9 and 10

Figure 5-3-8. Model comparison on component 11 and 12

Figure 5-3-9. Model comparison on component 13 and 14

Figure 5-3-10. Model comparison on component 15 and 16

Figure 5-3-11. Model comparison on component 17 and 18

5.3.3 Parallel and series analysis based on well-defined cracks

A comparison was made between two definitions given in Table 4-3 for the resistance to airflow: a) the inverse of the ELA (based on Pa=4) and b) the inverse of the power regression equation coefficient C. The data obtained from the well-defined cracks were used to test the new and previous definitions to see which one worked better. The values of the ELA and C are from Table 5-3-1. (It should be recognized that the coefficients of leakage curves with different n values have to be added to apply the parallel and series analogy. This incompatibility further reflects the problem of using nonhomogeneous equations however it is necessary in order to make these comparisons.)

In Table 5.3.3 the previous definition of crack resistance is used to compare the parallel flow theory based on the power equation model coefficient C. In Table 5.3.4 and Table 5.3.5 the new definition of resistance to airflow being the inverse of the ELA is used for checking parallel flow based on the ELA values calculated from the power and KY models respectively. The comparison between combining the two C coefficients versus the value of C obtained from the combined flow indicates a 12.5% overall average difference between them. This value is reduced to 8.7% and 8% when the ELA values from the power model or KY model respectively are used. The ELA and C values used for each crack in these equations are those obtained from tests where each crack was run separately. Tables 5.3.6, 5.3.7 and 5.3.8 are similar to the previous three tables while being applied to the series flow application. The average differences are 13.8, 12.2 and 10.7% for the series application. From these six tables it is obvious that defining the inverse of the ELA as a first approximation of the crack resistance is more effective and yields a satisfactory prediction of parallel and series flow through cracks. Secondly, these examples show that the ELA value from the KY model is slightly more accurate than that from power model.

This theory may also be used to analyze the leakage performance of various building components which may have parallel or series connections as well as whole building structures.

Table 5.3.3 Using R = 1/C as definition of crack resistance to check the parallel flow theory based on the <u>power model</u> coefficient C (C units: $m^3/h(Pa)^n$)

Cracks connected in parallel	$C \Leftrightarrow C1 + C2 (\times 10^{-4})$	Relative error (%)
A@B1	$3.21 \Leftrightarrow 0.57 + 3.66 = 4.23$	31.8
A@E	29 ⇔ 0.57+26.4=26.97	-7.0
A@F1	$67.9 \Leftrightarrow 0.57 + 64.1 = 64.67$	-4.8
B1@B2	$7.77 \Leftrightarrow 3.66 + 3.06 = 6.72$	-13.5
B1@E	26.4 \(\Delta\) 3.66+26.4=30.06	13.9
B1@F1	73.3 ⇔ 3.66+64.1=67.76	-7.6
F1@F2	139.2 ⇔ 64.1 + 62.4 = 126.5	-9.1
Absolute Average		12.5

Note: C = Coefficient from the power equation using the total flow through both cracks mounted in parallel.

C1 = Coefficient from power equation for crack 1 determined individually

C2 = Coefficient from power equation for crack 2 determined individually

Relative Er.
$$-\frac{C-(C1+C2)}{C}*100$$

Table 5.3.4 Using R = 1/ELA as definition of crack resistance to check the parallel flow based on ELA values at 4 Pa from the power model (ELA units: m²)

Cracks connected in parallel	$ELA \Leftrightarrow ELA_1 + ELA_2 (\times 10^{-4})$	Relative error (%)
A@B1	$3.57 \Leftrightarrow 0.72 + 3.62 = 4.34$	21.6
A@E	23.1 \(\operatorname{0.72 + 21.4 = 22.12} \)	-4.2
A@F1	53.7 ⇔ 0.72+51.2=51.92	-3.3
B1@B2	7.54 \(\phi\) 3.62+3.09 = 6.71	-11
B1@E	23.1 ⇔ 3.62+21.4=25.02	8.3
B1@F1	58.1 ⇔ 3.62+51.2=54.82	-5.6
F1@F2	109 ⇔ 51.2+50.4=101.6	-6.8
Absolute Average		8.7

Note: ELA₁ is quoted from Table 5-3-1 for the power model with flow through crack 1.

ELA₂ is quoted from Table 5-3-1 for power model with flow through crack 2.

ELA was determined for flow through both the two cracks mounted in parallel.

Table 5.3.5 Using R = 1/ELA as definition of crack resistance to check the parallel theory based on the KY model ELA values at 4 Pa. (ELA units: m²)

Cracks connected in parallel	$ELA \Leftrightarrow ELA_1 + ELA_2 (\times \ 10^{-4})$	Relative error (%)
A@B1	3.09 ⇔ 0.67+3.12=3.79	22.7
A@E	22.5 \(\phi\) 0.67+21.3=21.97	-2.4
A@F1	53.7 ⇔ 0.67+51.2=51.87	-3.4
B1@B2	6.13 \(\Delta \) 3.12+2.66=5.78	-5.7
B1@E	22.4 \(\Delta \) 3.12+21.3=24.42	9.0
B1@F1	57.8 ⇔ 3.12+51.2=54.32	-6.0
F1@F2	109 ⇔ 51.0+50.5=101.5	-6.9
Absolute Average	To the second se	8.0

Table 5.3.6 Using R=1/C as definition of crack resistance to check the series theory based on power model coefficient C. (C units: $m^3/h(Pa)^n$)

Cracks connected in series	$\frac{1}{C_{\text{Total}}} - \Sigma(\frac{1}{C_{i}}) \qquad (\times 10^{4})$	Re. error (%)
A~B1	$\frac{1}{0.312}$ - 3.21 $\leftrightarrow (\frac{1}{0.33} + \frac{1}{3.66})$ - 3.3	2.8
B1~A	$\frac{1}{0.358} - 2.79 \rightarrow (\frac{1}{3.18} + \frac{1}{0.57}) - 2.07$	-25.8
B1∼E	$\frac{1}{3.40} - 0.29 \rightarrow (\frac{1}{3.18} + \frac{1}{26.4}) - 0.352$	21.4
E~B1	$\frac{1}{3.08} - 0.32 + (\frac{1}{24.4} + \frac{1}{3.66}) - 0.314$	-1.9
E~F1	$\frac{1}{21.5} - 0.0465 \implies (\frac{1}{24.4} + \frac{1}{64.1}) - 0.0566$	21.7
F1~B1	$\frac{1}{3.17} - 0.315 + (\frac{1}{67.1} + \frac{1}{3.66}) - 0.288$	-8.5
F1~E	$\frac{1}{21.8} - 0.0459 + (\frac{1}{67.1} + \frac{1}{26.4}) - 0.0528$	15.0
Absolute Average		13.8

Table 5.3.7 Using R = 1/ELA as definition of crack resistance to check the series theory based on ELA from power model at 4 Pa. (ELA units: m^2)

Cracks connected in series		Re. error (%)
	$\frac{1}{ELA_{Total}} - \Sigma(\frac{1}{ELA_{I}}) \qquad (\times 10^4)$	
A~B1	$\frac{1}{0.441} - 2.27 + \left(\frac{1}{0.474} + \frac{1}{3.62}\right) - 2.39$	5.3
B1 ~ A	$\frac{1}{0.519} - 1.93 \leftrightarrow \left(\frac{1}{3.19} + \frac{1}{0.717}\right) - 1.71$	-11.4
B1 ~E	$\frac{1}{3.3}$ - 0.303 $\leftrightarrow (\frac{1}{3.19} + \frac{1}{21.4})$ - 0.36	18.8
E~B1	$\frac{1}{3.11} - 0.322 + \left(\frac{1}{20.1} + \frac{1}{3.62}\right) - 0.326$	1.2
E~F1	$\frac{1}{17.9} - 0.0559 + (\frac{1}{20.1} + \frac{1}{51.2}) - 0.0693$	24.0
F1~B1	$\frac{1}{3.22}$ = 0.311 $\leftrightarrow (\frac{1}{51.2} + \frac{1}{3.62})$ = 0.296	-4.8
F1~E	$\frac{1}{18.1} - 0.0552 + (\frac{1}{51.2} + \frac{1}{21.4}) - 0.0663$	20.1
Absolute Average		12.23

Table 5.3.8 Using R = 1/ELA as definition of crack resistance to check the series theory based on ELA from KY model at 4 Pa. (ELA units: m²)

Cracks connected in series		Re. error (%)
×	$\frac{1}{ELA_{Total}} - \Sigma(\frac{1}{ELA_{I}}) \qquad (\times 10^4)$	
A~B1	$\frac{1}{0.472} - 2.12 + (\frac{1}{0.522} + \frac{1}{3.12}) - 2.24$	5.7
B1~A	$\frac{1}{0.582} - 1.72 \implies (\frac{1}{2.84} + \frac{1}{0.667}) - 1.85$	7.6
B1~E	$\frac{1}{2.91} - 0.34 + \left(\frac{1}{2.84} + \frac{1}{21.3}\right) - 0.40$	17.6
E~B1	$\frac{1}{2.68} - 0.37 + \left(\frac{1}{20.1} + \frac{1}{3.12}\right) - 0.37$	0
E~F1	$\frac{1}{17.9}$ - 0.056 \Rightarrow $(\frac{1}{20.1} + \frac{1}{51.2})$ - 0.069	23.2
F1 ~ B1	$\frac{1}{2.82} - 0.35 + (\frac{1}{53} + \frac{1}{3.12}) - 0.34$	-2.9
F1~E	$\frac{1}{18.0} - 0.056 \leftrightarrow (\frac{1}{53} + \frac{1}{21.3}) - 0.066$	17.9
Absolute Average		10.7

5.3.4 Building component analysis

Various openings of building components may work as cracks which are connected in parallel and/or series. The Q—ΔP relationships and ELAs have been measured and calculated for 18 building components. Among the 18 components there are two useful groups which have identifiable series/parallel flow paths. These are the test wall sections which contain electrical switches, duplex outlets and/or wire holes through the top plate with or without sealing of the holes and with or without switch/outlet gaskets. These examples will be used to analyze the flow path details, where the ELA values are produced from the new model.

The ELA values determined for combinations of these test cases are presented in Table 5.3.9. Note that the ELA values are for the total of the six boxes (switches or outlets) in a single test wall.

The following symbols are used to represent the combinations:

- S --- Electrical switch, coverplate and box in the wall, no wiring hole penetrations through the studs or the top plate
- O --- Electrical duplex outlet, cover plate and box in the wall, no wiring hole penetrations through the studs or the top plate
- G --- Gasket (foam) on the switch or outlet
- T/O -- Wire hole opening (1") in the top plate of the wall section with 12/3 romex wire run through each hole
- Seal Top plate wire hole sealed with caulking

Table 5.3.9 Crack leakage resistance of the switch group

Component	Connection	ELA (cm^2)	R (= 1/ELA)
	Connection	ELA (CIII 2)	N (- I/CLA)
CO-10	S+T/0	2.08	0.48
CO-11	S+T/O+Seal	1.37	0.73
CO-12	S+T/O+G+Seal	0.762	1.31
CO-13	S+T/O+G	0.939	1.06

If it is considered that applying a gasket or sealing the wire hole works as connecting a resistance in series (Figure 5-3-12), a value of $R=0.58~(cm^{-2})$ is obtained for applying the gaskets between CO-10 and CO-13 or between CO-11 and CO-12. A value of $R=0.25~(cm^{-2})$ is found for sealing the top hole between CO-10 and CO-11 or CO-12 and CO-13. These values demonstrate the application of the series resistance theory.

Figure 5-3-12. Switch group resistance analysis

Table 5.3.10 contains the results of applying gaskets or sealing the top holes for the walls containing outlets. If we assume these work as connecting a resistance in series, we obtain R=0.04 (cm⁻²), 0.15 (cm⁻²) and 0.10 (cm⁻²) between CO-3 and CO-4, between CO-5 and CO-7 and between CO-6 and CO-8 respectively. The average total resistance value for the six gaskets is 0.10 (cm⁻²). (Note that there is not a dramatic difference in the order in which it is applied. This implies that there are significant other leaks.) The resistance values for the seal equal to 0.19 (cm⁻²) and 0.14 (cm⁻²) between CO-5 and CO-6 and CO-7 and CO-8 respectively. Therefore the average total resistance value for sealing the six top holes is 0.17 (cm⁻²).

Table 5.3.10 Crack leakage resistance of the outlet group

Component	Connection	ELA (cm^2)	R (=1/ELA)
CO-3	0	2.64	0.38
CO-4	0+G	2.39	0.42
CO-5	0+T/0	2.80	0.36
CO-6	0 + T/0 + Seal	1.83	0.55
CO-7	O+T/O+G	1.98	0.51
CO-8	0+T/0+G+Seal	1.53	0.65

There is a problem in attempting to determine the resistance of the T/O (Top plate wire hole) by subtracting the resistance of CO-3 from the resistance of CO-5. If we assume that O (outlet on the wall) and T/O (top hole) are

connected in series, the resistance of CO-5 should be higher than the resistance of CO-3, while the result shows the resistance of CO-5 is lower than that of CO-3. This indicates that the function of having a wire hole in the top plate with an outlet may work in neither simple parallel nor simple series, it work as a combination of parallel and series.

Overall the definition presented of crack resistance and parallel/series flow theory describes the component leakage well.

Figure 5-3-13. Outlet group resistance analysis

5.4 ELA and Cd Curves Analysis

In previous air leakage studies, researchers set ELA and C_d as constants evaluated at 4, 10, 50 or 75 Pa. The results from the FPD tests use these standard values for simplicity since the flow is not simple orifice flow. Actually they are functions of the pressure difference, ΔP . In this analysis, the ELA and C_d are calculated based on their original definitions. The ELA curves in Figures 5-4-1 and 5-4-2 are based on the derived equation 4-10 for the 18 building components. They illustrate what has been previously known. That is that ELA has a significant variation as ΔP changes, which means that the choice of reference pressure drops (4 Pa or 10 Pa) affects the ELA results. The Cd curves in Figure 5-4-3 are based on equation 4-11 with five different C2 values, which illustrate the significant errors by setting $C_d = 1.0$ (ASTM 1984, 1987) or C_d = 0.611 (CGSB 1986) for the calculation of any crack leakage. Figure 5-4-4 presents the C_d charts for the KY model at 4 Pa and 10 Pa. These three dimensional contours illustrate how C_d values vary instead of previously assumed constant settings of $C_d = 0.611$ or $C_d = 1.0$. This chart is created for calculation purposes especially for the situation of computing the EQLA values. In this chart of typical values (input K = 1.5 as a known value), we find that the C_d values change dramatically for low pressure difference rather than being a constant. Hence the C_d value at low pressures is more sensitive.

ELA Curves for Components

Figure 5-4-1. ELA curves for building components 1 to 12

difference between the minimum and maximum values recorded for several components was much larger. This it to be expected since there were more sources of data with a greater variability between the different sources. It was often found that the variability between the "same" component between two sources using the same reporting format was greater than the variation between component types from the same source.

It should be noted that although the number of different building components listed in the table is greater than previously identified, there are still gaps in the data for some groupings of components which need estimates (or better estimates) of leakage values. There are currently several significant projects underway to obtain the leakage of ductwork. Since these data were not available, they were not included in this report. Other components which need data (or better additional data) include: building construction joints (joints of dissimilar materials like masonry and wood or insulating board and wood; sole plate/baseboard; band joists; building corner joints; butt joints of sheathing, etc), window and door framing in masonry and wood wall construction, and the combined effects of air infiltration barriers and vapor retarders.

Evaluate and Give Alternatives to the ELA Concept:

A comparison of the predicted effective leakage areas using the commonly used reference pressures and discharge coefficients was done for the building components tested in the laboratory. As is commonly known, the ELA varies with the reference pressures selected. These differences were significant (30%) in the ELA predicted using 4 Pa and 10 Pa as the reference pressures for the components tested. Curves were also produced to illustrate the significant variations introduced by selecting different discharge coefficients. In addition to these variations, the known correlation which exists between n and C propagate variations which are not readily apparent. These type of variations cause confusion when comparisons are attempted between reported values when different authors use different reference values and discharge coefficients, especially when these values and the C and n are not stated.

A theoretically-based air leakage model to define the flow rate versus the pressure differential across building components was derived from the dimensionless crack equation. It was validated and compared to commonly accepted ELA calculation techniques using a number of well-defined cracks which were experimentally tested. It was found that the three-parameter model developed describes the flow versus pressure relationship accurately however it is not as easy to use. It requires a nonlinear regression solution technique and has a numerical restriction from the power model. A benefit of the model developed is that the coefficients obtained represent physical parameters describing the characteristics of the opening tested.

Experiments were also run to test the model developed for situations where the air may be flowing in a series path through several openings or in parallel across different openings. The new model was able to fit the flow versus pressure data as well as the commonly used techniques. It was also demonstrated that the physical parameters obtained independently with the new model on each opening could be combined to predict the total resistance when the openings were combined in series.

Evaluate Different Methods and Recommend a Method of Reporting Leakage:

There were no direct comparisons found in the literature between the various DC pressurization standards so there are no recommendations as to the validity of one over the other or standard calibrations for converting the data between them.

Several different methods of reporting leakage were observed. It was observed that the leakage data obtained in the available literature were given in three main ways: constants for the fit of the data to the power equation, the flow at a given differential pressure across the component, or the equivalent/effective leakage area. These methods were evaluated in order to make the transformations to compare components tested by different sources. It was not possible to get ELA values from some of the techniques such as those which gave leakage as a percentage of the total leakage of the structure. The most common technique of giving a C and n value for the component was adequate provided the value used for the discharge coefficient and the unit of area or length was known. There was some confusion in the literature between effective and equivalent leakage areas. It is critical that leakage reports give sufficient information to avoid this confusion.

It was recognized that there are advantages to using the power and/or orifice equations such as ease of use and generally having a good fit. Disadvantages to these techniques were also identified (e.g. dimensionally nonhomogeneous, constants have no physical basis, not theoretically based and incompatibility for use in series/parallel flow analysis).

It was found that there were several key parameters to successfully reporting sufficient information about leakage in order to make comparisons. In the ideal case the following need to be included: the actual flow/pressure difference values for the test points; the area over which the pressure is being maintained and flow is being measured (or the length of the crack which is exposed to the pressure difference); and other conditions which influence the flow such as type of weatherstripping, etc. If the actual data points cannot be reported, the coefficients (C₁, C₂, C₃ or C&n) and the range of pressures used for testing should be reported in addition to the others indicated.

REFERENCES

- ASHRAE. 1989. ASHRAE Handbook Fundamentals. American Society of Heating, Refrigerating, and Air Conditioning Engineers. Atlanta, GA.
- ASTM. 1987. ASTM Standard E779-87, Standard test method for determining air leakage rate by fan pressurization. American Society for Testing Materials. Phila., PA.
- ASTM. 1984. ASTM Standard E783-84, Standard method for field measurement of air leakage through installed exterior windows and doors. American Society for Testing Materials. Phila., PA
- Bassett, M.R. 1986. Building site measurements for predicting air infiltration rates. In Measured Air Leakage of Buildings. ASTM STP 904. American Society for Testing and Materials. pp365-383. Phila., PA.
- CGSB. 1986. Standard CAN/CGSB-149.10-M86, Determination of the airtightness of building envelopes by the fan depressurization method. Canadian General Standards Board. Ottawa, Canada.
- Charlesworth, P.S. 1988. Air exchange rate and airtightness measurement techniques An applications guide. Air Infiltration and Ventilation Centre, Coventry, Great Britain.
- Chastain, J.P., D.G. Colliver and P.W. Winner. 1987. Computation of discharge coefficients for laminar flow in rectangular and circular openings. ASHRAE Transactions 93(2):22259-2281.
- Cole, J.T. and T.S. Zawacki. 1980. Application of a generalized model of air infiltration to existing homes. ASHRAE Transactions 86(1):765-777.
- Draper, N.W. and H. Smith. 1966. Applied regression analysis. John Wiley & Sons, Inc. New York
- Etheridge, D.W. 1977. Crack flow equations as scale effect. Building and Environment 12:282-289.
- Gabrielsson, J. and P. Porra. 1968. Calculation of infiltration and transmission heat loss in residential buildings by digital computers. J. Inst. Heat Vent. Eng. 35:357-368.
- Gadsby, K.J., and D.T. Harrje. 1985. Fan pressurization of buildings: Standards, calibration and field experience. ASHRAE Transactions 91(2B):95-104.
- Hopkins, L.P. and B. Hansford. 1974. Air flow through cracks. Building Services Engineer. Vol 42:123-132.
- Hunt, C.M. 1980. Air infiltration: A review of some existing measurement techniques and data. Building Air Change Rate and Infiltration Measurements. ASTM STP-719. American Society for Testing Materials. pp 3-23.
- Limb, M.J. 1989. AIRGUIDE A Guide to the AIVC's AIRBASE. Air Infiltration and Ventilation Centre.

 Coventry, Great Britian
- Modera, M.P. and M.H. Sherman. 1985. AC pressurization A technique for measuring leakage area in residential buildings. ASHRAE Transactions 91(2B):120-132.
- Murphy, W.E., D.G. Colliver and L.R. Piercy. 1991. Repeatability and reproducibility of fan pressurization devices in measuring building air leakage. ASHRAE Transactions 97(2):885-895.

- Phaff, H. 1987. Flowrate measurements with a pressure compensating device. 8th AIVC Conference. Ventilation Technology Research and Application, Supplement to Porceedings, pp 167-170.
- Raymond, H.M. 1990. Classical and modern regression with applications. 2nd. Ed. PWS-Kent Publishing Company. Boston, MA.
- SAS. 1985. SAS User's Guide Statistics. 5th Ed. SAS Institute Inc., Cary, NC.
- Shaw, C.Y., D.M. Sander and G.T. Tamura. 1974. A Fortran V program to simulate stair shaft pressurization systems in multi-story buildings. DBR Computer Program No. 38. National Research Council of Canada.
- Sherman, M.H. 1980. Air infiltration in buildings. Ph.D. Thesis. University of California, Berkeley, CA.
- Sherman, M.H. and D.T. Grimsrud. 1980. Infiltration-pressurization correlation: simplified physical modeling. ASHRAE Transactions 86(1):778-807.
- Sun, W. 1992. Modeling air leakage characteristics of residential building components. Unpublished M.S. Thesis, University of Kentucky. Lexington, KY.
- Weidt, J.L. 1979. Field air leakage of newly installed residential windows. Proceedings of the ASHRAE/DOE-ORNL Conference. Thermal Performance of the Exterior Envelopes of Buildings. Orlando, FL.

BIBLIOGRAPHY Part 1 - BY AIRBASE NUMBER

- <u>#NO</u>40 Tamura, G. 1975. Measurement of air leakage characteristics of house enclosures. ASHRAE Transactions 81(1):202-208, 1 fig, 5 tabs. #AIC 1048.
- <u>#NO</u>41 Hunt C.M., Burch D. 1975. Air infiltration measurements in a four-bedroom townhouse using sulphur hexafluoride as a tracer gas. ASHRAE Transactions 81(1):186-201, 5 figs, 4 tabs, 18 refs. #AIC 229.
- #NO42 Stricker S. 1975. Measurement of air tightness of houses. ASHRAE Transactions 81(1):148-167, 9 figs. 1 tab. 3 refs. #AIC 1093.
- #NO44 Shaw C.Y., Sander D.M., Tamura G.T. 1973. Air leakage measurements of the exterior walls of tall buildings. ASHRAE Transactions 79(2):40-48, 10 figs. 6 refs. D.B.R.research paper no. 601. #AIC 34.
- <u>#NO</u>70 Grimsrud, D.T., Sherman M.H., Diamond R.C., and Sonderegger R.C. 1979. Air leakage, surface pressures and infiltration rates in houses. 2nd International C.I.B. Symposium on Energy Conservation in the Built Environment, Copenhagen, May 28 June 1st 1979. Preprints session 2, 111-120, 5 figs, 2 tabs, 4 refs. #AIC 23.
- #NO86 Funkhouser, P.E. 1979. Air infiltration effects on the thermal transmittance of concrete building systems. ASHRAE Transactions 85(1):918-925, 4 figs. #AIC 16.
- #NO89 Blomsterberg A.K., Harrje D.T. 1979. Approaches to evaluation of air infiltration energy losses in buildings. ASHRAE Transactions 85(1):797-815, 10 figs, 2 tabs, 20 refs. #AIC 13, also "Evaluating air infiltration energy losses" ASHRAE Journal 21(5):25-32.
- #NO90 Goldschmidt, V.W., Wilhelm, D.R. 1979. Summer infiltration rates in mobile homes. ASHRAE Transactions 85(1):840-850, 15 figs, 1 tab, 11 refs. #AIC 15.
- #NO91 Tamura, G.T. 1979. The calculation of house infiltration rates. ASHRAE Transactions 85(1):58-71, 7 figs, 5 tabs, 9 refs. #AIC 3.
- #NO92 Caffey, G.E. 1979. Residential air infiltration. ASHRAE Transactions 85(1):41-57, 12 figs, 5 tabs, 1 ref. #AIC 2.
- #NO101 Bursey T., Green G.H. 1970. Combined thermal and air leakage performance of double windows. ASHRAE Transactions 76(2):215-226, 13 figs, 6 refs. #AIC 1222.
- #NO113 Grubbs W.J. 1967. Leaky prime windows. ASHRAE Journal 9(1):109-112, 7 figs, 6 tabs, 2 refs. #AIC 1225.
- #NO119 Lowinski, J.F. 1979. Thermal performance of wood windows and doors. ASHRAE Transactions 85(1):548-566, 10 tabs, #AIC 1289.
- #NO142 Thorogood R.P. 1979. Resistance to air flow through external walls. Building Research Establishment Information Paper. 14/79 #AIC 76.
- #NO159 Tamura, G.T. 1974. Predicting air leakage for building design. 6th C.I.B. Congress on the Impact of Research on the Built Environment Budapest 3-10 October 1974 preprints vol 1/1 p368-374, D.B.R. technical paper no. 437 #AIC 41.
- #NO173 Schutrum L.F., Ozisik N., Baker J.T., and Humphreys C.M. 1961. Air infiltration through revolving doors. ASHRAE Journal 3(11):43-50, #AIC 1445.

- #NO176 Tamura G.T. and Shaw C.Y. 1976. Studies on exterior wall air tightness and air infiltration of tall buildings. ASHRAE Transactions 82(1):122-134, N.R.C.C. Building Research paper no.706, #AIC 33.
- #NO177 Sasaki J.R. 1973. Air leakage testing. Spec. Ass. 15(5):15-18, N.R.R.C. Division of Building Research technical paper no. 407, #AIC 36.
- <u>#NO</u>208 Keast D.N., Pei, H-S. 1979. The use of sound to locate infiltration openings in buildings. Proceedings ASHRAE/DOE Conference "Thermal performance of the exterior envelopes of buildings" Florida, December 3-5, 1979, pp85-93, #AIC 71.
- #NO210 Sasaki J.R., Wilson A.G. 1965. Air leakage values for residential windows. ASHRAE Transactions 71(2):81-88, 7 figs, 17 refs, National Research Council of Canada, Division of Building Research paper no. 329, #AIC 37.
- <u>#NO</u>221 Collins J.O. 1979. Air infiltration measurement and reduction techniques on electrically heated homes. Proceedings ASHRAE/DOE Conference on "Thermal Performance of the Exterior Envelopes of Buildings "Florida, 3-5 December 1979, 4 tabs 5 refs, #AIC 74.
- <u>#NO</u>251 Potter I.N. 1979. Effect of fluctuating wind pressures on natural ventilation. ASHRAE Transactions 85(2):445-457, 8 figs, 3 refs, #AIC 9.
- <u>#NO</u>260 Grimsrud D.T., Sherman M.H., and Diamond R.C. 1979. Infiltration pressurization correlations: detailed measurements on a California house. ASHRAE Transactions 85(1):851-865, 7 figs, 1 tab, 5 refs, #AIC 10.
- <u>#NO</u>286 Houghten F.C. and Schrader C.C. 1924. Air leakage through the openings in buildings. ASHVE Transactions 30:105-120, 11 figs, 2 tabs, #AIC 1240.
- #NO287 Schrader C.C. 1924. Air leakage around window openings. ASHVE Transacitons 30:313-322, #AIC 1481.
- <u>#NO</u>288 Stewart M.B. Jacob T.R. and Winston J.G. 1979. Analysis of infiltration by tracer gas technique, pressurization tests and infrared scans. Proceedings ASHRAE/DOE Conference "Thermal performance of the exterior envelopes of buildings" Florida December 3-5th 1979, 10 figs, 3 tabs, 3 refs. #AIC 72.
- #NO299 Tamura G.T. and Shaw C.Y. 1976. Air leakage data for the design of elevator and stair shaft pressurization system. ASHRAE Transactions 82(2):179-190, 8 figs, 3 tabs, 8 refs. #AIC 35.
- <u>#NO</u>311 Shaw C.Y. 1980. Methods for conducting small-scale pressurization tests, and air leakage data of multi-storey apartment buildings. ASHRAE Transactions 86(1):241-250, 11 figs, 1 tab, 4 refs. #AIC 103.
- #NO314 Shah, M.M. 1980. Estimated rate of pressurization and depressurization of buildings. ASHRAE Transactions 86(1):251-257, 2 refs. #AIC 102.
- <u>#NO</u>320 Harrje, D.T., Blomsterberg, A., and Persily, A. 1979. Reduction of air infiltration due to window and door retrofits in an older home. Princeton University, Center for Energy and Environmental Studies, report PU/CEES 85,25 pg 10 figs 2 tabs.10 refs, #AIC 64.
- #NO328 Kronvall, J.Air. 1978. Leakage of buildings-a literature list. Lund Institute of Technology, Divisision of Building Technology, report 77, #AIC 54.
- #NO339 Tietsma, G.J., Peavy, B.A. 1978. The thermal performance of a two-bedroom mobile home. National Bureau of Standards Building Science Series, 102:55 pg 1 56 figs 2 refs. #AIC

#NO344 Sasaki, J.R. and Wilson, A.G. 1962. Window air leakage. National Research Council Canada, Division of Building Research, Building Digest no 25, #AIC 1671.

#NO398 Grot, R.A. and Clark, R.E. 1979. Air leakage characteristics of low-income housing and the effectiveness of weatherization techniques for reducing air infiltration. Proceedings ASHRAE/DOE Conference "Thermal performance of the exterior envelopes of buildings" Kissimmee, Florida 3-5 December 1979, 8 tabs 10 figs 5 refs, #AIC 157.

<u>#NO</u>457 Blomsterberg, A., Sherman, M.H. and Grimsrud, D.T. 1979. A model correlating air tightness and air infiltration in houses. Proceedings ASHRAE/DOE Conference "Thermal performance of the exterior envelopes of buildings" DEC. 3-5 1979 Florida, #AIC 342.

<u>#NQ</u>458 Weidt, J.L., Weidt, J., and Selkowitz, S. 1979. Field air infiltration performance of new residential windows. Proceedings. ASHRAE/DOE Conference "Thermal performance of the exterior envelopes of buildings" 3-5. Dec. 1979 Florida, Lawrence Berkeley Laboratory report LBL 9937, #AIC 387.

<u>#NO</u>459 Sherman, M.H., Grimsrud, D.T., and Sonderegger, R.C. 1979. Low pressure leakage function of a building. Proceedings ASHRAE/DOE Conference "Thermal performance of the exterior envelopes of buildings" Dec. 3-5 1979 Florida, 6 figs, 5 refs, #AIC 20.

<u>#NO</u>461 Tsongas, G.A., Odell, F.G., and Thompson, J.C. 1979. A field study of moisture damage in walls insulated without a vapour barrier. Proceedings ASHRAE/DOE Conference "Thermal performance of the exterior envelopes of buildings" 3-5 December 1979 Florida, #AIC 1372.

#NO466 Burch, D.M., Luna, D.E. 1980. A mathematical model for predicting attic ventilation rates required for preventing condensation on roof sheathing. ASHRAE Transactions 86(1):201-220, 10 figs, 3 tabs, 14 refs, #AIC 175.

#NO478 Sherman, M.H., Grimsrud, D.T. 1980. Infiltration-pressurization correlation: simplified physical modeling. ASHRAE Transactions 82(2):778-807, LBL 10163, 4 figs, 16 refs, #AIC 192.

<u>#NO</u>509 Hunt, C.M., Porterfield, J.M., and Ondris, P. 1978. Air leakage measurements in three apartment houses in the Chicago area. National Bureau of Standards Interagency Report NBSIR 78-1475 24p, 12 figs, 9 refs, #AIC 205.

#NO526 Hunt, C.M., Treado, S.J., and Peavy, B.A. 1976. Air leakage measurements in a mobile home. National Bureau of Standards Interagency Report, NBSIR 76-1063, 23 pg, 9 figs, 5 tabs, 4 refs, #AIC 210.

#NO569 Stricker, S. 1974. Measurement of air leakage of houses. Ontario Hydro Research quarterly, 26(4):11-18, 7 figs, 2 refs, #AIC 220.

<u>#NO</u>597 Sasaki, J.R. 1968. Air leakage characteristics of some brick and concrete block walls. National Research Council of Canada, Division of Building Research, Technical note no. 525, 5p, 2 figs, 1 tab, #AIC 273.

<u>#NO</u>618 Beach, R.K. 1979. Relative tightness of new housing in the Ottawa area. Division of Building Research, National Research Council of Canada. Building research note no. 149 7p, 6 figs, 3 tabs, #AIC 272.

#NO646 Treado, S.J., Burch, D.M., Hunt, C.M. 1979. An investigation of air infiltration characteristics and mechanisms for a townhouse. National Bureau of Standards Technical Note, 992, 31 pg, 7 figs, 8 refs, #AIC 311.

#NO706 Shaw, C.Y. and Tamura, G.T. 1980. Mark XI energy research project, Air tightness and air infiltration measurements. Division of Building Research, National Research Council of Canada. Building Research Note no. 162, Ottawa 7pg, 14 figs, 1 tab, 12 refs, #AIC 609.

<u>#NO</u>708 Scanada Consultants Ltd. 1979. Effect of high levels of insulation on the heating fuel consumption of Canadian houses. Report for the HUDAC Technical Research Committee, Canada, Project T80-78-30, 17p, 8 tabs, 4 figs, #AIC 348.

#NO712 Hunt, C.M. 1980. Air infiltration: A review of some existing measurement techniques and data. In "Building Air Change Rate and Infiltration Measurements" Proceedings, ASTM Conference Gaithersburg 13 March 1978 C.M. Hunt, J.C. King, H.R. Trechsel eds. pp 3-23, 5 figs, 51 refs, AIC.

#NO788 Grimsrud, D.T., Sonderegger, R.C., and Sherman M.H. Infiltration measurements in audit and retrofit programs. Lawrence Berkeley Laboratory report. #AIC 388.

#NO891 Dumont R.S., Orr H.W., and Figley D.A. 1981. Air tightness measurements of detached houses in the Saskatoon area. Building Research Note no.178 Division of Building Research NRCC 18p, 2 figs, 7 tabs, 6 refs.

#NO993 Retrospectors, Inc. 1981. Air tightness testing and sealing of homes in Ottawa, Ontario. Ontario Ministry of Municipal Affairs and Housing, Report no. 11501 13pp, 2 figs, 1 tab.

#NO1004 Scheunemann, E.C. 1982. Mark XI energy research project. Summary of results 1978-1981. Building Research Practice Note no. 27 National Research Council of Canada 18pp, 3 figs, 10 tabs, 13 refs.

#NO1008 Shaw, C.Y., and Brown, W.C. 1982. Effect of a gas furnace chimney on the air leakage characteristic of a two-storey detached house. Preprint 3rd AIC Conference "Energy efficient domestic ventilation systems" London 20-23 September, 1982 7pp, 10 figs.

#NO1056 Shaw, C.Y. 1981. A correlation between air infiltration and airtightness for houses in a developed residential area. ASHRAE Transactions 87(2):333-341, 9 figs, 6 refs.

<u>#NO</u>1057 Hollowell, C.D., Young, R.A., Berk, J.V., and Brown, S.R. 1982. Energy conserving retrofits and indoor air quality in residential housing. ASHRAE Transactions 88(1):875-893, 3 figs, 7 tabs, 9 refs.

<u>#NO</u>1065 Krinkel, D.L., Dickeroff, D.J., Casey, J. and Grimsrud, D.T. 1980. Pressurization test results: Bonneville Power Administration Energy Conservation Study. LBL Report no. 10996, 13pp, 4 figs, 1 tab, 2 refs.

#NO1070 Offermann, F.J., Gurman, J.R., and Hollowell, C.P. 1981. Midway house-tightening project: a study of indoor air quality. LBL Report 12777 27pp, 4 tabs, 2 figs, 15 refs.

<u>#NO</u>1076 Blomsterberg, A.K., Modera, M.P., Grimsrud, D.T. 1981. The Mobile Infiltration Test Unit - Its design and capabilities:Preliminary experimental results. LBL Report no. 12259 20pp, 5 figs, 2 tabs, 5 refs.

#NO1155 Dickinson, J.B., D.T. Grimsrud, D.L. Krinkel, R.D. Lipschutz. 1982. Results of the Bonneville Power Adminstration Weatherization and Tightening Projects at the Midway Substation residential community. February. LBL-12742.

#NO1156 Lipschutz, R.D., Dickinson, J.B., and Diamond, R.C. 1982. Infiltration and leakage measurements in new houses incorporating energy efficient features. 1982 Summer Study in Energy Efficient Buildings Santa Cruz CA 22-28 August 1982, LBL Report no. 14733.

- <u>#NO</u>1157 Dickerhoff, D.J., Grimsrud, D.T., and Lipschutz, R.D. 1982. Component leakage testing in residential buildings. 1982 Summer Study in Energy Efficient Buildings, Santa Cruz CA August 22-28 1982, LBL Report no. 14735.
- #NO1158 Dickinson, J.B., Lipschutz, R.D., O'Regan, B., and Wagner, B.S. 1982. Results of recent weatherization retrofit projects. 1982 Summer Study in Energy Efficient Buildings, Santa Cruz CA August 22-28 1982, LBL Report no. 14734, 19pp, 5 tabs, 19 refs.
- <u>#NO</u>1170 Grimsrud, D.T., Sonderegger, R.C., and Sherman, M.H. 1981. Infiltration measurements in audit and retrofit programs. Energy Audit Workshop 13-15 April 1981 SCBR Document D21, pp 115-139, 5 figs, 4 tabs, 14 refs.
- #NO1175 Giesbrecht, P. 1982. An abstract on airtightness in houses. Ener-Corp Management Report. 25pp, 22 figs, 11 refs, #AIC 731,
- #NO1184 Persily, A.K., and Linteris, G.T. 1983. A comparison of measured and predicted infiltration rates. ASHRAE Transactions 89(2B):183-200, 17 refs, 6 figs, 6 tabs.
- #NO1207 Persily, A.K. and Grot, R.A. 1983. Air infiltration and building tightness measurements in passive solar residences. Reprint Solar Engineering ():116-121, 2 tabs, 5 figs, 15 refs.
- <u>#NO</u>1227 O'Riordan, M.C., James, A.C., Rae, S. and Wrixon, A.D. 1983. Human exposure to radon decay products inside dwellings in the United Kingdom. National Radiological Protection Board R152 41pp, 8 tabs, 110 refs.
- #NO1234 Crall, C.P. Development of the air infiltration model for the energy performance design system. ASHRAE Transactions 89(2B):201-210, 2 figs, 10 refs.
- <u>#NO</u>1259 Bassett, M. 1983. Air infiltration in New Zealand houses. 4th AIC Conference "Air infiltration reduction in existing buildings" Switzerland, 26-28 September 1983 p.14.1-14.18, 6 figs, 1 tab, 17 refs.
- <u>#NO</u>1261 Reinhold, C., and Sonderegger, R. 1983. Component leakage areas in residential buildings. 4th AIVC Conference "Air infiltration reduction in existing buildings" Switzerland, 26-28 September 1983 p.16.1-16.3, 13 tabs, 5 figs, 37 refs.
- #NO1277 Klems, J.H. 1983. Methods of estimating air infiltration through windows. Energy and Buildings 5(4):243-252, 4 tabs, 21 refs.
- #NO1284 Dumont, R.S., Orr, H.W., and Lux, M.E. 1982. Low energy prairie housing a survey of some essential features. DBR Building Practice Note No.38 pp 10, 4 tabs, 10 refs.
- <u>#NO</u>1336 Brandle, K. and Boehm, R.F. 1982. Airflow windows performance and applications. Proc. ASHRAE/DOE Conference "Thermal performance of the exterior envelope of the building II" Dec 6-9 1982 USA p.361-379, 12 figs, 5 tabs.
- #NO1338 Persily, A. 1982. Repeatability and accuracy of pressurization testing. Proc. ASHRAE/DOE Conference "Thermal performance of the exterior envelope of the building II" Dec 6-9 1982 USA p.380-390, 7 figs, 1 tab, 19 refs.
- <u>#NO</u>1340 Grimsrud, D.T. Sherman, M.H., and Sonderegger, R.C. 1982. Calculating infiltration implications for a construction quality standard. Proc. ASHRAE/DOE Conference "Thermal performance of the exterior envelope of the building II" Dec 6-9 1982 USA p.422-450, 9 tabs, 5 figs, 30 refs.

<u>#NO</u>1354 Nagda, N.L., Harrje, D.T., Koontz, M.D. and Purcell, G.G. 1984. A detailed investigation of the air infiltration characteristics of two houses. ASTM Symposium on measured air leakage performance of buildings Philadelphia USA April 2-3 1984. STP - 904, 4 refs.

<u>#NO</u>1356 Gammage, R.B., Hawthorne, A.R. and White, D.A. 1984. Parameters affecting air infiltration and air tightness in 31 east Tennessee homes. ASTM Symposium on measured air leakage performance of buildings, Philadelphia USA April 2-3 1984 13 pp., 2 tabs.

<u>#NO</u>1357 Bassett, M.R. 1984. Building site measurements for predicting air infiltration rates. ASTM Symposium on measured air leakage performance of buildings Philadelphia USA April 2-3 1984 STP-904, 7 figs, 6 tabs, 12 refs.

<u>#NO</u>1358 Kim, A., and Shaw, C.Y. 1984. Seasonal variation in airtightness of two detached houses. ASTM Symposium on measured air leakage performance of buildings, Philadelphia USA April 2-3 1984. STP 904, 9 figs, 3 tabs.

#NO1382 Cunningham M.J. 1984. Further analytical studies of building cavity moisture concentrations. Building and Environment 19(1):21-28, 6 figs, 1 tab, 15 refs.

#NO1431 Sulatisky, M. 1989. Air tightness tests on 200 new houses across Canada. Summary of results. Canada Buildings Energy Technology Transfer Program publication 84.01, 51pp, 6 figs, 34 tabs, 6 refs.

#NO1484 USA Department of Energy. 1983. Energy efficient windows. A key to energy performance. USA Dept. of Energy, 8pp, 4 figs, 18 refs.

#NO1514 Harrje, D.T., and Born, G.J. 1982. Cataloging air leakage components in houses. Center for Energy and Environmental Studies, Princeton University, 22pp, 21 figs.

#NO1515 Jacobson, D., Dutt G S., and Socolow R H. 1984. Pressurization testing, infiltration reduction and energy savings. PU/CEES Report No. 173, Center for Energy and Environmental Studies, Princeton University, 37pp, 1 fig, 11 tabs, 14 refs. Presented at the ASTM Symposium on the Measured Air Leakage Performance of Buildings, Philadelphia, 1984.

<u>#NO</u>1594 Carlsson, A., Kronvall, J. 1984. Constancy of air tightness in buildings. 5th AIC Conference 'The implementation and effectiveness of air infiltration standards in buildings' Reno, Nevada, 1-4 October 1984, pp 16.1-16.13, 6 figs, 1 tab, 2 refs.

#NO1647 Quackenboss, J.J. et al. 1984. Residential indoor air quality, structural leakage and occupant activities for 50 Wisconsin homes.Indoor Air. Vol 5. Buildings, Ventilation and Thermal Climate. Edited by B. Berglund, T. Lindvall, J. Sundell. Swedish Council for Building Research, pp. 411-420, 2 tabs, 23 refs.

#NO1649 Gammage, R B. et al. 1984. Parameters affecting air leakage in East Tennessee homes. Indoor Air. Vol 5. Buildings, Ventilation and Thermal Climate. Edited by B Berglund, T Lindvall, J Sundell. Swedish Council for Building Research, pp. 429-434, 2 tabs, 6 refs.

#NO 1670 Poreh, M, and Hassid, S. 1982. Simulation of buoyancy and wind induced ventilation. Wind Tunnel Modeling for Civil Engineering Applications. Proceedings of the International Workshop on Wind Tunnel Modeling Criteria and Techniques in Civil Engineering Applications, Gaithersburg, USA, April 14-16, 1982. Edited by T A Reinhold. Cambridge, UK: CUP. pp. 558-566. 3 figs, 6 refs.

#NO1721 lobst, J. et al. 1984. Interior storm windows. Rodale Product Testing Report No 117-T. Emmaus, Pennsylvania, USA. Rodale Press. 41p, 3 figs, 8 tabs, 5 refs.

#NO1755 Klote, J.H. 1985. Smoke control in VA hospitals. ASHRAE Journal, 27(4):42-45, 1 fig,

2 tabs, 8 refs.

#NO1853 Persily, A.K. and Grot, R.A. 1985. Accuracy in pressurization data analysis. ASHRAE Transactions 91(2B):105-119, 5 tabs, 18 refs.

#NO1856 Herrlin, M.K. 1985. MOVECOMP: a static-multicell-airflow-model. ASHRAE Transactions 91(2B):1989- 1996, 2 figs, 7 refs.

#NO1859 Silberstein, S. and Grot, R.A. 1985. Air exchange rate measurements of the National Archives Building. ASHRAE Transactions 91(2A):503-510, 3 figs, 1 tab, 6 refs.

#NO1869 Yuill, G. 1985. Determination of the effective leakage areas of houses by multilinear regression analysis of the energy consumption data. ASHRAE Transactions 91(2B):133-143, 2 figs, 4 tabs, 2 refs.

#NO1870 Lipschutz, R.D., Girman, J.R., Dickinson, J.B., Allen, J.R., and Traynor, G.W. 1981. Infiltration and indoor air quality and indoor air quality in energy efficient houses in Eugene, Oregon. Berkeley, California, USA. Lawrence Berkeley Laboratory, LBL-12924 UC-95d. 49p., 5 figs, 9 tabs, 27 refs.

<u>#NO</u>1872 Modera, M.P., and Sherman, M.H. 1985. AC pressurization: a technique for measuring leakage area in residential buildings. ASHRAE Transactions 91(2B):120-132, 4 figs, 2 tabs, 20 refs.

<u>#NO</u>1873 Gadsby, K.J., and Harrje, D.T. 1985. Fan pressurization of buildings: standards, calibration, and field experience. ASHRAE Transactions 91(2B):95-104, 6 figs, 1 tab, 24 refs.

#NO1874 Trechsel, H.R., Achenbach, P.R., and Ebbets, J.R. 1985. Effect of an exterior air-infiltration barrier on moisture condensation and accumulation within insulated frame wall cavities. ASHRAE Transactions 91(2A):545-559, 6 figs, 5 tabs, 7 refs.

<u>#NO</u>1999 Weidt, J.L., Weidt, J., and Selkowitz, S. 1979. Field air leakage of newly installed residential windows. Presented at the ASHRAE/DOE Conference, Kissimmee, Florida, December 3-5,1979. 17p. 4 figs, 7 tabs, 12 refs.

#NO2062 Wilson, A.G. and Sasaki, J.R. 1972. Evaluation of Window Performance. Division of Building Research, NRCC, Ottawa, Canada. Nat. Bur. Stand. Special Publication 361, pp. 385-394 Ottawa, Canada.

<u>#NO</u>2074 Kehrli, D.W. 1985. Window air leakage performance as a function of differential temperatures and accelerated environmental aging. Rochester, New York, USA:Schlegel Corporation. 28p. 13 figs, 1 tab, 10 refs.

#NO2251 Lagus, P.L., and King, J.C. 1984. Air leakage and fan pressurization measurements in selected naval housing. In: Measured air leakage in buildings. A symposium on performance of building constructions, Philadelphia, 2-3 April 1984. ASTM Special Technical Publication 904. Edited by H R Trechsel and P L Lagus. ASTM. p5-16. 4 figs, 6 tabs, 9 refs.

#NO2252 Persily, A.K. 1986. Measurements of air infiltration and airtightness in passive solar homes. Measured air leakage of buildings. A symposium on performance of building constructions, Philadelphia, 2-3 April 1984. ASTM Special Technical Publication 904. Edited by H R Trechsel and P L Lagus. ASTM. p46-60. 4 figs, 3 tabs, 20 refs.

#NO2253 Goldschmidt, V.W. 1986. Average infiltration rates in residences: comparison of electric and combustion heating systems. In: Measured air leakage of buildings. A symposium on performance of building constructions, Philadelphia 2-3 April 1984. ASTM Special Technical

Publication 904. Edited by H R Trechsel and P L Lagus. ASTM 1986. p70-98. Tabs, 68 refs.

#NO2257 Persily, A.K. and Grot, R.A. 1986. Pressurization testing of federal buildings. Measured air leakage of buildings. In: A symposium on performance of building constructions, Philadelphia 2-3 April 1984. ASTM Special Technical Publication 904. Edited by H R Trechsel and P L Lagus. ASTM. p184-200. 3 figs, 5 tabs, 21 refs.

#NO2258 Verschoor, J.D., and Collins, J. O. 1984. Demonstration of air leakage reduction program in Navy family housing. In: Measured air leakage of buildings. A symposium on performance of building constructions, Philadelphia 2-3 April 1984. ASTM Special Technical Publication 904. Edited by H R Trechsel and P L Lagus. ASTM. p294-303. 5 figs, 1 tab.

<u>#NO</u>2259 Weimar, R.D., and Luebs, D.F. 1986. Field performance of an air infiltration barrier. In: Measured air leakage of buildings. A symposium on performance of building constructions, Philadelphia 2-3 April 1984. ASTM Special Technical Publication 904. Edited by H R Trechsel and P L Lagus. ASTM. p304-311. 2 figs, 4 tabs.

<u>#NO</u>2260 Giesbrecht, P., and Proskiw, G. 1986. An evaluation of the effectiveness of air leakage sealing. In: Measured air leakage of buildings. A symposium on performance of building constructions, Philadelphia 2-3 April 1984. ASTM Special Technical Publication 904. Edited by H R Trechsel and P L Lagus. ASTM. p312-322. 1 fig, 3 tabs, 11 refs.

<u>#NO</u>2378 Tanaka, H., and Lee, Y. 1986. Scale model verification of pressure differentials and infiltration induced across the walls of a high-rise building. J Wind Engng Ind Aerodynam, 125 (1): 1-14, 5 figs, 6 refs.

<u>#NO</u>2592 Dumont, R.S. 1987. Improved methods for air sealing residences. Proceedings, Fifth Annual Conference, Energy Efficient Buildings Association, Minneapolis, Minnesota, USA, April, 10p, 15 figs, 10 refs.

<u>#NO</u>2702 Lecompte, J.G.N. 1987. Airtightness of masonry walls. 8th AIVC Conference, 'Ventilation Technology - Research and Application', 21-24 September 1987, Proceedings, Ueberlingen, West Germany, p21.1-21.10, 4 figs, 8 refs.

#NO2703 Dudek, S.J.M., and Valentine, G. 1987. Condensation damage to timber frame housing. 8th AIVC Conference, 'Ventilation Technology - Research and Application', 21-24 September 1987, Proceedings, Ueberlingen, West Germany, p22.1-22.7, 2 figs, 7 refs.

#NO2739 Brunsell, J.T. 1987. The effect of vapour barrier thickness on air tightness. 8th AIVC Conference, 'Ventilation Technology - Research and Application', Ueberlingen, Federal Republic of Germany, 21-24 September, Supplement to Proceedings, p63-74, 9 figs, 3 refs.

#NO2808 Matthews, T.G., Thompson, C.V., and Monar, K.P. 1987. Impact of HVAC operation and leakage on ventilation and intercompartment transport: studies in a research house and 39 Tennessee Valley homes. Indoor Air'87, Proceedings of the 4th International Conference on Indoor Air Quality and Climate, Berlin (West), 17-21 August 1987, Vol 3, Institute for Water, Soil and Air Hygiene, p209-213, 2 figs, 2 refs.

<u>#NO</u>2857 Nisson J.D.N. 1982. Testing for airtightness. Energy Design Update, September-October, p8-14, 1 fig.

#NO2861 Anon. 1983. Specifications for airtightness. Energy Design Update, 2(3):7-9, November, 1 fig.

#NO2866 Anon. 1985. Testing for airtightness - a guide to the blower door depressurization test. Energy Design Update, 4(4):8-23, 11 figs.

#NO2869 Anon. 1987. Taping for tightness - some astonishing results. Energy Design Update, 6(4):3-9, 1 fig, 4 tabs.

#NO2881 Love, J.A. 1987. Airtightness testing methods for row housing. ASHRAE Transactions 93(1):1359-1370, 5 figs, 8 tabs, 6 refs.

#NO3004 Platts, R.E. 1988. Wet walls: apparent incidence of excessive condensation in house envelope construction in Canada. In: Symposium on air infiltration, ventilation and moisture transfer, Fort Worth, Texas, USA, Building Envelope Coordinating Council, p82-90, 4 figs, 5 refs.

<u>#NO</u>3009 Houston, A.J. 1988. Improved performance standards for polyethylene sheet vapour barriers. in: Symposium on air infiltration, ventilation and moisture transfer, Fort Worth, Texas, USA, Building Envelope Coordinating Council, p141-150. 6 figs, 6 refs.

<u>#NO</u>3017 Harris, J. 1988. Comparison of measured air leakage rates and indoor air pollutant concentrations with design standards for energy efficient residential buildings. In: Symposium on air infiltration, ventilation and moisture transfer, Fort Worth, Texas, USA, Building Envelope Coordinating Council, p229-242, 13 figs, 9 tabs, 8 refs.

#NO3019 Swinton, M.C., Moffatt, S., and White, J.H. 1988. Residential combustion venting failures - A systems approach. In: Symposium on air infiltration, ventilation and moisture transfer, Fort Worth, Texas, USA, Building Thermal Envelope Coordinating Council, pp 33-48, 10 figs, 1 tab.

<u>#NO</u>3020 Kehrli, D. 1988. Fenestration air tightness limitations: serviceability/ durability. in: Symposium on air infiltration, ventilation and moisture transfer, Fort Worth, Texas, USA, Building Envelope Coordinating Council, p275-280, 3 refs.

#NO3021 Lischkoff, J., Quirouette, R., and Stritesky, V. 1988. Design, construction and performance evaluation of air barrier systems. In: Symposium on air infiltration, ventilation and moisture transfer, Fort Worth, Texas, USA, Building Envelope Coordinating Council, p281-285.

#NO3032 Scheuneman, E., and Wilson, A.G. 1988. The impact of commercial air sealing of houses on air tightness and fuel consumption. In: Symposium on air infiltration, ventilation and moisture transfer, Fort Worth, Texas, USA, Building Envelope Coordinating Council, p411-419, 18 tabs, 12 refs.

<u>#NO</u>3034 Tuluca, A., Keyes, P.A. 1988. Leakage areas for opaque wood frame walls - a preliminary study. In: Symposium on air infiltration, ventilation and moisture transfer, Fort Worth, Texas, USA, Building Envelope Coordinating Council, p433-442, 7 tabs, 4 refs.

<u>#NO</u>3035 Nantka, M.B. 1988. A study of air infiltration and natural ventilation in dwelling houses. In: Symposium on air infiltration, ventilation and moisture transfer, Fort Worth, Texas, USA, Building Envelope Coordinating Council, p443-455, 7 figs, 10 refs.

#NO3273 Riley, M. 1988. Comparison of airtightness retesting results. Canada, Ottawa, Energy Mines and Resources, Revised November, 15pp, 5 figs, 5 tabs.

#NO3332 Dickson, D.J. 1988. Infiltration rates in a low energy house with a fireplace. Building Research and Practice, 4:237-245, 13 figs, 1 ref.

<u>#NO</u>3365 Gettings, M.B. 1989. Blower door directed infiltration reduction procedure description and field test. ASHRAE Transactions 95(1):58-63, 2 tabs.

<u>#NO</u>3398 Peterson, R.A., and Hendricks, L.T. 1988. Ceiling airtightness and the role of air barriers and vapour retarders. USA, University of Minnesota, Cold Climate Housing Information Center, 9pp, 10 figs, 8 refs.

BIBLIOGRAPHY Part II - BY AUTHOR

Anon. 1983. Specifications for airtightness. Energy Design Update, 2(3):7-9.

Anon. 1985. Testing for airtightness - a guide to the blower door depressurization test. Energy Design Update, 4(4):8-23.

Anon. 1987. Taping for tightness - some astonishing results. Energy Design Update, Vol.6, No.4:3-9.

Bassett, M. 1983. Air infiltration in New Zealand houses. 4th AIC Conference "Air infiltration reduction in existing buildings" Switzerland, 26-28 September 18:1-14.

Bassett, M.R. 1984. Building site measurements for predicting air infiltration rates. ASTM Symposium on measured air leakage performance of buildings Philadelphia, USA. April 2-3 1984. STP-904.

Beach, R.K. 1979. Relative tightness of new housing in the Ottawa area. Division of Building Research, National Research Council of Canada. Building research note no. 149 pg. 17.

Blomsterberg A.K., and Harrje D.T. 1979. Approaches to evaluation of air infiltration energy losses in buildings. ASHRAE Transactions 85(1):797-815, also "Evaluating air infiltration energy losses" ASHRAE Journal. 21(5):25-32.

Blomsterberg, A., Sherman, M.H. and Grimsrud, D.T. 1979. A model correlating air tightness and air infiltration in houses. Proceedings ASHRAE/DOE Conference "Thermal performance of the exterior envelopes of buildings" DEC. 3-5 1979 Florida.

Blomsterberg, A.K., Modera, M.P., and Grimsrud, D.T. 1981. The Mobile Infiltration Test Unit - Its design and capabilities: Preliminary experimental results. LBL Report no. 12259 20 pp.

Brandle, K. and Boehm, R.F. 1982. Airflow windows - performance and applications. Proc. ASHRAE/DOE Conference "Thermal performance of the exterior envelope of the building II" USA pg. 361-379.

Brunsell, J.T. 1987. The effect of vapour barrier thickness on air tightness. 8th AIVC Conference, 'Ventilation Technology - Research and Application', Ueberlingen, Federal Republic of Germany, 21-24 September, Supplement to Proceedings, pg. 63-74.

Burch, D.M., Luna, D.E. 1980. A mathematical model for predicting attic ventilation rates required for preventing condensation on roof sheathing. ASHRAE Transactions 86(1):201-220.

Bursey T., Green G.H. 1970. Combined thermal and air leakage performance of double windows. ASHRAE Transactions 76(2):215-226.

Caffey, G.E. 1979. Residential air infiltration. ASHRAE Transactions 85(1):41-57.

Carlsson, A., Kronvall, J. 1984. Constancy of air tightness in buildings. 5th AIC Conference 'The implementation and effectiveness of air infiltration standards in buildings' Reno, Nevada, 1-4, pg. 16.1-16.13.

Collins, J.O. 1979. Air infiltration measurement and reduction techniques on electrically heated homes. Proceedings ASHRAE/DOE Conference on "Thermal Performance of the Exterior Envelopes of Buildings "Florida, 3-5 December 1979 28p.

Crall, C.P. 1989. Development of the air infiltration model for the energy performance design system. ASHRAE Transactions 89(2B):201-210, 2 figs, 10 refs.

£

Cunningham, M.J. 1984. Further analytical studies of building cavity moisture concentrations. Building and Environment 19(1):21-28.

Dickerhoff, D.J., Grimsrud, D.T., and Lipschutz, R.D. 1982. Component leakage testing in residential buildings. 1982 Summer Study in Energy Efficient Buildings, Santa Cruz CA August 22-28 1982, LBL Report no. 14735.

Dickinson, J.B., D.T. Grimsrud, D.L., Krinkel, R.D. Lipschutz. 1982. Results of the Bonneville Power Administration Weatherization and Tightening Projects at the Midway Substation residential community. February. LBL Report No. 1272.

Dickinson, J.B., Lipschutz, R.D., O'Regan, B., and Wagner, B.S. 1982. Results of recent weatherization retrofit projects. 1982 Summer Study in Energy Efficient Buildings, Santa Cruz CA August 22-28 1982, LBL Report no. 14734.

Dickson, D.J. 1988. Infiltration rates in a low energy house with a fireplace. Building Research and Practice 4:237-245.

Dudek, S.J.M., and Valentine, G. 1987. Condensation damage to timber frame housing. 8th AIVC Conference, 'Ventilation Technology - Research and Application', 21-24 September, Proceedings, Ueberlingen, West Germany, pg. 22.1-22.7.

Dumont, R.S. 1987. Improved methods for air sealing residences. Proceedings, Fifth Annual Conference, Energy Efficient Buildings Association, Minneapolis, Minnesota, USA, April, 10p.

Dumont, R.S., Orr, H.W., and Lux, M.E. 1982. Low energy prairie housing - a survey of some essential features. DBR Building Practice Note no. 38:pp. 10, 4 tabs, 10 refs.

Figley, D.A., Dumont, R.S. and Orr H.W. 1981. Air tightness measurements of detached houses in the Saskatoon area. Building Research Note no. 178 Division of Building Research NRCC.

Funkhouser, P.E. 1979. Air infiltration effects on the thermal transmittance of concrete building systems. ASHRAE Transactions 85(1):918-925.

Gadsby, K.J., and Harrje, D.T. 1985. Fan pressurization of buildings: standards, calibration, and field experience. ASHRAE Transactions 91(2B):95-104.

Gammage, R B. 1984. Parameters affecting air leakage in East Tennessee homes. Indoor Air. Vol 5. Buildings, Ventilation and Thermal Climate. Edited by B Berglund, T Lindvall, J Sundell. Swedish Council for Building Research, pp. 429-434.

Gammage, R.B., Hawthorne, A.R. and White, D.A. 1984. Parameters affecting air infiltration and air tightness in 31 east Tennessee homes. ASTM Symposium on measured air leakage performance of buildings Philadelphia USA April 2-3 1984. STP 904, 13 pp., 2 tabs.

Gettings, M.B. 1989. Blower door directed infiltration reduction procedure description and field test. ASHRAE Transactions, 95(1):58-63.

Giesbrecht, P. 1982. An abstract on airtightness in houses. Ener-Corp Management Report. 25pp.

Giesbrecht, P., and Proskiw, G. 1986. An evaluation of the effectiveness of air leakage sealing. In: Measured air leakage of buildings. A symposium on performance of building constructions, Philadelphia 2-3 April 1984. ASTM Special Technical Publication 904. Edited by H R Trechsel and P

L Lagus. ASTM:pg. 312-322.

Goldschmidt, V.W., and Wilhelm, D.R. 1979. Summer infiltration rates in mobile homes. ASHRAE Transactions 85(1):840-850.

Goldschmidt, V.W. 1986. Average infiltration rates in residences: comparison of electric and combustion heating systems. In: Measured air leakage of buildings. A symposium on performance of building constructions, Philadelphia 2-3 April 1984. ASTM Special Technical Publication 904. Edited by H R Trechsel and P L Lagus. ASTM 1986. pg. 70-98.

Grimsrud, D.T., Sonderegger, R.C., and Sherman M.H. 1981. Infiltration measurements in audit and retrofit programs. Lawrence Berkeley Laboratory report.

Grimsrud, D.T., Sherman, M.H., and Diamond, R.C. et.al. 1979. Infiltration - pressurization correlations: detailed measurements on a California house. ASHRAE Transactions 85(1):851-865.

Grimsrud, D.T. Sherman, M.H., and Sonderegger, R.C. 1982. Calculating infiltration - implications for a construction quality standard. Proc. ASHRAE/DOE Conference "Thermal performance of the exterior envelope of the building II" Dec 6-9 1982 USA pg. 422-450.

Grimsrud, D.T., Sherman M.H., Diamond R.C., and Sonderegger R.C. 1979. Air leakage, surface pressures and infiltration rates in houses. 2nd International C.I.B. Symposium on Energy Conservation in the Built Environment, Copenhagen, May 28 - June 1st 1979. Preprints - session 2, pg. 111-120.

Grimsrud, D.T., Sonderegger, R.C., and Sherman, M.H. 1981. Infiltration measurements in audit and retrofit programs. Energy Audit Workshop 13-15 April 1981 SCBR Document D21, pg. 115-139.

Grot, R.A. and Clark, R.E. 1979. Air leakage characteristics of low-income housing and the effectiveness of weatherization techniques for reducing air infiltration. Proceedings ASHRAE/DOE Conference "Thermal performance of the exterior envelopes of buildings" Kissimmee, Florida 3-5 December 1979.

Grubbs W.J. 1967. Leaky prime windows. ASHRAE Journal 9(1):109-112.

Harris, J. 1988. Comparison of measured air leakage rates and indoor air pollutant concentrations with design standards for energy efficient residential buildings. In: Symposium on air infiltration, ventilation and moisture transfer, Fort Worth, Texas, USA, Building Envelope Coordinating Council, pg. 229-242.

Harrje, D.T., Blomsterberg, A., and Persily, A. 1979. Reduction of air infiltration due to window and door retrofits in an older home. Princeton University, Center for Energy and Environmental Studies, report PU/CEES 85, 25 pg.

Harrje, D.T., and Born, G.J. 1982. Cataloging air leakage components in houses. Center for Energy and Environmental Studies, Princeton University, 22pp.

Herrlin, M.K. 1985. MOVECOMP: a static-multicell-airflow-model. ASHRAE Transactions 91(2B):1989-1996.

Hollowell, C.D., Young, R.A., Berk, J.V., and Brown S.R. 1982. Energy conserving retrofits and indoor air quality in residential housing. ASHRAE Transactions 88(1):875-893.

Houghten, F.C. and Schrader, C.C. 1924. Air leakage through the openings in buildings. ASHVE Transactions 30:105-120.

Houston, A.J. 1988. Improved performance standards for polyethylene sheet vapour barriers. In: Symposium on air infiltration, ventilation and moisture transfer, Fort Worth, Texas, USA, Building Envelope Coordinating Council, pg. 141-150.

Hunt, C.M. 1980. Air infiltration: A review of some existing measurement techniques and data. In "Building Air Change Rate and Infiltration Measurements" Proceedings, ASTM Conference Gaithersburg 13 March 1978 C.M. Hunt, J.C. King, H.R. Trechsel eds. pp 3-23.

Hunt, C.M., Porterfield, J.M., and Ondris, P. 1978. Air leakage measurements in three apartment houses in the Chicago area. National Bureau of Standards Interagency Report NBSIR 78-1475 24p.

Hunt, C.M., Treado, S.J., and Peavy, B.A. 1976. Air leakage measurements in a mobile home. National Bureau of Standards Interagency report, NBSIR 76-1063, 23 pg.

Hunt C.M., and Burch D. 1975. Air infiltration measurements in a four-bedroom townhouse using sulphur hexafluoride as a tracer gas. ASHRAE Transactions, 81(1):186-201.

lobst, J. et al. 1984. Interior storm windows. Rodale Product Testing Report no. No 117-T. Emmaus, Pennsylvania, USA. Rodale Press.

Jacobson, D., Dutt G S., and Socolow R H. 1984. Pressurization testing, infiltration reduction and energy savings. PU/CEES Report No. 173, Center for Energy and Environmental Studies, Princeton University, Presented at the ASTM Symposium on the Measured Air Leakage Performance of Buildings, Philadelphia, 1984.

Keast D.N., and Pei, H-S. 1979. The use of sound to locate infiltration openings in buildings. Proceedings ASHRAE/DOE Conference "Thermal performance of the exterior envelopes of buildings" Florida, December 3-5, 1979 pg. 85-93.

Kehrli, D.W. 1985. Window air leakage performance as a function of differential temperatures and accelerated environmental aging. Rochester, New York, USA:Schlegel Corporation. 28p.

Kehrli, D. 1988. Fenestration air tightness limitations: serviceability/ durability. In: Symposium on air infiltration, ventilation and moisture transfer, Fort Worth, Texas, USA, Building Envelope Coordinating Council, pg. 275-280.

Kim, A., and Shaw, C.Y. 1984. Seasonal variation in airtightness of two detached houses. ASTM Symposium on measured air leakage performance of buildings, Philadelphia, USA, April 2-3 1984. STP-904.

Klems, J.H. 1983. Methods of estimating air infiltration through windows. Energy and Buildings 5(4):243-252.

Klote, J.H. 1985. Smoke control in VA hospitals. ASHRAE Journal, 27(4):42-45.

Krinkel, D.L., Dickeroff, D.J., Casey, J. and Grimsrud, D.T. 1980. Pressurization test results: Bonneville Power Administration Energy Conservation Study. LBL Report no. 10996, 13pp.

Kronvall, J.Air. 1978. Leakage of buildings-a literature list. Lund Institute of Technology, Divisision of Building Technology, report 77.

Lagus, P.L., and King, J.C. 1984. Air leakage and fan pressurization measurements in selected naval housing. In: Measured air leakage in buildings. A symposium on performance of building constructions, Philadelphia, 2-3 April. ASTM Special Technical Publication 904. Edited by H R Trechsel and P L Lagus. ASTM, pg. 5-16, 4 figs, 6 tabs, 9 refs.

Lecompte, J.G.N. 1987. Airtightness of masonry walls. 8th AIVC Conference, 'Ventilation Technology - Research and Application, 21-24 September, Proceedings, Ueberlingen, West Germany, pg. 21.1-21.10.

Lipschutz, R.D., Dickinson, J.B., and Diamond, R.C. 1982. Infiltration and leakage measurements in new houses incorporating energy efficient features. 1982 Summer Study in Energy Efficient Buildings Santa Cruz CA, 22-28 August, LBL Report no. 14733.

Lipschutz, R.D., Girman, J.R., Dickinson, J.B., Allen, J.R., and Traynor, G.W. 1981. Infiltration and indoor air quality in energy efficient houses in Eugene, Oregon. Berkeley, California, USA. Lawrence Berkeley Laboratory, LBL-12924 UC-95d. 49p.

Lischkoff, J., Quirouette, R., and Stritesky, V. 1988. Design, construction and performance evaluation of air barrier systems. In: Symposium on air infiltration, ventilation and moisture transfer, Fort Worth, Texas, USA, Building Envelope Coordinating Council, pg. 281-285.

Love, J.A. 1987. Airtightness testing methods for row housing. ASHRAE Transactions 93(1):1359-1370.

Lowinski, J.F. 1979. Thermal performance of wood windows and doors. ASHRAE Transactions 85(1):548-566.

Matthews, T.G., Thompson, C.V., and Monar, K.P. 1987. Impact of HVAC operation and leakage on ventilation and intercompartment transport: studies in a research house and 39 Tennessee Valley homes. Indoor Air'87, Proceedings of the 4th International Conference on Indoor Air Quality and Climate, Berlin (West), 17-21 August 1987, Vol 3, Institute for Water, Soil and Air Hygiene, pg. 209-213.

Modera, M.P., and Sherman, M. H. 1985. AC pressurization: a technique for measuring leakage area in residential buildings. ASHRAE Transactions 91(2B):120-132.

Nagda, N.L., Harrje, D.T., Koontz, M.D. and Purcell, G.G. 1984. A detailed investigation of the air infiltration characteristics of two houses. ASTM Symposium on measured air leakage performance of buildings Philadelphia USA April 2-3 1984. STP-904.

Nantka, M.B. 1988. A study of air infiltration and natural ventilation in dwelling houses. In: Symposium on air infiltration, ventilation and moisture transfer, Fort Worth, Texas, USA, Building Envelope Coordinating Council, pg. 443-455.

Nisson J.D.N. 1982. Testing for airtightness. Energy Design Update, September-October, pg. 8-14.

Offermann, F.J., Gurman, J.R., and Hollowell, C.P. 1981. Midway house-tightening project: a study of indoor air quality. LBL Report no. 12777 27pp.

O'Riordan, M.C., James, A.C., Rae S. and Wrixon, A.D. 1983. Human exposure to radon decay products inside dwellings in the United Kingdom. National Radiological Protection Board R152 41pp.

Persily, A. 1982. Repeatability and accuracy of pressurization testing. Proc. ASHRAE/DOE Conference "Thermal performance of the exterior envelope of the building II" Dec 6-9 USA p.380-390.

Persily, A.K. 1986. Measurements of air infiltration and airtightness in passive solar homes. In: Measured air leakage of buildings. A symposium on performance of building constructions, Philadelphia, 2-3 April. ASTM Special Technical Publication 904. Edited by H R Trechsel and P L Lagus. ASTM. p46-60.

Persily, A.K. and Grot, R.A. 1983. Air infiltration and building tightness measurements in passive solar residences. Reprint Solar Engineering ():116-121.

Persily, A.K. and Grot, R.A. 1985. Accuracy in pressurization data analysis. ASHRAE Transactions 91(2):105-119.

Persily, A.K. and Grot, R.A. 1986. Pressurization testing of federal buildings. In: Measured air leakage of buildings. A symposium on performance of building constructions, Philadelphia 2-3 April 1984. ASTM Special Technical Publication 904. Edited by H R Trechsel and P L Lagus. ASTM. pg. 184-200.

Persily, A.K., and Linteris, G.T. 1983. A comparison of measured and predicted infiltration rates. ASHRAE Transactions 89(2B):183-200.

Peterson, R.A., and Hendricks, L.T. 1988. Ceiling airtightness and the role of air barriers and vapour retarders. USA, University of Minnesota, Cold Climate Housing Information Center, 9pp. Platts, R.E. 1988. Wet walls: apparent incidence of excessive condensation in house envelope construction in Canada. In: Symposium on air infiltration, ventilation and moisture transfer, Fort Worth, Texas, USA, Building Envelope Coordinating Council, pg. 82-90.

Poreh, M, and Hassid, S. 1982. Simulation of buoyancy and wind induced ventilation. Wind Tunnel Modeling for Civil Engineering Applications. Proceedings of the International Workshop on Wind Tunnel Modeling Criteria and Techniques in Civil Engineering Applications, Gaithersburg, USA, April 14-16. Edited by T A Reinhold. Cambridge, UK:CUP. pp. 558-566.

Potter, I.N. 1979. Effect of fluctuating wind pressures on natural ventilation. ASHRAE Transactions 85(2):445-457.

Quackenboss, J.J. 1984. Residential indoor air quality, structural leakage and occupant activities for 50 Wisconsin homes. Indoor Air. Vol 5. Buildings, Ventilation and Thermal Climate. Edited by B. Berglund, T. Lindvall, J. Sundell. Swedish Council for Building Research, pp 411-420.

Reinhold, C., and Sonderegger, R. 1983. Component leakage areas in residential buildings. 4th AIVC Conference "Air infiltration reduction in existing buildings" Switzerland, 26-28 September, pg. 16.1-16.3.

Retrospectors, Inc. 1981. Air tightness testing and sealing of homes in Ottawa, Ontario. Ontario Ministry of Municipal Affairs and Housing, Report no. 11501 13pp.

Riley, M. 1988. Comparison of airtightness retesting results. Canada, Ottawa, Energy Mines and Resources, Revised November, 15pp.

Sasaki, J.R. 1968. Air leakage characteristics of some brick and concrete block walls. National Research Council of Canada, Division of Building Research, Technical note no. 525:5, 2 figs, 1 tab.

Sasaki, J.R. and Wilson, A.G. 1962. Window air leakage. National Research Council Canada, Division of Building Research, Building Digest no. 25.

Sasaki, J.R., and Wilson A.G. 1965. Air leakage values for residential windows. ASHRAE Transactions 71(2):81-88, National Research Council of Canada, Division of Building Research paper no. 329.

Sasaki, J.R. 1973. Air leakage testing. Spec. Ass. 15(5):15-18, N.R.R.C. Division of Building Research technical paper no. 407.

Scanada Consultants Ltd. 1979. Effect of high levels of insulation on the heating fuel consumption of Canadian houses. Report for the HUDAC Technical Research Committee, Canada, Project T80-78-30.

Scheuneman, E.C. 1982. Mark XI energy research project. Summary of results 1978-1981. Building Research Practice Note no. 27 National Research Council of Canada, 18pp.

Scheuneman, E.C., and Wilson, A.G. 1988. The impact of commercial air sealing of houses on air tightness and fuel consumption. In: Symposium on air infiltration, ventilation and moisture transfer, Fort Worth, Texas, USA, Building Envelope Coordinating Council, pg. 411-419.

Schutrum L.F., Ozisik N., Baker J.T., and Humphreys C.M. 1961. Air infiltration through revolving doors. ASHRAE Journal 3(11):43-50.

Shah, M.M. 1980. Estimated rate of pressurization and depressurization of buildings. ASHRAE Transactions 86(1):251-257.

Shaw, C.Y. 1980. Methods for conducting small-scale pressurization tests, and air leakage data of multi-storey apartment buildings. ASHRAE Transactions 86(1):241-250.

Shaw, C.Y. 1981. A correlation between air infiltration and airtightness for houses in a developed residential area. ASHRAE Transactions 87(2):333-341.

Shaw, C.Y., and Brown, W.C. 1982. Effect of a gas furnace chimney on the air leakage characteristic of a two-storey detached house. Preprint 3rd AIC Conference "Energy efficient domestic ventilation systems" London 20-23 September, 1982 7pp.

Shaw C.Y., Sander D.M., and Tamura G.T. 1973. Air leakage measurements of the exterior walls of tall buildings. ASHRAE Transactions 79(2):40-48. Research paper no. 601.

Shaw, C.Y. and Tamura, G.T. 1980. Mark XI energy research project, Air tightness and air infiltration measurements. Division of Building Research, National Research Council of Canada. Building Research Note no. 162, Ottawa, 7 pg.

Sherman, M.H., Grimsrud, D.T. 1980. Infiltration-pressurization correlation: simplified physical modeling. ASHRAE Transactions 82(2):778-807, LBL no. 10163.

Sherman, M.H., Grimsrud, D.T., and Sonderegger, R.C. 1979. Low pressure leakage function of a building. Proceedings ASHRAE/DOE Conference "Thermal performance of the exterior envelopes of buildings" Dec. 3-5 1979 Florida.

Silberstein, S. and Grot, R.A. 1985. Air exchange rate measurements of the National Archives Building. ASHRAE Transactions 91(2A):503-510.

Stewart, M.B., Jacob, T.R., and Winston, J.G. 1979. Analysis of infiltration by tracer gas technique, pressurization tests and infrared scans. Proceedings ASHRAE/DOE Conference "Thermal performance of the exterior envelopes of buildings" Florida December 3-5th.

Stricker S. 1975. Measurement of air tightness of houses. ASHRAE Transactions, 81(1):148-167.

Stricker, S. 1974. Measurement of air leakage of houses. Ontario Hydro Research quarterly, 26(4):11-18.

Sulatisky, M. 1989. Air tightness tests on 200 new houses across Canada. Summary of results. Canada Buildings Energy Technology Transfer Program publication 84.01.

Swinton, M.C., Moffatt, S., and White, J.H. 1988. Residential combustion venting failures - a systems approach. In: Symposium on air infiltration, ventilation and moisture transfer, Fort Worth, Texas, USA, Building Thermal Envelope Coordinating Council, pg. 33-48.

Tamura, G.T. 1979. The calculation of house infiltration rates. ASHRAE Transactions 85(1):58-71.

Tamura, G. 1975. Measurement of air leakage characteristics of house enclosures. ASHRAE Schrader, C.C. 1924. Air leakage around window openings. ASHVE Transactions 30:313-322.

Tamura, G.T. 1974. Predicting air leakage for building design. 6th C.I.B. Congress on the Impact of Research on the Built Environment Budapest 3-10 October 1974 preprints vol 1/1 pg. 368-374, D.B.R. technical paper no. 437.

Tamura, G.T. and Shaw, C.Y. 1976. Air leakage data for the design of elevator and stair shaft pressurization system. ASHRAE Transactions 82(2):179-190.

Tamura, G.T. and Shaw C.Y. 1976. Studies on exterior wall air tightness and air infiltration of tall buildings. ASHRAE Transactions 82(1):122-134, N.R.C.C. Building Research paper no. 706. Tanaka, H., and Lee, Y. 1986. Scale model verification of pressure differentials and infiltration induced across the walls of a high-rise building. J Wind Engng Ind Aerodynam, 25(1):1-14.

Thorogood R.P. 1979. Resistance to air flow through external walls. Building Research Establishment Information Paper.

Tietsma, G.J., Peavy, B.A. 1978. The thermal performance of a two-bedroom mobile home. National Bureau of Standards Building Science Series, 102. 55 pg. 1.

Treado, S.J., Burch, D.M., Hunt, C.M. 1979. An investigation of air infiltration characteristics and mechanisms for a townhouse. National Bureau of Standards Technical Note, 992, 31 pg.

Trechsel, H.R., Achenbach, P.R., and Ebbets, J.R. 1985. Effect of an exterior air-infiltration barrier on moisture condensation and accumulation within insulated frame wall cavities. ASHRAE Transactions 91(2A):545-559.

Tsongas, G.A., Odell, F.G., and Thompson, J.C. 1979. A field study of moisture damage in walls insulated without a vapour barrier. Proceedings ASHRAE/DOE Conference "Thermal performance of the exterior envelopes of buildings" 3-5 December 1979 Florida.

Tuluca, A., Keyes, P.A. 1988. Leakage areas for opaque wood frame walls - a preliminary study. In: Symposium on air infiltration, ventilation and moisture transfer, Fort Worth, Texas, USA, Building Envelope Coordinating Council, pg. 433-442.

USA Department of Energy. 1983. Energy efficient windows. A key to energy performance. USA Dept. of Energy.

Verschoor, J.D., and Collins, J. O. 1984. Demonstration of air leakage reduction program in Navy family housing. In: Measured air leakage of buildings. A symposium on performance of building constructions, Philadelphia 2-3 April 1984. ASTM Special Technical Publication 904. Edited by H R Trechsel and P L Lagus. ASTM. p294-303.

Weidt, J.L., Weidt, J., and Selkowitz, S. 1979. Field air infiltration performance of new residential windows. Proceedings. ASHRAE/DOE Conference "Thermal performance of the exterior envelopes of buildings" 3-5. Dec. 1979 Florida, Lawrence Berkeley Laboratory report LBL 9937.

Weimar, R.D., and Luebs, D.F. 1986. Field performance of an air infiltration barrier. In: Measured air leakage of buildings. A symposium on performance of building constructions, Philadelphia 2-3 April 1984. ASTM Special Technical Publication 904. Edited by H R Trechsel and P L Lagus. ASTM. pp.304-311.

Wilson, A.G. and Sasaki, J.R. 1972. Evaluation of Window Performance. Division of Building Research, NRCC, Ottawa, Canada. Nat. Bur. Stand. Special Publication 361, pp.385-394 Ottawa, Canada.

Yuill, G. 1985. Determination of the effective leakage areas of houses by multilinear regression analysis of the energy consumption data. ASHRAE Transactions 91(2B):133-143.

APPENDIX A

Listing of Literature Leakage Values

,		ı	
	1	3	2
	•	•	
	1		

ref #	class	ret id #	case	A		ralue	value	(avg)		s.d. + s	s.d. max	units	area		s.d. + s.d.		area units	d	ret. press	total	Note #'s	btner
39/200	ca wel	1	1	II I	n N	Mixed	L	B-I	B-I	B-1 B-1	S-I	J -	8-1	B-I	H B-I	S-I						
38\apndx								1										l				
646		1	1	3b														l	30	12		beiling
1514		IW11		3									0.02				cm2/m2	0,8	50		113	
1514	1701651	CR2		3									0.046				cm2/m2	0,6	50		113	dropped ceiling w/ plastic sheet (EW-8)
1514	CG	CR5		3									0.465				cm2/m2	0.6	50	ı		dropped celling w/o plastic sheet
40 (CG	h5	1	1				1.37				1/sm2	Satisfic					1	75	8		area term refers to ceiling area 0.03in2/ft2
40 (CG	hB	1	1				1.88				1/sm2					- 1	1	75	11		
	CG	h3	1	1				1.88				l/sm2					- 1	2.5				area term refers to ceiling area 0.04 in2/ft2
	ca	h2 ·	1	1				3.81									- 0	1	75	16		area term refers to ceiling area 0.04 in2/ft2
	cc		- 5	1000								I/sm2	1					1	75	87		area term refers to ceiling area 0.085 in2/ft2
5.55		h4	1					4.57				Vsm2	1					1	75	34	314	area term refers to celling area 0.1in2/ft2
	CG	h1	1	1				4.83				l/sm2					- 0	1	75	65	314	area term refers to celling area 0.1 in2/ft2
	CG							0.25				l/sm2							2000	50		assumes % to get flow (.75 ach house)
468 (CG							0.13				Vsm2						l	- 1	25		assumes % to get flow (.75 ach house)
91 (CG	2	1	1				0.18				m3/s					- 1	1	75	16		(need area terms)
91 (CG	1	1	1				0.35				m3/s						1 4	75	65		
	CH	diff	1	5				5,00				mora	28					1	100000		- 000	(need area terms)
1070	CH	diff	1	5													cm2	1	4		5,303	depressurization (flue), efla difference
			1									74400	33				cm2	1	4		5,303	pressurization(flue), efla difference
	CH	diff	- 1	170		2.05	0.71					l/s									5,201	difference, entire house
1008	700	measur	- 1	4		4.31	0.56	1				l/s							0-50		2,201	measured directly
1008		open	1	4	1	24.4	0.71					l/s										chimney uncapped, entire house
1008	CH	capped	1	4	1	22.3	0.71					Vs							- 1			chimney capped, entire house
1514 (CP	C/R18		3				1				u.P.ov.:	2				cm2 ea	0.0	50			ceiling mounted lights
1514 (CP	C/R3		3				ll .					4				cm2 ea	0.6	50	ıı		
1514	-	C/R11		3				1					5							1 1		(whole house fans w/ w/s cover)
1261 (C/HII		3				11						1020			cm2 ea	0.6	50	1 1	113	(recessed light-caulked at edges)
		0540		3				li .				1	10	10		20	cm2 ea	1	4	1 1		recessed light fixtures
1514 (70.0	C/R12		0.72				1					25				cm2 ea	0.6	50	1 1	113	recessed light
1514		C/R4		3				4500000				5300	50				cm2 ea	0.6	50	1 1	113	(whole house fans) w/ closed louver
92 (CP	h43	1	2				11.8				l/s ea	224.5					1	62	1 1	2000	super energy construction, recessed celling spots
92 (CP		50	2				15.6	2.36		26.4	l/s ea	l .					1	62	5.2%		recessed ceiling spots
92 (CP	h43	1	2				24.5				Vs ea					- 1	1 1	62	D.E. 10		super energy construction, recessed ceiling spots
339 (CP	mobile	1	-					37.8		41 5	Vs-house						1 1	50	8		
	cs	mobile	1	8				41.5	0,,0	25	41.5	49-110030	129					1 3	10000	*		oint between ceiling and flue vent, sealing sequence 3
	cs cs		9	6				11					F-175 (157 (157 (157 (157 (157 (157 (157 (4000			cm2	1 3	4	1 1		crawl space vent-8x16 each
0.70			_	573				11					1690	1277		2735	cm2	1	4	1 1		ELA, vents closed, entire crawl space
	cs		9	6				11					10.3	7.8		16.8	cm2/m2	1	4	1 1		SELA vents closed
	DACNW							II.					30	10		30	cm2 ea	1	4			
1514	DACNW	C/R14		3				1					90				cm2 ea	0.6	50		113	(attic Into conditioned space)
1261	DACW							ll .					18	8		18	cm2 ea	1	4	1 1		weatherstripped
1514	DACW	C/R13		3				ll .					45	•		,0	cm2 ea	0.6	50			
1514		D10		3				11					10						. 11 D Y 7 2 2 1			(attic into conditioned space)
	AND THE PARTY OF T	100000000000000000000000000000000000000		3				11					10000	-			cm2 ea	0.0	50			w/ insulated box
7.7		270000		-									108	55			cm2 ea	0.6	50			w/o w/s, 3x6' door (1-4mm crack)
	DAFDW	D9		3				20					54	35		105	cm2 ea	0.6	50		113	w/ w/s (50% of D-8)
1514		C/R15		3								- 9					cm2 ea	0.6	50		113	(into unconditioned space)
1261	DDNW							I					11	7		22	cm2/m2	1	4		3.00	Maria de la constancia de Caracteria de Cara
1261 (WQC												8	3		15	cm2/m2	1	4			
1514		D7		3									27.3	18.2		56.1	cm2/m2	0.6	50		140	De door 17 0mm amale (PD 100 alean alean)
	DFRAME	-	50	2				1.89				lle es	27.0	10.2		36.1	cinz/m2	NASSES A	14.75.75.25		113	5x6 door (.7-2mm crack) (RP438 changed units to per r
	DFRAME		50									l/s ea						1	62			via threshold, 9% of door leakage
			63976	2				6,61				l/s ea	l .					1	62			via weatherstripping on the 3 edges, 37% of door leaka
	DFRAME		50	2				9.91				l/s ea						1	62			door frame & facing, 54% of total
	DFRAME		50	2				18.4	3.78		37.8	Vs ea						1	62	5%		37% vla w/s, 9% threshold, 54% wallframe joint
208	DFRAME	lab	1	4	8	2.55	0.68	1.73				I/sm						1	75	102		frame trim, outer & inner 3 sides, 33.25 ft
208 [DFRAME	lab	1			2.14	0.62	1.57				V/sm						1	75			
	DFRAME	lab		255.0		15.8	0.63	11.8				Vsm						1.0				frame trim, outer 3 sides, 16.75 ft
	DFRAME			3250	7	250		(2.24)				(0.87)						1	75			amb except for threshold, held closed, 16 ft
		lab	1			19.8	0.59	15.2				l/sm						1	75			amb except threshold, free, 16 ft (cfm-in wg)
	DFRAME	lab	1	4	8	42.7	0.57	33.8				1/sm	150					1	75			under threshold
	DFRAMEN												1	0.3		1	cm2/m2	1	4			w/ caulking
1261	DFRAMEN	A											5	1.7		5	cm2/m2	1	4			w/o caulking
1261	DFRAMEV	٧											0.3	0.1			cm2/m2	4	4			w/ caulking
	DFRAMEV												1.7	0.6			- LF 079197000945FU	1 1	71			
	OG		19									T I	1.4	0.0		1.7	cm2/m2	1 1	4	L., I		w/o caulking
1261			10					II					1					1 1	4	111		(a3313) w fireplace

# class	re	# DI 1s	# case	4	ě.	value	n value	(avg)	min s.d.	I+ s.d. max units	area		anation		are		J	ret.	20	Note	ptrer .
		- 1	Case	T		Mixed			S-I S-I	B-I S-I	S-I	min S-I		+ s.d. max S-I S-I	-lun	nits	q.	press	total	# 5	
1261 DG	- 2		11		8		4		lle . Ile .	lb. Io. I	F.	lb.	Ib.	P. 151	1	- 1	4	4	10		(a3313) w/o fireplace
1514 DG	D	13	10.00	3				20			0.488					n2/lmc	0.6	50	10	440	Management Company of the Company of
1514 DG		113		3							0.468										average (new)
514 DG		13		3												n2/imc	0.6	50	- 11	113	well fitted
1514 DG	0.7	13		3							0.762	C.55		1.0		n2/Imc	0.6	50		113	average
	13/75		26		2					160247	1.097				СП	n2/lmc	0.6	50		113	poorly fitted
299 DGE		05	1			0.05	0.46			m3/s											elevator door, 6.8 mm crack, door opening 1.07x2.13m
299 DGE		80	1			0.03	0.53			m3/s	1							- 1	- 1		elevator door, 4.8 mm crack, door opening 1.07x2.13m
299 DGE		04	1			0.01	0.72	1		m3/s								- 1			elevator door, 5.3 mm crack, door opening 1.07x2.13m
299 DGE		102	1			0.01	0.83			m3/s								- 1	- 1		elevator door, 5.8 mm crack, door opening 1.22x2.13m
299 DGE		101	1			0.04	0.52	1		m3/s						- 1			- 11	ii i	elevator door, 5.8 mm crack, door opening 1.07x2.13m
299 DGE	100	103	1		6	0.04	0.49	1		m3/s									- 1		elevator door, 5.8 mm crack, door opening 1,00x2,13m
1514 DIP		v7		3							35				СП	n2 ea	0.6	50	. 1	113	(located on upper floor)
1514 DIP	lv	w7		3							1.829				СП	n2/Imc	0.6	50	-		(located on upper floor)
1514 DIS	d	-14		3							1.829	0.61		1.8		n2/Imc	0.6	50	- 11		(2mm crack)
1514 DIS	d	-14		3				1			2.743	1,83		3.8	50	n2/lmc	0.6	50	- 11	113	(4mm crack)
208 DMS	la	b	1		8	2.23	0.3	2.52		V/sm				0.0			1	75	- 11	110	2.3 ft slot, (cfm-in wg)
1514 DSP	D		(2)	3			110000			4200	100	60		28	0 0	n2 ea	0.6	50		113	Est it side (Silli-III Mg)
1357 DSP	1170	775	10	3				43	24	80 l/s		50		20	UII	UU	1	50		110	alum, ranch - silder doors
92 DSP			50	2				20.3	4.72	35.4 1/9 ea							1	62	1.7		arem, residir - silder doors
OF DSP				-				2.54		I/sm2							;	300	1.6		PGD 92 PGD 42 PGD 42
OF DSP								2.54		1/sm2							16				SGD-82, SGD-A2, SGD-A3
OF DSP								2.54		1/sm2							1	75 75		1	Fed MHC&SS 280.403 ALL TYPES WINDO & S. GLASS
OF DSP								5.08		l/sm2						- 1	1				ANSI A200.2 SGD wood
OF DSP								5.08		Vsm2							1	75	- 11		ed MHC&SS 280.405 ALL TYPES VERTICAL ENTRANC
311 DSP	T	pe 1-7	1	4	6	0.1	0.68	3.06			1						1	75	- 1	11 (ANSIa134.2(al, sliding glass door-SGD-B1)
311 DSP		pe 2-2	- 3			0.13	0.00			l/sm2											3 panels, 2 of them slide
311 DSP	2,277	pe 2-3	•			C/2010 VI	1000000	11		l/sm2									- 1		2 panels, one slides
311 DSP		pe 1-1	1			0.11	0.72			I/sm2								- 1	- 1		2 panels, one slides
	100			0.2011						I/sm2								- 1	- 11		3 panels, 2 of them silde (numbers are from top to bot of
311 DSP		pe 1-5	- 1			0.11	0.67	H		l/em2	1							- 1	- 1		3 panels, 2 of them silde
	2.1522	pe 2-6				0.16	0.59			Vsm2						- 1		- 1	- 11	1	2 panels, one sildes
311 DSP		pe 1-4			6	0.1	0.73			Vsm2									- 11		3 panels, 2 of them slide
311 DSP		pe 1-8	1	0.00	6	0.09	0.69			Vsm2						- 1					3 panels, 2 of them slide
1514 DSTM				3				11									0,6	50	- 1	113	storm door = 35% reduction
1514 DSTM		2		3							20				CIT	n2 ea	0.6	50	- 1	113	subtract 20 cm2
1065 DSTM			7								62				СП	n2 tota	1	4	- 1	8080	average difference after appling storm windows & doors
1065 DSTM	w		7								0,005				CIT	n2/m2	1	4	- 1		per sq ft of floor area
40 DSTM	W h	5	2	1				0.83		l/amc						*	1	75			w/ storm door
40 DSTM	W h	6	2	1				0.83		l/smc							1	75			w/storm door
40 DSTM	W h	6	2	1				1.23		l/smc							i	75			w/o storm door
40 DSTM	W h	5	2	1				1.45		Vsmc							i	75			w/o storm door
1514 DSW	D		10.75	3				35.64		431110	25	15		A	0 00	n2 ea	0.6	50		112	weatherstripped, magnetic seals
1514 DSW	D			3				II .			36	25				n2 ea	0.6	50			weatherstripped, magnetic seals
261 DSW	155	17.0		P. T. S.				ll .			×	3				n2/m2	1	4		113	- Samuel Surpped
40 DSW	h	9#5	2	3				0.83		l/smc	1 .	3			UII	IL/IIIZ	100	75			100 matural matural services
40 DSW		s#6	2					0.83		Vsmc							1				with-42% reduction - w/s fair to poor
40 DSW	11000	9#6	2					1.23		/smc							1	75			with-32% reduction - w/s fair to poor
40 DSW	1155	s#5	2					1.45			1						1	75			without storm - w/s fair to poor
40 DSW		s#2								l/smc	1						1	75			without storm-weatherstripping fair to poor
	0.000		2					2.15		l/smc							1	75			(with storm - w/s fair to poor)
40 DSW		s#3	2	47				3.22	N.	l/smc							1	75			(without storm-weatherstripping fair to poor)
40 DSW		s#1	2					4.79		Vsmc	1						1	75			(without storm-weatherstripping fair to poor)
40 DSW	0.000	s#4	2					6.18		l/smc							1	75			(without storm - w/s fair to poor)
514 DSWN	3 135	4		3							50	30		13	0 cm	n2 ea	0.6	50		113	up to 2mm avg crack
261 DSW	1							ll			11	6		1	7 сп	n2/m2	1	4			
1514 DV	D	1		3				II .	4		25	್		1.7		n2/hs	0.6	50		113	subtract 25 cm2 per vestibule
1261 EO			19					II			1				Gil		1	4	2	. 10	(A3313) w/ fireplace
646 EO				зь				H			-					H	- 24	16	3.1		exterior walls
648 EO				3b				ll .										32	1000000		CACCOMONICAL PROPERTY.
1261 EO			11								1						- 2	32	1.3		party wall
	D.	V-2	•	2				ll .							525		1	202.0	4	2002	(A3313) w/o fplace
514 EO	TV.	V.2		3				II			0.2				2022130	n2 ea	0.6	50		113	w gaskets

۰	۹			١
	1	L	ì	2
•	•	Ξ		
	1	,		

et# class	ret id #	case A	8	value	value	(avg)	min	variation s.d.		liow	area	min	s.d.	+ s.d.	max	units	d	ref. press	76 total	Note	other
		T		Mixed			8-1	B-I	S-I S-I	-	8-1	3-1			S-I	umus.	"	piess	l'otal		
1514 EO	EW-2	. 3					***	33.			0.2					cm2 ea	0.6	50	ΙI	113	w/ gaskets
1261 EO						ll					0.5				1	cm2 ea	1	4	H	0.00	not gasketed
1514 EO	IW-1	3	3			ll .					1.5					cm2 ea	0.6	50	1 1	113	w/o gaskets
1157 EO		12hs									8			10		cm2 total	7377	4	1+/-		1982 USA frame res red, with gaskets, % is w or w/o fp d
92 EO		50 2				0.24				l/s ea							1	62		-,-	w/ gaskets(7% of original)
92 EO		50 2	,			3.78			7.0									62	20		w/o gaskets
208 EO		1 1				5.29				I/s ea	1						1	75	اتاا		duplex outlet in insulated test wall
208 EO		1 1				6.13				l/s ea							1	75	ΙI		duplex outlet-uninsulated test wall
339 EO		- ' '				8.97	8.02		0.0	7 l/s-hous	ال						,	50	<2		total for all exterior outlets and switches
	IW-3	٠,	į.			0,87	0.02	۵.	0.0	1 49-11005	111						1000		2		
		3									1.5				122	cm2 ea	0.6	50	1 1		no gaskets
1514 ES	EW-1	3			- 0						15				15	cm2 ea	0.6	50	1 1	3607753	no gaskets
1514 F	H4	3	1			1										cm2 ea	0.6	50	1 1	113	pealed combustion furnance
1261 F		4101														cm2 ea	1	4	1 1	302	sealed combustion furnace
1514 F	HB	3	3			1					30					cm2 ea	0.6	50	1 1	113	no ducts-resistance or water (hydronic) system
1261 F											24	18			30	cm2 ea	1	4	1 1	302	retention head & stack damper
1514 F	HB	3	3			H					80					cm2 ea	0.6	50	I	113	retention head plus stack damper
1261 F											30	20			40	cm2 ea	1	4	ΙI	302	furnace w/ stack damper
1261 F						II					30	20			40	cm2 ea	1	4		302	retention head burner furnace
1514 F	H5	3)			H					75	2/20/20			10/3/50	cm2 ea	0.6	50	1 1	113	retention head burner furnance
1514 F	H7	3									75					cm2 ea	0.6	50		1000000	stack damper on furnance
4 FLCS	560	9 6				II					355	65			808	cm2	1	4	Ιl	1.5	ELA
4 FLCS	wodw	5 6				ll .					1.98	-			000	cm2/m2	l i	4	ΙI		houses w/o ductwork in crawl space
4 FLCS	ca.	9 6	3								2.2	0.4			4.9	cm2/m2	1	4	1 1		BELA
4 FLCS	wdw	4 6				1					2.25	0.4			4.5	cm2/m2	1	4	1 1		
1870 FWDC	hc	1	•			ll .					26					cm2		4	ΙI	~	houses w/ ductwork in crawl space
1514 FWDC	F-7	1 3	ž.			ll .					30					-	1,000,000	50	1 1		Treplace covered w/ plastic
	25 (25 25)					ll .										cm2 ea	0.6	100.00	1 1	113	light damper
1514 FWDC	F-3	3	3			0					80	50			85	cm2 ea	0.6	50	1 1	113	average damper
1261 FWDC		-				ll .					69	54	No. 42 C	0220	84	cm2 ea	1	4			
1157 FWDC		5							44	CONTRACTOR OF THE	69		54	84		cm2 ea	1	4	9		% +/-2, w/ dampers closed ,1982 frame res
1357 FWDC	75 - STATE	1 3	3						12	0 l/s							1	50	1 1	1	brick chimney & open fireplace
40 FWDC	H#6	1 1				33				l/s ea	1						1	75	1 1		1950 Ottawa
40 FWDC	H#3	1 1				37.8				l/s ea							1	75	1 1		1950 Ottawa
92 FWDC		1 2	2			38.7				l/s ea							1	62	1 1		spring loaded damper on top of chimney
40 FWDC	H#4	1 1				51.9				l/s ea	1						1	75	1 1		1950 Ottawa
92 FWDC	h43	2 2	2			56.6				l/s ea	1						1	62	1 1		super energy construction
92 FWDC		21 2	2			62.8				Vs ea	1						1 1	62	1 1	l .	ocated on Interior wall
92 FWDC		40 2)			65.6	15.1	t	14	2 Vs ea	1						1	62	5.5%		overall number (damper closed)
92 FWDC		18 2				69.4	1075	700	- 01	l/s ea	1						1	62	P.070	l	located on exterior wall
92 FWDC		1 2				77.4				l/s ea	1						1	62	l I		typ cast iron damper-observation
1514 FWDC	F-1	3	5			11				l/s ea	1					0000	0.6	75	1 1	112	
1514 FWDO	F-2	3								43 64	350					cm2 ea cm2 ea	0.6	50			Fireplace w/ sealed combustion
1261 FWDO	1-2	3				ll .					350	200			200		H 25550	2.5		113	fireplace w/o damper or cover
						II						320	200	000	380	cm2 ea	1	4	ایرا		bach .
1157 FWDO		13									350		320	380		cm2 ea	1	4	24		% +/-4, w/o dampers, 1982 USA Frame residence
3019 FWG											100					cm2	1	4		9	
1514 FWG	F-5	3				1500000					10					cm2 ea	0.6	50		113	fireplace,glass door,stove
92 FWG		1 2				26				l/s ea							1	62		1	The state of the s
92 FWG		1 2	2			33				l/s ea							1	82		1,12000	
1514 FWIDC	F-8	3	3			II					35	25			45	cm2 ea	0.6	50		113	
1261 FWIDC						II					36	26			46	cm2 ea	1	4		4.000	
1157 FWIDC		3									36		26	46		cm2 ea	1	4	8		% +/- 1
1157 FWIDC		7				ll .					65		40	90		cm2 ea	1	4	13		% +/-3, question if not glass doors
1514 FWIDO	F-8	. 3	1			ll .					65	50	-10		80	cm2 ea	0.6	50	"	113	17 4, quodon il not giass doors
1281 FWIDO						ll .					65	40			90	cm2 ea	1	(0.9)		''3	
						ll .									1077733			4			II .
	ue	1772									20	15			25		1	4		10000	
1514 GWH	H9	3	5				222	21	70.800		50					cm2 ea	0.6	50		113	domestic hot water heater exhaust stack
339 J	HOUSE STREET					36.3	35.9	9	36	3 l/s-hous	The second second						1	50	8	2007204	paneling side joints
1514 JCW	IW-10	3	3								0.381					cm2/m	0.6	50		113	Wall/ceiling crack
1281 JCW						1					1,5	0.5			2.5	cm2/m	1	4			beiling/wall joint w/o taped, plastered or wrapped V.B.
339 JCW						65.1	42.5	5	65	1 l/s-hous	ell						1	50	14	ı	wall/ceiling mobile

et #	class	ret id #	case	A	ž .	ralue	value	flow (ava)	min s		Imey	tiow		area va				area.	2	ret.	70	Vote	Other
				7		Abxed	Amue	(avg)	B-I B-		S-I	units				+ s.d.	max S-I	units	q ,	press	total	#'s	
646	JSP		200	зь .		, Dica		F	h, lh	lb.	10.		P-1 II	D- 1	D-1	3-1	3-1			10	ا 🚓 ا		Reaching II laborate and
1261	JSP	&JTP	100					1												16	23		Roor/wall interface
1261		& JTP						1											;	4	42 31		(A3313) w/ fireplace
942	JSP							1											- 10	*	60		(A313)sill plate & w/cell w/fireplace
92	JSP																				60%		(A3313)
	JSP	EW-7		3				-					0.183					cm2/m	0.6	50	PU 76	113	reduction due to caulking
1514	JSP	IW-10		3									0.381					cm2/m	0.6	50	1 1		caulked sill & final caulk
	JSP	EW-8		3				li .					0.914								1 1	1377577	wall/floor or wall/ceiling
	JSP	EW-5		3				1					0.914					cm2/m	0,6	50	ıı		uncaulked sill
1281	March College			•									1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0.4				cm2/m	0.8	50	I - I	113	caulked or fiber mat behind molding
1261													0.8	0.4				cm2/m	1	4	1 1		sill cautked per m of perimeter
208		lab						0.75					4	1			4	cm2/m	1	4	1 1		sill, not caulked
208		lab	1					1.49				l/sm							1	75	1 1		sill plate-top of trim; plate and solid concrete block founds
311		indirct-	1	4	6	0.07	0.81	1.48				l/sm							1	75	L		sill plate-bottom of trim; plate and solid concrete block fou
311								1				Vsm						- 1			50%		floor-wall joint (indirect measurement w pressure balancing
		direct	1		6	0.14	0.64	1			52532	l/sm											floor-wall joint (direct measurement w pressure balancing)
92			50	2				5.66			8,65	Vsmc	Harrison V						1		24.6		hot caulked
	JTPO	EW-13		3				II					0.183					cm2/m	0.8	50	1 1	113	Band Joist-ins w/ Internal partitions return air (caulked)
	JTPO	EW-12		3									0.914					cm2/m	0.6	50		113	Band joist - unins w/ Internal partitions as return air
1261			19																1	4	13		(A3313) wfp
1261			11										350						1	4	12		(A3313) w/o fp
1261													1			- 20	2	cm2 ea	1	4	1 1		caulked
1261								1					1.6				1.8	cm2 ea	1	4	1 1		sealed or with continuous v.b., duct pentrations
1261								11					6	2			10	cm2 ea	1	4	ıı		not sealed
1261								ll .					24	14			24	cm2 ea	1	4	II		each, unsealed or w/o v.b., duct pentrations
1514	100000000000000000000000000000000000000			3									60					cm2/dui:	0.6	50	1 1	113	duct in wall
	PPWP	2		3				1					15					cm2/plp	0.6	50	l I	113	(IW-4,IW-5) vs no piping/wiring, see notes
	PPWP	EW-3		3									15					cm2/plp	0.6	50	l I	113	piping & wiring in walls
339			2					9.2				l/s ea						200	1	50	4%		mobile home (plumbing holes in floor)
1357		200	3	3				38	11		71	l/s ea							1	50			plumbing to bath w/ bath enclosed
	NBMDC	V2		3									8	8			12	cm2 ea	0.6	50	1 1	113	
1157			6					1					11		10	12		cm2 ea	1	4	2		% +/-0.1
1261								0.0000000000000000000000000000000000000					11	10			12	cm2 ea	1	4	- 1		000000000000000000000000000000000000000
92			50					15.6	9.44		30.7	l/s ea	19075						1	62	1.3%		unknown about damper position
1514	VBWDO	V-3		3								2020200	20	15			25	cm2 ea	0.6	50		113	posición
1261								1					20	18				cm2 ea	1	4	l I	2.10	
	NBMDO		9										20		18	22		cm2 ea	1	4	3		% +/-0.3
92		H1	1	2				14.2				Vs ea	197739			(4.36-5)		1007010	1	62	- 1		17.00
339		mobile 1						73.6	71.3		73.6	l/s-house	l .						1	50	14%		11th to be unsealed, not sure if damper open or not
1339	VD		1					3.49				m3/m	-						100	751			elect clo dryer operating w/ 2m of .1m flex plastic tubing
1514	VDWD	V-8		3				1					7		19.5			cm2 ea	0.6	50	1 1	113	prost the differ operating we have the middle tabiling
1261													3					cm2 ea	1	4			
1514	VDWOD	V-9		3								9	30					cm2 ea	0.6	50		113	
92	VDWOD		50	2				33.5	17.9		52.9	l/s ea							1	62	3%	1,10	
1514	VKWDC	V-7		3				Prosecute Co.C.	0.0000000			-,505.00	2					cm2 ea	0,6	50	r"	113	jight gasket
1514	VKWDC	V-5		3									10	5				cm2 ea	0.6	50		113	And Answer
1261				0.00									5	3				cm2 ea	1	4		1113	
1157			7										5	•	3	7		cm2 ea	1	4	, ,		% +/-0.3
1514		V-6	7	3									55	35				cm2 ea	0.6	10.00	3	***	A T/-0.3
	VKWDO	3000	12	-									39	00	26	40			1000	50	ا ا	113	l
	VKWDO												39	36	36	42		cm2 ea	1	4	6		% +/-0.4
	VKWDO	H1	1	2				61.3				lle ee	39	36			42	cm2 ea	1	4			
92			50	2							440	l/s ea							1	62	L		vent-a-hood, 6" round
299		Mad				0.40	0.40	62.3			110	l/s ea							1	62	5.2%	300,000	p* round vent pipe
100000		No4	1		2500	0.46	0.46					m3/s100											concrete block
299		No2,7	1			0.07	0.95					m3/s100	l l										cast Inplace concrete, front of concrete block
299		No1	1			0.61	0.63					m3/s100											cast in place concrete, two sides concrete block
299	4 CO 100 DO 100 DO	No8	1			1.14	0.5					m3/s100										318	clay tile block
299		No3	1		6	0.2	0.61					m3/s100							I			318	cast in place concrete
299		No5	1		6	0.17	0.45					m3/s100	l .			- 9						318	cast in place concrete
	WAEX		- 1	3b				II					II .						1	32	4.5		party wall

٠		L
	ŀ	,
-		
	٠	
c	۵	

WAEX WAEX WAEX WAEX WAEX WAEX WAEX WAEX	EW-14		value Mixed	value	flow (avg) S-I	min -s.d. B-I B-I		S-I	units	area S-I	min B-I	s.d.	+ s.d 6-l		area units	d	ret. press	total 35	Note #'s	Other (A3313)
WAEX WAEX WAEX WAEX WAEX WAEX	EW-14	T n 3b					_			S-I							#21235	(52.01.0		(43313)
WAEX WAEX WAEX WAEX WAEX WAEX	EW-14	3b	IMIXOU	Y.	51	lbu lbu	lb.i	101	i.	51	lb.	lb.i	lb-i	10-1	k j		50	35		YA3313)
WAEX WAEX WAEX WAEX WAEX WAEX	EW-14																30	1 33 1		
WAEX WAEX WAEX WAEX	EW-14															ı				N. C.
WAEX WAEX WAEX		3							- 1					25			30	28		2x4 brick veneer
WAEX WAEX WAEX	EW-10									0.54				5.4	cm/m2	0,6	50	ΙI	113	subtract for plastering, oil paint, cld water paint
WAEX	EW-10				1				- 1	24					cm2 ea	_ 1	4	ıı		wall/window air conditioner
WAEX		3							- 1	100					cm2/hs	0.6	50	1 1	113	cm2 subtract for polystrene sheath calk @ jnts (EW-10, EW-
	EW-6	3								700					cm2/hs	0.6	50	ıı	113	cm2 subtract for continuous polyethylene vapor barrier
WAEX	5	5							- 1	0.15	0.06			0.21	cm2/m2	1	4	ΙI	57770	continous air infiltration barriers
	1	5							- 1	0.252					cm2/m2	1	4	Ιİ		aminated fiberboard/ foil
WAEX	5	5								0.349	0.29			0.41	cm2/m2	1	4	ıı		rigid sheathings
WAEX		5								0.732	0.52				cm2/m2	1	4	1 1		paper & foll sheathings or none
WAEX	. 1			()	36.3	35.9		36.3	l/s-house	0	0.02			0.02	OLJ.III.L	1	50	8%		mobile, sealing plywood paneling butt joints
WAEX	ASH2				0.02	00.0		00.0	1/sm2	l						;	45	۱ ۳		ashrae lab values 8.5" brick wall-plaster inside
WAEX	10.000	5 5	0.00	1.07	0.09				l/sm2							;	50	1 1	3 100	
WAEX			0.00	1.07	0.03				1/sm2							;		1 1	3,106	B-1 + 3 coats plaster inside
				0.07	0.753333				WEEK CONTROLLER							1 1	50	li	3,106	7-1 + 3 coats plaster inside
WAEX		5 5	0.01	0.87	0.34				I/sm2							1 3	50		3,108	SCR brick w/ Interior finish unvented air space
WAEX	2073	5 5	0.02	0.81	0.42				Vsm2							1	50		3,107	SCR brick w/ Interior finish, vented air space
WAEX		5 5	0.02	0.94	0.68				Vsm2	l						1	50	1 1	3,105	h.w. concrete block (3 core) unfinished w/ expanded mica
WAEX	NAAM 1				0.3				l/sm2	l						1	45	1 1		NAAMM metal curtain wall std
WAEX	5-2 1	5 5	0.02	0.86	0.59				l/sm2							1	50		3,105	5-2 + one coat latex paint inside
WAEX	7-1 1	5 5	0.02	0.81	0.59				l/sm2							1	50	1 1	3,108	claybrick cavity wall (unvented) w/ granulated
WAEX	6-1 1	5 5	0.02	0.81	0.59				Vsm2	l						1	50	1 1	3,106	clay brick cavity wall (unvented) w/ expanded mica
WAEX	1 1	1		0.000	0.74				Vsm2	l						1	75	15	10000	108 m2 wall area
WAEX	50 99 1	5 5	0.04	0.85	1.19				l/sm2	l						1	50		3,103	1-2 + two coats stucco + 1 coat paint ext
WAEX	C 1	~ ~	0.05	0.74	0.95				1/sm2	l						l i	50	1 1	1,102	precast concrete panel
WAEX	PB 1	1	0.06	0.76	1.2				I/sm2	l						;	50	1 1	0.000	
WAEX	D 1	- 1	0.08	0.69	1.24				l/sm2	l						1	50	l 1	1,102	D.33m plain brick wall
		_ !		150 M T T T T T T T T T T T T T T T T T T					1 TO	l						1 3		1 1	1,102	hollow steel panel
WAEX	AV 18	5 5	0.09	0.79	1.86				I/sm2	l						1	50	1 1	3,104	4-1 + three coats stucco outside
WAEX	4 1	5	2000	0.426	1.27				1/9m2	1						1	45	1 1	MOZDANON	concrete, space, insul, parge, black, plaster
WAEX		5 5	0.11	0.73	1.78				l/sm2	l						1	50		3,103	1-1 + two coats paint on inside
WAEX	A 1	1	0.11	0.72	1.85				l/sm2	l						1	50	1 1	1,102	precast concrete panel
WAEX	3 1				1.57				I/sm2	l	(1)					1	45	1 1		steel,space, Insul
WAEX	3 1	5 5	0.09	0.97	3.89				I/sm2	l						1	50	1 1	3,103	.w. c block wall (unfinished) w/ expanded mica fill
WAEX	4-1 1	5 5	0.1	0.89	3.3				1/sm2	l					0	1	50	1 1	3,104	.w.c.b.w. (unfinished) 3 core
WAEX	2 1			2000	1.93				I/sm2	l						1	45	Ιí	EM COLUMN	concrete insulation
WAEX	ASH1 1				2.03				I/sm2	l						1	45	1 1		ashrae lab values 8.5° brick wall-plain
WAEX	B 1		0.21	0.52	1.6				I/sm2	l						;	50	1 1	1,102	precast concrete panel
100000000000000000000000000000000000000		5 5		1000000	120,000					l.					1	;			0.000.0003	
	(1777) THE	0 0	0.14	0.84	3,81				I/sm2	l						68	50	1 1	3,103	2-1 + volcanic dust fill insulation
WAEX	1 1				2.44				l/sm2	l						1	45	l		concrete, tile, ins, space, tile, plaster
WAEX	2 1	1			5.84				I/sm2	l						1	75	65		126 m2 wall area
WAEX	2-1 1	5 5			2.88				I/sm2	1			*			1	25		3,103	w concrete block wall (unfinished)
WAEX	1-1 1				3.39	1.0			l/sm2	l						1	25	1 1	3,103	w concrete block wall, 2 core (no finish)
WAEX	Bldg C 1	4 6	0.04	0.86	120,000				1/sm2	l .							0.000	1 1	11000000	Conc brick, rigid insulation, dry wall
WAEX	Ref 1	4 6	0.05	0.81	H .				l/sm2	l						ı		1 1	1	13* Plain brick wall - 1977 HOF
WAEX	Bldg V 1	4 6	0.07	0.69	ll .				l/sm2	l						l		1 1	l .	F. brk, conc blk, parging, rigid ins, gypsum board
WAEX	E000000000	4 6	0.25	0.63					Vsm2	l						1		ll		Brick, VB, plaster
					11					l						l		ı		
				200.00	ll .					l						ı		1 1	l .	F. brk, conc blk, parging, rigid ins, gypsum board
					11				5177,932,932,93									ll		prepour conc spandrel panel, Insulation, VB, dry wall
The second second				7.7.0.000	1				23717000000	l						1		1 1		Clay brk, con blk, parging, bld paper, bat ins, VB, gyp bd
WAEX			0.14	200	ll .				Vsm2							l l			1960,611	Conc brick, rigid insulation, dry wall
WAEX	1 1	4 6	0.48	0.5					Vsm2										101	expanded polystyrene bead board (1*thick, 1pcf)
WAEX	h1 1	1			0.76				I/sm2	1.111					cm2/m2	1	75	15		0.016 in2/ft2 wall area (includes windows)
	h2 1	1			1.02				1/sm2	1,528						1				0.022 in2/ft2
WAEX		1			1,525.2				177 (2.75.75.75.75.75.75.75.75.75.75.75.75.75.	100000000000000000000000000000000000000					100000000000000000000000000000000000000	II		1000	100000000000000000000000000000000000000	0.071 ln2/ft2
WAEX					100000000000000000000000000000000000000				304.000	1211220000						13			1200000	
WAEX	ha a		W						100000000000000000000000000000000000000							10 00				D.105 In2/ft2
WAEX WAEX WAEX		5.50							1/8/11/2	1.038					cm2/m2	- 2				0.11 in2/ft2
WAEX WAEX WAEX WAEX	h5 1	1																		
WAEX WAEX WAEX WAEX WAEX	h5 1 h3 1	1	(F)	Same	5.08				Vsm2	9.027					cm2/m2	- 1	75	65	101 2020	D.13 in2/ft2
WAEX WAEX WAEX WAEX WAEX WAEX WAEX	h5 1 h3 1 No1 1	1 6	0.04						l/sm2 m3/s100	9.027					cm2/m2	1	75	65	101 2020	0.13 in2/ft2 cast in place concrete, parged
WAEX WAEX WAEX WAEX WAEX	h5 1 h3 1	1	0.04	0.68 0.54					Vsm2	9.027					cm2/m2	1	75	65	318	
WAE WAE WAE WAE		EX Bldg V 1 EX Bldg T 1 EX Bldg A 1 EX Bldg C 1 EX 1 1 EX h1 1 EX h2 1 EX h8 1	EX Bldg V 1 4 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	EX Bldg V 1 4 6 0.1 EX Bldg T 1 4 6 0.02 EX Bldg A 1 4 6 0.06 EX Bldg C 1 4 6 0.14 EX 1 1 4 6 0.48 EX h1 1 1 EX h2 1 1 EX h4 1 1 EX h4 1 1	EX Bldg V 1 4 6 0.1 0.69 EX Bldg T 1 4 6 0.02 0.91 EX Bldg A 1 4 6 0.06 0.76 EX Bldg C 1 4 6 0.14 0.66 EX L 1 1 4 6 0.48 0.5 EX L 1 1 1 1 EX L 2 1 1 EX L 3 1 1 EX L 4 1 1 EX L 4 1 1 EX L 5 1 1 EX L 5 1 1 EX L 6 1 1 EX L 7 1 EX L 7 1 EX L 7 1	EX Bldg V 1 4 6 0.1 0.69 EX Bldg T 1 4 6 0.02 0.91 EX Bldg A 1 4 6 0.06 0.76 EX Bldg C 1 4 6 0.14 0.68 EX 1 1 4 6 0.48 0.5 EX 1 1 1 6 0.48 0.5 EX 1 1 1 7 0.76	EX Bldg V 1 4 6 0.1 0.69 EX Bldg T 1 4 6 0.02 0.91 EX Bldg A 1 4 6 0.06 0.78 EX Bldg C 1 4 6 0.14 0.68 EX L 1 1 4 6 0.48 0.5 EX L 1 1 1 1 0.78 EX L 2 1 0.	EX Bldg V 1 4 6 0.1 0.69 EX Bldg T 1 4 6 0.02 0.91 EX Bldg A 1 4 6 0.06 0.76 EX Bldg C 1 4 6 0.14 0.68 EX 1 1 4 6 0.48 0.5 EX h1 1 1 EX h2 1 1 EX h6 1 1 EX h4 1 1 EX h4 1 1 EX h4 1 1	EX Bldg V 1 4 6 0.1 0.69 EX Bldg T 1 4 6 0.02 0.91 EX Bldg A 1 4 6 0.06 0.76 EX Bldg C 1 4 6 0.14 0.68 EX 1 1 4 6 0.48 0.5 EX 1 1 1 6 0.48 0.5 EX 1 1 1 6 0.48 0.5 EX 1 1 1 7 7 7 7 8 7 8 7 8 7 8 7 8 7 8 7 8	EX Bldg V 1 4 6 0.1 0.69 I/sm2 EX Bldg T 1 4 6 0.02 0.91 I/sm2 EX Bldg A 1 4 6 0.06 0.78 I/sm2 EX Bldg C 1 4 6 0.14 0.68 I/sm2 EX 1 1 4 6 0.48 0.5 I/sm2 EX 1	EX Bldg V 1 4 6 0.1 0.69 I/sm2 I.111 I/sm2 I.528 I/sm2 I/sm2	SX Bldg V 1 4 6 0.1 0.69 0.50 0.76 0.76 0.76 0.	EX Bldg V 1 4 6 0.1 0.69 I/sm2 EX Bldg T 1 4 6 0.02 0.91 I/sm2 EX Bldg A 1 4 6 0.04 0.68 I/sm2 EX 1 1 4 6 0.48 0.5 I/sm2 EX 1 1 4 6 0.48 0.5 EX 1 1 1 1.02 I/sm2 1.111 EX 1 1 3.4 I/sm2 4.93 EX 1 1 4.98 I/sm2 7.291	EX Bldg V 1 4 6 0.1 0.69 EX Bldg T 1 4 6 0.02 0.91 EX Bldg A 1 4 6 0.06 0.76 EX Bldg C 1 4 6 0.14 0.68 EX 1 1 4 6 0.48 0.5 EX 1 1 1 0.76 U/sm2 1.528 EX 1 1 1 1.02 U/sm2 1.528 EX 1 1 3.4 U/sm2 4.93 EX 1 1 4.98 U/sm2 7.291 EX 1 1 5.08 U/sm2 7.638	SX Bldg V	EX Bldg V 1 4 6 0.1 0.69 EX Bldg T 1 4 6 0.02 0.91 EX Bldg A 1 4 6 0.06 0.76 EX Bldg C 1 4 6 0.14 0.68 EX Bldg C 1 4 6 0.14 0.68 EX H 1 1 1 6 0.14 0.68 EX H 1 1 1 7 1 7 1.528 EX H 1 1 1 7 1 8 1.02 1/sm2 EX H 1 1 1 8 1 8 1.02 1/sm2 EX H 1 1 1 8 1 8 1.02 1/sm2 EX H 1 1 1 8 1 8 1.02 1/sm2 EX H 1 1 1 8 1 8 1.02 1/sm2 EX H 1 1 1 8 1 8 1.02 1/sm2 EX H 1 1 1 8 1 8 1.02 1/sm2 EX H 1 1 1 8 1 8 1.02 1/sm2 EX H 1 1 1 8 1 8 1.02 1/sm2 EX H 1 1 1 8 1 8 1.02 1/sm2 EX H 1 1 1 8 1 8 1.02 1/sm2 EX H 1 1 1 8 1 8 1.02 1/sm2 EX H 1 1 8 1 8 1.02 1/sm2 E	SX Bldg V	State	EX Bldg V 1 4 6 0.1 0.69 Vsm2 Vsm	SX Bldg V

See WAST No. 1	# class	5	ret id #	#	2		9	n	low		anation			flow	area	area vari			area	C	ret.	%	Note	other
299 WAST No. 1 8 - 0.3 0.8 1 8		- 1		case	200			value	(avg)	min	s.d.	-		units					units	d	press	total	#'s	
289 WAST No.3 1 6 0.2 0.8 mály 100	1	- 1			T n				S-I	S-I	B-I	19-1	S-I	1	B-I	B-1 B	H S-1 S	S-I			^		l	
289 WAST No.3 1 1 6 0.2 0.8 9	299 WAS	ST	No8	1		6 0	0.03	0.69						m3/s100			25		2				318	bast in place concrete, parged except door side of clay to
299 WAST No7 1 8 0.02 0.88 WAST No4 1 8 0.02 0.88 WAST No4 1 8 0.03 0.72 WAST No5 1 1 8 0.04 0.55 WAST No4 1 1 8 0.03 0.72 WAST No5 1 1 8 0.04 0.55 WAST No5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	299 WAS	ST	No3	1	-	6 .	***	0.83	1					m3/s100										
299 WAST Not 1 6 0.03 0.72 Fragment of the continue of the c	299 WAS	ST	No7	1		B 0	0.02	0.98							ll .									
289 WAST No. 1 1 80 69 WCL				1					1												- 1			
9.68 WOL									1						ll .									
Month Mont			1400				1.04	0.53	1					m3/\$100						1	1720040	L.	318	
91 WDL					3D				1											275.0				windows and doors
91 WDL 2 1 1 1 1 221 WANNS 1221 WANNS 1231 WAWS 124 WAS 124 Carding 2 1 1 4 1 4 1 1 4 1 1 4 1 1 4 1 1 1 4 1 1 1 4 1 1 1 1 1 4 1				177					ll .											1				
91 WOL 2 1 1			1		1									m3/s						1	75	20		window & doors lumped - with stm units
1281 WAWNS 1281 WAWS 1281	91 WDL	_	2	1	1				0.22					m3/e						1	75	19		
1281 WAWS 1284 WAS	261 WIAN	NWS													1.6	0.8		24	cm2/m2	1	13500			
Style="bloom: 154" Style="	261 WIAV	WS							1						0.000					1920	4			
1514 WCA W 1-1 3 3 1514 WCA W 1-1 3 1514 WCA W 1-1 3 1514 WCA W 1-1 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	311 WIAV	WS	lyne4	2	4	7 0	002	0.73	1					l/em					OHIETHE					
1914 WCA W-1 3 3 1514 WCA W-2 1 3 1514 WCA W-2						1		0.70	1					ų sin	0.004	*****		0.00						
1514 WICA W-2 3 W-2									1						100 TO 100			0.06				1 1		
1514 WICA W-2 3 2 3 4 5 6 6 6 7 6 6 7 6 6 7 6 6			35.5												NO. 11 (1975)					100000	0.774500		113	
1281 WICA		5(5)	100000000000000000000000000000000000000													0.02		0.13					113	w/o weatherstripping
1281 WICA 489 WICA 489 WICA 490 PICA 49			W-2		3										0.052				cm2/lmc	0.8	50		113	including awning (2.3 cm2 ea)
1281 WICA 459 WICA 450 WICA 45	281 WICA	A													0.8	0.4		1.2	cm2/m2	1	4			weatherstripped
458 WICA 2 9 8 WICA 30 9 0 3 0.02 0.11 0.5 0.77 View 459 WICA 70 9 0 0.3 0.02 0.11 0.5 0.77 View 459 WICA 70 9 0 0.36 0.10 0.17 0.55 0.91 View 459 WICA 70 9 0 0.49 0.49 0.49 0.49 0.49 0.49 0.40 WICW 14 0.7 0.55 0.91 View 40 WICW 15 4 1 0 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.	281 WICA	A													1.6	B.C				1	4			
458 WICA 79 8	458 WICA	A		2	9				0.2	0.16	0.14	0.25	0.24	l/smc	100,000	2005		23502		2,225				I Date of the
488 WICA 47 9 9 8 48 WICA 47 9 9 9 1 1 75 0.41 0.06 0.22 0.58 0.91 Vanc 119 WICKW 11-77 1 1 1 0.04 0 WICW 15 4 1 1 1 75 1 1 75 1 1 1 1					9							0.000		100000000000000000000000000000000000000						7,77,7			l l	
458 MICA 47 9										375777			0.00000000	7.00	ll .					1 1				
119 WICKNW 11-77 1 4 0 WICKNW 14-77 1 1 1 7 5 0 0.49														000000000000000000000000000000000000000						1 1		1 1		
40 WICK No No No No No No No N				41	8				7 3 3 3	0.06	0.22	0.58	0.91						- 0	3370	0.1729	ı		
40 WICW h5 4 1				22	1															1				
40				133	5050									17456					- 1	1			314	w stm (basement) (windows locked)
40 WICW h2 4 1					1									l/smc						1	75		314	w stm (basement) (windows locked)
40 WICW hg 3 1 1	40 WICY	w	h5	4	1				3.14					1/smc						1	75		314	w/c stm (basement) (windows locked)
40 WICH he 3 1 1 19 WICH W-15-18 3 1514 WIDHW W-15-18 3 10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	40 WICK	w	h2	4	1				4.35					l/smc						1	75			
119 WCW 11-77 1 1 1 1	40 WICY	w	he	3	1				5.23					Contract of the contract of th						1		1 1		
1514 WIDHW W-7 3			NO. ST. CONTROL	_	4										1					1 :	1000	1 1	314	
1514 WIDHW W-7 3 1.6					,				0.5					l/Sinc		0.00				1		l		
1281 WIDHW 10-WIDHW 1					(0.57)				1						200000000000000000000000000000000000000	0.02		0.23						
119 WIDHW 10-77 1 1 0.52 Usmc Usmc 11-75 1 1 0.52 Usmc Usmc 11-75 1 1 1 0.52 Usmc Usmc Usmc 11-75 1 1 1 0.52 Usmc Usmc Usmc Usmc Usmc Usmc Usmc Usmc			44-7		3				ll .							450000					100		113	w/ w/s (50% W8) (5 cm2/ea)
40 WIDHW 9-77 1 1 0.52															3	1.6		4.4	cm2/m2	1	4	1	1	And the second s
119 WIDHW 9-77 1 1 1 0.83					1									l/smc	ll .					1	75			34x48 wood w/ metal jamb liners (11.42 sq ft)
119 WIDHW 9-77	40 WIDH	HW	h3	10	1				0.52					I/smc	ll .					1	75		314	with storm (44% reduction), windows locked
40 WIDHW h3 10 1 1	119 WIDE	HW	9-77		1				0.93					1/emc						1				
113 WIDHW 38 9	40 WIDH	HW	h3	10	1				0.84					l/amc						1	1.0400000		314	
458 WIDHW 9 9 9 1.13 0.35 0.49 1.79 3.24 l/smc 1.75 1.75 1.75 1.75 1.75 1.75 1.75 1.75			500	:073	A				100000000000000000000000000000000000000					7								1 1		
458 WIDHW 29 9 9 1.13 0.48 0.52 1.73 2.04 l/smc 1 75 1.75 1.75 1.75 1.75 1.75 1.75 1.75				20						0.25	0.40	4 70	224	C15/005017/	1					1 :			313	
458 WIDHW									1000000	225073	100000000		100000000000000000000000000000000000000		1				- 45	1			1	
40 WIDHW h5 13 1									Line State of the	1200 0120										1				
40 WIDHW h5 13 1			22	17777	200					0.35	0.46	1.82	3.24							1			ll .	w/o stm, wood double hung
113 WIDHW					1									Vsmc						1	75		314	w stm (casement type stm) (26% reduction), windows loci
113 WIDHW	40 WIDH	HW	h5	13	1				2.09					l/smc					1	1	75		314	w/o storm, windows locked
40 WIDHW h4 10 1 40 WIDHW h4 10 1 40 WIDHW h4 10 1 40 WIDHW TBL4-3 1 4 5 0.04 0.71 40 WIDHW TBL4-2 1 4 5 0.08 0.68 40 WIDHW TBL4-3 1 4 5 0.04 0.71 41 WIDHW TBL4-3 1 4 5 0.08 0.68 41721 WIDHW TBL4-1 1 4 5 0.08 0.68 41721 WIDHW TBL4-1 1 4 5 0.08 0.68 41721 WIDHWN W-15 3 4184 W storm (29% reduction), windows locked 42 w storm (29% reduction), windows locked 43 w storm (29% reduction), windows locked 43 w storm (29% reduction), windows locked 44 w/o storm, windows locked 45 w/o storm, windows locked 46 w/o storm, windows locked 47 w storm (29% reduction), windows locked 48 w/o storm, windows locked 49 w/o storm, windows locked 40 w/o storm, windows locked 41 windows locked 42 werage fit, w/o w/o 42 werage fit, w/o 42 werage	113 WIDH	HW			A				1.13	0.24			3.3	l/smc						1				
40 WIDHW h4 10 1	40 WIDH	HW	h4	10	1				2.36						H					327				
1721 WIDHW TBL4-3			h4	10.77	1														- 1	125.5				
1721 WIDHW TBL4-2 1 4 5 0.08 0.68 0.68 0.50 0.158 0.05 0.46 cm2/lmc 0.6 50 113 WiDHWN W-15 3 3 WiDHWN W-15 WIDHWN W-					20.8	5 0	0.04	0.71	1 5.5											3,0			3,4	
1721 WIDHW TBL4-1				9.5	100			200 0000	1					A Committee of the Comm						I			II.	
1514 WIDHWN W-15 3						50 5								100							5.50			
1514 WIDHWN W-8 3				1		5 ().28	0.62	1					l/smc					5035	2000				
1514 WIDHWN W-8 3			10.012.70		3				I						0.158	0.05		0.46	cm2/lmc	0,6	50		113	w/o w/s
1261 WIDHWN	1514 WIDH	HWN	W-B		3										0.216					0.6	50		113	w/o w/s (10 cm2/ea)
208 WIDHWN lab	261 WIDH	HWN							I							3.2		88			10.50			
208 WIDHWN lab			lab						1 80					1/em	"	-		0,0	- merine	2.52	10.000			each poly w/o meeting mil 10 5 8
208 WIDHWN lab 5.34 //sm 1 75 entire window (including frame) 24.8 ft 119 WIDHWN 9-77 1 1.49 //smc 1 75 37x49 wood w/ viryt jamb liners (12.78 sq ft) 1.19 WIDHWN 10-77 1 1.65 //smc 1 75 34x48 wood w/ metal jamb liners (11.42 sq ft) 1.13 WIDHWN A 2.28 1.32 5.47 //smc 1 27 315 gives lab test data (<1970), w/o w/s			Common Co																	130			ll .	
119 WIDHWN 9-77 1 1.49 I/smc 1 75 37x49 wood w/ viryl jamb liners (12.78 sq ft) 119 WIDHWN 10-77 1 1.65 I/smc 1 75 34x48 wood w/ metal jamb liners (11.42 sq ft) 113 WIDHWN A 2.28 1.32 5.47 I/smc 1 27 315 gives lab test data (<1970), w/o w/s																				3.55			II	
119 WIDHWN 10-77 1 1.65 //smc 1 75 34x48 wood w/ metal jamb liners (11.42 sq ft) 113 WIDHWN A 2.28 1.32 5.47 l/smc 1 27 315 gives lab test data (<1970), w/o w/s					9020										ll .					1			ll .	
119 WIDHWN 10-77 1 1.65 //smc 1 75 34x48 wood w/ metal jamb liners (11.42 sq ft) 113 WIDHWN A 2.28 1.32 5.47 l/smc 1 27 315 gives lab test data (<1970), w/o w/s									100000000000000000000000000000000000000					l/smc						1				37x49 wood w/ vinyl jamb liners (12.78 sq ft)
113 WIDHWN A 2.28 1.32 5.47 l/smc 1 27 315 plves lab test data (<1970), w/o w/s	119 WIDH	HWN	10-77		1				1.65					Vsmc						1	75			
1	113 WIDE	HWN	-		A				2.28	1.32			5.47	l/smc						1	0.000		315	
	1514 WIDS	SNW	W-14		3										0,137	0.05		0.41	cm2/lm/	0.6	50		113	double slider w/o w/s
1514 WIDSNW W-4 3 0.174 cm2/imc 0.6 50 113 W/o w/s (slider - all lumped) (8cm2/ea)					0.750				1							0.00		W. T.		28.850				

I	>
-	
-	1

	class	let to w	case	A		value	value	(avg)	min	s.d.	+ s.d.		units	area	min		+ s.d. ma	x	units	ď	press	total	#'s	Other
261	WIDSNW	1	1	T I	n	Mixed	l	S-I	B-I	B-I	IB-I	S-I	1	5.2	2.8	86.	S-1 S-1	, ,	cm2/m2	١.				
100	WIDSW	W-14-1	g	3				1						0.067	0.02				cm2/lmc	0.6	50	1 1	112	double slider w w/s
MESSON WAY	WIDSW	W-3	0	3										0.085	0.02		U.	21	cm2/imc	0.6	50	1 1	0.000	w w/s (50% of W4) (slider - all lumped) (4 cm2/ea)
	WIDSW			~										2.6	1.4	į.	145	9.8	cm2/m2	1 1	4	1 1	113	way (30% of 114) (sinder - all fulliped) (4 chiz/ea)
	WIDSW		27	В				0.9	0.27	0.31	1.48	2.99	l/smc						Unit	1	75	1 1		w/o stm, wood double sliders
	WIDSW		33	9				0.98	0.27	0.42	1.51	2.99	C 100							1	75			w/o stm. all double sliders
100000	WIDSW		6	9				1.26	1.01	1.12	1.4		l/smc							1	75			w/o stm, alum. double silders
942				-									4-1-0							1 12		20		(A3313) window & door perimeters
	WIFM	W-5		3										0.055					cm2/lmc	0.6	50	-	113	paulking (20% of W-6) (2.4 cm2/ea)
514	WIFM	W-6		3										0.271					cm2/lmc	0.6	50			no caulking (12 cm2/ea)
261	WIFM													1.3	1.1			2.1	cm2/m2	1	4			w/ caulking
	WIFM	100												6.5	5.7		10		cm2/m2	1	4			without caulking
311	WIFM	cq2	1	4	6	0.02	0.68						I/sm			A				17		1-0.1		window & frame wall joint
514	WIFW	W-5		3										0.018					cm2/lmc	0.6	50		113	caulked (0.8 cm2/ea)
514	WIFW	W-6		3										0.094					cm2/lmc	0.6	50		113	no caulking (4 cm2/ea)
261	WIFW													0.3	0.3	ŧ.	(0.5	cm2/m2	1	4			w/ caulking
	WIFW													1.7	1.5	į		2.7	cm2/m2	1	4			without caulking
	WIFW	lab 1						39.2					l/s ea							1	75			entire window including frame (24.8 ft)
339	WIFW	1			59			113	88.7			113	l/s-house	1						1	50	18%		mobile, unsealing seq 1, windows and frame
	WIL		19											H						1	4	10		Mp
261			11									8								1	4	14		w/ofp
100	WIL			2				10.9	3.3			31.6	l/s ea	1						1	62	11.8		about same for sealed insu glass, stm w, or single glazin
	WL	H1	2	2				11.8					l/s ea							1	62			
1000	WIL												l/s ea									60%		reduction when caulked frame
257									0.32			7.4	l/sm							1	75	20		federal office bldg.
51,755	WIL			3				0.79					I/sm							1	75			ANSI/AAMA,ANSI/NWMA prime (ft of sash seal)
176				•				0.81					l/sm l/sm							1	75			(a2257)
The state of	WIL			5				1.57	0.10			0.55								1	75 75		240	exterior storm window stds (ft of sash seal)
	WIL			5				0.38	0.19			200		I						1	75			exterior walls of tall buildings (a2257)
	WIL		192	1				0.82	0.02	0.0	1.45	0.75 3.58		ı							75		310	exterior walls of tall buildings (a2257)
	WIQ	-	192	3				4.5	0.02	0.2	1.40	3.56	1/s								50			all window types per louvre on louvre window
100000	WIQ	- 3		1				0.79					Vsm							1	75		311	per louvre on louvre window
35000 BK.	WIQ		- 1	3a				0.75					Vsm	1						1	25			fleaky*, average fit w/o w/s or loose fit w/s
	WIQ		- 1	3a				2.04					l/sm	1						1	25		309	eaky, loosly fitting window, much worst than avera
	WIQ	H4		4	6	0.13	0.33	2.04					Vsm								0-75		309	either casement or awning
	WISHS	Bldg A	- 1	4	6	0.1	0.74						Vsm	1						1	0-75			5x4'-one fixed and one h. slider (includes win frame/wall
F 23/37	WISHS	Bldg A	1	4	6	0.15	0.66	1					l/sm	1										5x4'-one fixed and one h. slider (Includes win frame/wall
	WISHS	Bldg C	1	4	8	0.02	0.72						l/sm											5.3x5.3'-one fixed & one h. silder (Includes win frame/wa
	WISHS	Bldg A	1	4	8	0.17	0.69						1/sm											5x4'-one fixed and one h. slider (Includes win frame/wall
	WISHS	Bldg V	1	4	6	0.07	0.67	1					1/sm							l .				B.3x5.2'-one small fixed one h. silder (Incids win frm/wall
	WISHS	Bldg V	1	4	8	0.1	0.68						l/sm											B.3x5.2'-one small fixed one h. silder (incids win frm/wall
311	WISHS	Bldg C	1	4	6	0.03	0.83	100					l/sm											5.3x5.3'-one fixed & one h. silder (includes win frame/wa
	WISHS	Bldg C	1	4	8	0.04	0.77						l/sm											5.3x5.3'-one fixed & one h. slider (includes win frame/wa
	WISHS	Bldg C	1	4	8	0.03	0.72						l/sm	1										5.3x5.3'-one fixed & one h. slider (includes win frame/wa
	WISHS	Bldg C	1	4	6	0.01	1.01						V/sm											5.3x5.3'-one fixed & one h. slider (includes win frame/wa
	WISHS	Bldg A	1	4	8	0.09	0.72						V/sm				4.							5x4'-one fixed and one h. silder (includes win frame/wall
	WISHS	Bldg T	- 1	4	7	0.06	0.67	I					l/sm											12.9x4.5'- single hor slider (includes win fm/wall joints)
	WISHS	Bldg V	1	4	8	0.05	0.75						V/sm											B.3x5.2'-one small fixed one h, slider (inclds win frm/wall
311	WISHS	Bldg T	1	4	7	0.03	0.64						I/sm											12.9x4.5'- single hor slider (Includes win fm/wall joints)
311	WISHS	Bldg C	1	4	6	0.03	0.71	I					V/sm											5.3x5.3'-one fixed & one h. slider (includes win frame/wa
458	WISHS		6	9				0.75	0.47	0.28	1.23	1.71	l/smc	1						1	75			w/o stm, wood single silders
458	WISHS		3	9				1.12	0.94	0.88	1.35	1.4	l/smc							1	75			w/o stm, wood clad single sliders
458	WISHS		31	9				1.23	0.47	0.6	1.87	3.58	Vsmc							1	75			w/o stm, all single sliders
458	WISHS		22	9				1.38	0.47	0.72	2.03	3.58	I/smc							1	75			w/o stm, alum. single sliders
514	WISHSN	W-16		3				50824					10000072673	0.174	0.08	4		0.5	cm2/lmc	0.6	50		113	single silder w/o w/s
514	WISHSN	W-4		3										2.438					cm2/lmc	0.6	50			slider - all lumped, w/s
261	WISHSNY	N												3.6	1.8	k.	3	5.4	cm2/m2	1	4		11.70-00.50	Macrosk to the sound of the sou
	14801 10141	W-16-1	0	3				II						0.085	0.04	į.	0	25	cm2/Imc	0.6	50	II I	113	single slider w w/s

1	ret#	class	ref id #	#	D	TC	C	n	1	low	flow v	ariatio	n			flow	area.	area	variatio	n		area	C	ref.	15%	Note	Other
1				case	A		value Mixed		lue		min S-I	s.d.			max	units		min		. + 5.0		units	d	press	total		
١	1514	WISHSW	W-3	į.	11	In	Mixed	31	- 1	5-1	Ib-I	B-I	B	4 1	S-I	1	1.219	3-1	B-I	B-I	S-I	cm2/lmc		50			
ı	1261	WISHSW			•												1.8	0.9			0.7	cm2/m2	0.6	- 33		113	slider - all lumped, w/o w/s
ı	40	WISHSW		6ha	3				- 1							Vsm	1.0	0.0	•		2.1	Cinzinz	1 :	50			(managed 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1
ı	40	WISHSW	h1	4	· - 8:				- 1	0.44						1/smc	l .						1 :	75			I/ms conversion terms in paper 1357
	40	WISHSW	h2	4	1				- 1	0.88						Vsmc							1 :	75		l	w stm
	40	WISHSW	1000100-00	4	ំ				- 1	1.54						Vsmc							1 3	75		ll .	w/o stm
	40	WISHSW		4	•				- 1	2						l/smc							1 :	75		ll .	w/o stm
	40	WISHSW	0.000	9	22 (5)					2.8						t/smc		-4					1 :	75			w/o sun
	40	WISHSW	h6	Я	C - 152					4.01						l/smc							1 1				
	1514	WISHW	W-17-1		3					4.01						(SITIC	0 407	0.00	e.		0.45		1	75			w/o stm
	1514	WISHW	W-17		3												0.107	0.00				cm2/lmc	0.6	50			w/ w/s (50% W-17)
	1261	WISHW	**-17														0.216	0.1				cm2/lmc	0,6	50		113	w/o w/s single hung
	458	WISHW		11	9					1.51	1.07	1.0	, ,	1.97	0.45	Vsms	2.2	1.8	•		2.9	cm2/m2	1 1	4		l	La contraction of the contractio
	1261	WISHWN		11	8					1.51	1.07	1.0		1.87	2.15	vsms	540.40		20				1 1	75		l	w/o stm, alum single hung
	311	WISHUN		- 1												120.00	4.4	3.6	5		5.8	cm2/m2	1	4	0239		Maria 0 320 3
I	311	WISILL	direct	- !	4	0	0.02		.82							l/sm									28%	1	direct measuremeths (fig 4)
	42	WIST	indirect	53		8	5170		2.70							l/sm											indirect measurements (fig 4)
	42	WIST			!	8	3090	10 275	.83							Vs-house				701			0.6	2.4		ll .	entire house storm windows out
	2000000	WIST	nere:		1			100	.74	ı						l/s-house	1						0,6	75		1 405590	entire house storm windows in
	526 526	WIST	lab lab		4	5	28.6		.69	ı						Vs-house								0-45		308	mobile in lab, storms in (little difference)
	1721	WIST	IAD	1	4	5	14.3	0.	.93							l/s-house							oge	0-45		308	mobile in lab, storms out (little difference)
	113	WIST			1				- 1	0.79	0.00					Vsm							1 1	75			ANSI/AAMA, Interior storm windows (ft of sash seal)
	113	WIST	2 track		^				- 1		0.39				2.66	l/smc							1	27			al or vinyl
	113		2 track		A					0.47						l/smc							1	27			pressurized track, w/s at head, meeting rall and sill
	113	WIST	3 track		A					1.1						l/smc							1 1	27			al or vinyl
	1721	WIST	HS TRACK		~					0.03	0.02				0.00	Vamc Vams							1	27		315	al or vinyl
	1721	WIST	RG/MA	G						70.7	0.02				0.03		1						1 1	75			heat shrink films with adhesive or mechanical seals (over a
	1721	WIST	FS/ME		1				- 1	0.2	0.03				1.000	Vsms							1 1	75			rigid glazing with magnetic seals (over avg prime)
	1721	WIST	RG/ME		- 1					0.27					1.45		l						1	75			lexible sheets with mechanical seals (over avg prime)
	113	WISTOH	p track		,					0.69	0.08				1.45	4,	1						1	75			rigid glazing with mechanical seals (over avg prime)
	113		h nack		A				- 1	2700000						l/smc							- 1	27			pressurized track prime; double, pressurized, 3 track storr
					^				- 1	0.71	0.39					l/smc							1	27			w.s. prime; double, pressurized, 3 track storm
į	113	WISTDH			A	_				0.86	0.42				1.52	l/smc							_ 1	27]	315	w/o W/S prime, double(avg), pressurized(min), 3 track stor

APPENDIX B

Listing of Literature Leakage Values With Calculated ELA using 4 Pa and $C_d = 1$

el # Tolass	Ifel id a	18 10	CI C	-	10	Bow 1	BAW VA	noderv	TROW	John	min	flow	may	min	area		N/AA						_		
	10.25		& vak	20	value	(avg)	min	max S4		4	4	avg 4	rnax 4	min 4	4	max 4	1	min I		units	d p	er.	otal	Vote Va	pher
38\datasi16.wql	1	1 1	mon	- !		P '	Pri	124	î	1 ,	1	1 1	١ ١	1	1	- 1	H	BH	SH	- 11		- 1	-		
646 CG	1	1 3)							1						- 1						30	123		celling
1514 CG	W11 .	3				ı									0,008	- 1	0.02			cm2/m2	0.6	50	-	113	,
1514 CG	CR2	3				l				1				1	0.019	- 1	0.0465			cm2/m2	0.6	50	- 1	113	dropped ceiling w/ plastic sheet (EW-6)
1614 CG	CR5	3			- 0	10-17 Sec.								ı	0.191	- 1	0.4645			cm2/m2	0.6	50			propped celling w/o plastic sheet
40 CG	h6	1 1				1.372			Vern2	1		0.79		1		- 1					1	76	3	314	area term refers to celling area 0.03in2/ft2
40 CG	he	1 1				1,88			Varn2	1		1.083		1		- 1	1				1	75	11		area term refers to ceiling area 0.04 in2/ft2
40 CG	h3 h2	1 1				1.88			Vsm2			1.083				- 1					1	75	16	314	area term refers to celling area 0.04 in2/ft2
40 CG	h4	1 1				4.572			Vern2			2195		1		- 1	1				1	76	67		area term refers to ceiling area 0.085 in2/ft2
40 CG	ht	1 1				4.828			Varn2			2.781		1		- 1					1	75 75	34 65		area term refers to ceiling area 0.1in2/ft2 area term refers to ceiling area 0.1 in2/ft2
486 CG						0.254			Varna2			2101		ı		- 1				- 1		"	50	314	assumes % to get flow (.76 ach house)
486 CG						0.127			Vern2					1		- 1	1					- 1	25		assumes % to get flow (.75 ach house)
91 CG	2	1 1				0.184			m3/s	1		0.108		ı		- 1	l			- 1	1	75	18		(need area terms)
91 CG	1	1 1				0.354			m3/s			0.204		ı		- 1					1	75	65		(need area terms)
3 CH	diff	1 5								1				1	28	- 1	28			cm2	1	4		5,303	depressurization (flue), effa difference
23 CH 1008 CH	diff	1 5							in.		li .				33	- 1	33		•	cm2	1	4		5,303	pressurization(flue), effa difference
1008 CH	measur	1 4	200	2.05 4.31	0.71				Vs Vs	21,25														5,201	difference, entire house
1008 CH	open	1 4		24.4	0.71				Vs Vs	252.9				1							۰ ا	-50		2,201	neasured directly
1008 CH	capped			234	0.71				Vs.	231.5				l										4,201	chimney uncapped, entire house chimney capped, entire house
1514 CP	C/R16	3	S 59	1	29/5/7				275					1	0.822		2			crm2 ea	0.6	50	- 1		ceiling mounted lights
1514 CP	C/R3	3			4	l								ı	1.643	- 1	4			cm2 ea	0.6	50	- 1	113	(whole house tans w/ w/s cover)
1614 CP	C/R11	3								1				1	2064		5			cm2 ea	0.6	50	- 1	113	
1261 CP		- 2								1				10	10	20	10	10	20 0	om2 ea	1	4	- 1		occessed light fotures
1514 CP 1514 CP	C/R12	3								1					10.27		26			cm2 ea	0.6	50	- 1	113	
92 CP	b43	1 2				11.8			lle ee	1				ı	20.54	- 1	50			cm2 er	0.6	50		113	(whole house fans) w/ closed louver
92 CP	1,700	50 2				15.57	238	26.43	Us on	1	1.539	7,693	17.00	ı		- 1					1 1	62			super energy construction, recessed ceiling spots
92 CP	h43	1 2				24.54	200	24.70	l/s ea		1.000	16	17.23	ı		- 1					1	62	5.2%		recessed celling spots
339 CP	mobile	1					37.75	41.53	(ra-bouse	.	28.31	31.14	31.14	1		- 1					1 1	50	۰		super energy construction, recessed celling spots oint between celling and flue vent, sealing sequence 3
04 C8		1 6			X.									ı	129	- 1	129			cm2	1	4	١,	1	prawl space vent-8x16 each
04 CS		9 6									0			1277	1690	2735	1690	1277	2735 0	cm2	1	4			ELA, vents closed, entire crawl space
4 CS		9 6			1	I				1				7.8	10.3	16.6	10.3	7.8	16.6	cm2/m2	1	4	- 1		SELA vents closed
1261 DACNW					17	1								10	30	30	30	10		cm2 et	1	4	- 1	985466	TO THE PROPERTY OF THE PROPERT
1514 DACNW 1261 DACW	C/R14	3				1					11			1000	36.97	200	90	550	C-0224 1	cm2 er.	0.6	50		113	(attic into conditioned space)
1514 DACW	C/R13	3								1				8	18.49	18	18 45	8		cm2 er	1 1	4	- 1		weatherstripped
1514 DAFD	D10	3				1				1				ı	4.108	- 1	10			cm2 evi	0.6	50	- 1		(attic into conditioned space)
1614 DAFDN		3								1				22 59	44.36	86.26	108	55	210	cm2 en	0.6	50 60	- 1		w/ insulated box w/o w/s, 3x6' door (1-4mm crack)
1514 DAFDW	D9	3				10				1				1/28/00/00/00	22.18	43.13	54	35		cm2 evi	0.6	50	- 1		w/ w/s (50% of D-8)
1514 DAG	C/R15	3				l					1			Chest page		obarten.	1,575	20.000		cm2 en	0.6	50	- 1		(into unconditioned space)
1261 DDNW						ı				1				7	11	22	- 11	7	22 0	cm2/rr 2	1	4	- 1	100,000	
1261 DDW														3	8	15	8	3		cm2/π 2	1	4			A
1514 DDW	D7	3							•	1				7.476	11.21	23,05	27.3	18.2	56.1 c	cm2/rr 2	0.8	50		113	Sx8 door (.7-2mm crack) (RP438 changed units to per m2)
92 DFRAM 92 DFRAM		50 2 50 2				1.888			Vs sa			1.231									1	62			via threshold, 9% of door leakage
92 DFRAM	7.1	50 2				6.607 9.91			Vs sa Vs sa			4.308									1	62			via weatherstripping on the 3 edges, 37% of door leakage
92 DFRAM	7.00	50 2				177775	3 775	37.75			2.482	6.462	24.62								1	62	_		door frame & facing, 54% of total
208 DFRAM	-	1 4	8 0.0	949	0.678	1.729	3.770	37.75	Vsm	0.541	2.462	12	24,62								!		5%		37% via w/s, 9% threshold, 54% walframe joint
208 DFRAM		1 4		0.000	0.62	1.572			Vsm	1.003		0.989					1				1 1	75 75			frame trim, outer & inner 3 sides, 33.25 ft frame trim, outer 3 sides, 16.75 ft
206 DFRAM		1 4	4.0		0.631	11.79			Vsan	7,066		7.183									1	75			amb except for threshold, held closed, 16 ft
208 DFRAM		1 4	8 1.1		0.591	15.25			Year)	10.44		10.45									1	75			amb except threshold, free, 16 ft (cfm-in wg)
208 DFRAM	lab	1 4			0.573	33.8			/sm	24.32		24.41			7.						1	75			ander threshold
1261 DFRAM														0.3	1	1	1	0.3	1 0	cm2/n12	1	4			w/ cautiding
1261 DFRAM										1				1.7	5	5	5	1.7		cm2/n 12	1	4			w/o cauliding
1261 DFRAM										-				0.1	0.3	0.3	0.3	0.1		cm2/r 12	1	4			w/ cauliding
1261 DFRAM	W	0240												0.6	1.7	1.7	1.7	0.6	1.7	cm2/r 12	1	4	7.5		w/o cauliding
1261 DG		19															1			0000 PM (0)	1	4	11		(a3313) w freplace
1261 DG 1514 DG	Des	11												1	1202						1	4	10		(a3313) w/o fireplace
1514 DG	D13	3													0.2		0.4877			cm2/line	0.6	50			avecade (uew)
1514 DG	D13	3												0.225	0.225	0.438	0,5486	0.540		cm2/i nc	0.6	50			well fitted
	D13	3				I				II				0.225	0.451		1.0973	0.549		cm2/inc	0.6	50 50	- 1	113	average

1	г	1	П	1
3	٠	۰	٠	,
	1	1		
٠	۰		٠	

Nos Nod	5 6 4 2 1 1 3 3	T n 1 6 1 6 1 6 1 6 3 3 3 3 3 3	Value S-I 0.0475 0.0321 0.0144 0.0115 0.0424 0.0408	0.462 0.53 0.716 0.829 0.517 0.491	(avg)		max S-I		9la cal 4 1 0.349 0.259 0.15 0.141 0.336 0.312	min 4	avg 4	max 4 1	min 4 1	avg 4 1	max 4 1			max S-I	1779 NOV	d j	press	total	Pa	DENA
Note Note Note Note Note Note Note Note	6 4 2 1 1 3 3 4 4 4	1 6 1 6 1 6 1 6 1 6 3 3 3 3 1 4 8 3 10 3	S-I 0.0475 0.0321 0.0144 0.0115 0.0424 0.0408	0.462 0.53 0.716 0.829 0.517 0.491				m3/s m3/s m3/s	0.259 0.15 0.141 0.335	1	1	1	1	1	1	BH								
Note Note Note Note Note Note Note Note	6 4 2 1 1 3 3 4 4 4	1 6 1 6 1 6 1 6 3 3 3 3 3 1 4 8 3 10 3	0.0321 0.0144 0.0115 0.0424 0.0408	0.53 0.718 0.829 0.517 0.491				m3/s m3/s m3/s	0.259 0.15 0.141 0.335															
No4 No2 No1 No3 W7 d-14 d-14 lab D6	4 2 1 3 3 4 4 4	1 6 1 6 1 6 3 3 3 1 4 8 3 10 3	0.0144 0.0115 0.0424 0.0408	0.718 0.829 0.517 0.491				m3/s m3/s m3/s	0.15 0.141 0.336				l			II .								elevator door, 6.8 mm crack, door opening 1.07x2.13m
No2 No1 No3 W7 d-14 d-14 lab D6	2 1 3 3 4 4 4	1 6 1 6 3 3 3 1 4 8 3 10 3	0.0115 0.0424 0.0408	0.829 0.517 0.491				m3/s m3/s	0.141															elevator door, 4.8 mm crack, door opening 1.07x2.13m
Not Nos	4	1 6 3 3 3 1 4 8 3 10 3	0.0408	0.517 0.491				m3/s	0.336						- 4							1 1		elevator door, 5.3 mm crack, door opening 1.07x2.13m elevator door, 5.6 mm crack, door opening 1.22x2.13m
hv7 hv7 d-14 d-14 lab D6	:	3 3 3 1 4 8 3		79.24				m3/s	0240				l									ΙI		elevator door, 5.8 mm crack, door opening 1.222213m
hv7 d-14 d-14 lab D6	:	3 3 1 4 8 3	0.6839	0.298				en cettatus	Hans										- 1			1 1		elevator door, 5.6 mm crack, door opening 1,00x2.13m
d-14 d-14 lab D6	:	3 1 4 8 3 10 3	0.6839	0.294										14.38	: 1	35			cm2 ea	0.8	50	ΙI	113	focated on upper floor)
d-14 lab D6	•	3 1 4 8 3 10 3	0.6839	0.294	ı								200000	0.751		1.8288			cm2/mc	0,6	50	ΙI	113	(located on upper floor)
lab D6		1 4 8	0.6839	0.298	1										0.751	1.8288			cm2/mc	0.6	50	ΙI		(2mm crack)
D6	3	10 3	0.0000		2515			Varn	3.992		4.091		0.751	1.127	1,502	27432	1.829	2.698	cm2/mc	0.6	50 75	1		(4mm crack)
Tpe	3	10 3			20.0			VOILE	0.000		4.001		24.85	41.08	1068	100	60	280	cm2 ea	0.6	50	ΙI	113	2.3 ft slot, (cfm-in wg)
	ģ	50 2			43	24	90	Va		18	32.25	60		41,00	1000	"	-	200	CITIZ VI	1	50	ΙI		sk.m. ranch - silder doors
					20.29	4.719	35.39	Va es		3,077	13.23	23.08	l							1	82	1.7	1 1	The state of the s
					2.54			Vern2	1 1		0.594		l			.,				1	300	2000		SGD-B2, SGD-A2, SGD-A3
					254			Vern2			1.464		l			l			- 1	1	75	H		Fed MHC&SS 280,403 ALL TYPES WINDO & S. GLASS DOOR
					2.54			Vem2			1.464		l			1			- 1	1	75	ΙI		ANSI A200.2 SGD wood
					5.08			Varn2	I		2.927		l							1	76	l l		od MHC&SS 290,406 ALL TYPES VERTICAL ENTRANCES
	1.7	1 4 6	0.101	0.68	5.00			Vsm2 Vsm2	1.004		2.927		l							1	76			ANSIa134.2(al, sliding glass door-SGD-B1)
TDe	2-2	1 4 6	0.129	0,702				Vern2	1.322				l							088	- 11	ΙI		3 penels, 2 of them side 2 panels, one sides
	2-3	1 4 8	0,113	0.718				Vsrm2	1.184				l						- 1		4	t I		2 panels, one sides
Tpe	1-1	1 4 6	0.277	0,56	l			Vern2	2.332				ı								(27)	H		3 panels, 2 of them side (numbers are from top to bot on Fig.
	1-5	1 4 8	0.111	0.673	l			Varn2	1.093				L						- 1			1 1		3 panels, 2 of them silde
	2-8	1 4 6	0.161	0.588	l .			Vsm2	1.409	14			l									ΙI		2 panels, one sides
Tpe		1 4 6	0.104	0.729				Vsm2	1.107				l			1				1		1 1		3 panels, 2 of them silde
V Ipe	1-8	1 4 6	0,092	0.695	l			Varn2	0.922				1			1			- 1					3 panels, 2 of them slide
V D2		3												6.162		20			cm2 ea	0.6	50 50	H		storm door = 35% reduction subtract 20 cm2
,		7			l									62		62			cm2 total	u.,	~	ΙI		average difference after appling storm windows & doors
٧		7												0.005		0,0046			cm2/m2	1	4	H		per sq ft of floor area
V h5		2 1		- 1	0,833			Varne	1 1		0,48		l			377735			1000000	1	75	ΙI		w/ storm door
V he		2 1			0.633			Varne			0.48		l			l				1	76	l		w/storm door
V he		2 1			1.226			Varno	1 1		0.707					l			- 1	1	75	H		w/o storm door
V h6		2 1			1.448			Vame	1 1		0.633					1 22	0.25			1	75	ΙI		w/o storm door
D6		3							1 1				15 NOVE 2006	10.27	16.43	25 38	15 25		cm2 ea	0.6	50 50	LΙ		weatherstripped, magnetic seals
20				90					H I				3	8	15	×	3		cm2/m2	۱ ۳۰	60	lΙ	113	weatherstripped
hs#	P5	2 1		2	0,633			Varne			0.48		"	್		"	0000	10	CITIZE I	1 1	75	H		with-42% reduction - w/s fair to poor
hs#	F6	2 1			0.633		*	Varne			0.48					l				1	75	H		with-32% reduction - w/s fair to poor
hs#		2 1			1.226			Verno			0.707									1	75	H	1 1	without storm - w/s fair to poor
hs#		2 1			1.448			Verno			0,833		l			1			- 1	1	75	1	1 1	without storm-weatherstripping fair to poor
hs#		2 1			2154			l/smc			1.241		1							1	75	1 1		(with storm - w/s fair to poor)
hs#		2 1			3.223 4.795			Varno			1.857									1	75			(without storm-weatherstripping fair to poor)
ha#		2 1			6.178			Varno			3.68								- 1	1	76 76	ı I		(without storm-weatherstripping fair to poor)
D4		3						1417			0.00		1232	20.54	53.4	50	30	130	cm2 ea	0.6	50			(without storm - w/s fair to poor) up to 2mm avg crack
													6	11	17	11	6		cm2/m2	1	4		""	by Walling Clack
D1		3												10.27		25			cm2/hs	0.6	50		113	subtract 25 cm2 per vestibule
	3	19																		1	4	2		(A3313) w/ fireplace
		1 3b							I												18	3.1		exterior walls
		1 3b														l					32	1.3		party wall
		11 3												0.000		2.2			20200	1 1	4	4		(A3313) w/o fplace
na -		3												0.082		0.2			cm2 ea	0.6	50			w gaskets
IW-2	100													0.082		0.2			cm2 ea cm2 ea	0.6	50	ΙI	113	w/ gaskets
IW-2	1	3														399733			2010/07/2017	00	60		,,,,	not gasketed w/o gaskets
	79107	tha .												8		,.s				1	4	1+/-1		1982 USA frame res red, with gaskets, % is w or w/o fp dampe
EW-					0.236			Vs ea			0.154		l	-						1	62			w/ gaskets(7% of original)
EW-		50 2			3,775							4.616	1			H				1	82	20.3		w/o gaskets
EW-	1	1 1			5.285			Ve ea	I		3.048		1			l				1	75			Aspiex outlet in insulated test wall
EW-		1 1			6.135	unodern		Va es	I	. 5753597	3.535					l				1	75		1 1	duplex outlet-uninsulated test wall
EW-					8,966	8.022	8,966	Va-house		6.017	6.724	6.724								1	50	<2	.,,,,,,,	total for all exterior outlets and switches no gaskets
	W-	12	12hs 50 2 50 2 1 1	12hs 50 2 50 2 1 1 1 1 1 1	12hs 50 2 50 2 1 1 1 1	12ha 50 2 0.296 50 2 3.775 1 1 5.285 1 1 6.135 1 8.966	12ha 50 2 0.236 50 2 3.775 1 1 5.285 1 1 6.135 1 8.986 8.022	12ha 50 2 0.236 50 2 3.775 7.079 1 1 5.285 1 1 8.996 8.022 8.966	12hs 50 2 0.236	12ha 50 2 0.236	12ha 50 2 0.236	12hs 50 2 0.236	12ha 50 2 0.236	12ha 50 2 0.235	W-1 3 0,616 8 0.028	W-1 3 0.616 8	W-1 3 12hs 50 2 0.236	W-1 3 12ha 50 2 0.296	W-1 3 12ha 50 2 0.236	W-1 3 0,616 1.5 cm2 ea 50 2 0,236 Vs ea 0,154 50 2 3,775 7,079 Vs ea 2,452 4,616 3,048 1 1 5,235 Vs ea 3,048 3,535 1 8,966 8,022 8,966 Vs-house 6,017 8,724 6,72	W-1 3 0.616 1.5 cm2 ea 0.6 6 6 cm2 total 1 50 2 0.236 Vs ea 0.154 1 1 5.285 Vs ea 0.646 1 1 1 6.135 Vs ea 0.635 1 1	W-1 3 0,616 1.5 cm2 ea 0.6 80 1.5 cm2 ea 1.6 2	W-1 3 0.618 1.5 cm2 ea 0.8 50 1 1-/-1 1 2 1 1 2 1 2 1 2 2 3 1 1 1 2 3 2 3 3 4 5 1 1 1 2 3 3 4 5 1 1 1 2 3 3 5 1 1 1 2 3 3 5 1 1 1 2 3 3 5 1 1 1 3 3 5 3 5 1 1 1 3 3 5 5 3 5 1 1 3 3 5 5 5 1 1 3 3 5 5 5 1 1 3 3 5 5 5 1 1 3 5 5 5 5	W-1 3 0,618 1.6 cm2 ea 0.6 50 113 125a 50 2 0.236

1	С	J	C	J
	1	ī		
1	ľ	ì	ď	١
	۰	•	۰	•

											D&n		ela fron			ela lion	1									
61 #	7	1855	(6) KE (F	la Inio	0	In	Now.		notane		Din cal	min	avg	mex	min		max	Noa	area van	abon A	766	F 1	61.	55	Vote	parer
	- 1		1	cases A &	value	value	(avg)		max	units	4	4	4	4	4	4	4				nits	d p	ress	total	#'s	
40.	14 E		EW-1	I ITIn	154	1	B4	BH	S-I	1	1	1	1	1	1	1	1		B4	S-4					10	
	14 F		H4	3			1				1	ı				6.162	6.162	15			m2 ea	0.8	50	1 1		no gaskets
	161 F		114								1	ı									m2 ea	0,6	50	1 1	113	sealed combustion furnance
	14 F		Ha	3							н.	l			l	1232		30		1000	m2 ea	- au (25c)	50	ı	777	sealed combustion furnace
	161 F			7											18	24	30	24	18	30 cr	9350.50	0.6	4	1 1	113	no ducta-resistance or water (hydronic) system
	14 F		He	3			11								"	24.85	~	60	10	100 MW (000)	m2 ea	0.6	50	H	113	retention head & stack damper retention head plus stack damper
	181 F						1								20	30	40	3532	20	40 cr		1 1	~	1 1		Turnace w/ stack damper
20	161 F														20	30	40		20	40 cr		1	- 21	ш	302	retention head burner furnace
51	14 F	F	HE	3			1					l				30.81		75			m2 ea	0.6	50	1	113	retention head burner furnance
5	14 F	F	H7	3			1					ı				30.81		75			m2 ea	0.6	50	1 1	113	
	F	FLCS		9 6			1					l			65	355	806	355	65		m2	1	4	ı	0.13	ELA
		FLCS	wodw	5 6								1			- 1153	1.98	-	1.98		cr	m2/m2:	1	4	ı		houses w/o ductwork in crawl space
		FLCS		9 6			1					l			0.4	22	4.9	22	0.4	49 cr	m2/m4:	1	4			BELA
		FLCS	wdw	4 6							3	l				2.25		2.25		a	m2/mi:	1	4			houses w/ ductwork in crawl space
_		FWDC	ho	1			1									26		26		or	m2	1	4	ıI	317	freplace covered w/ plastic
71		FWDC	F-7	3			1				1				22720	12.32	2000	30	708		m2 ea	0.6	50	1 1		tight damper
		FWDC FWDC	F-3	3			1								20.54	24.65	34.92	80	50	85 cr		0.6	50	1 1	113	average damper
		FWDC		5			1				1				64	69	84	69	54		m2 ea	1 1	4			
		FWDC		1 3			II .		120	Va.				90		68		===		cr	m2 ea	1 !	4	9		% +/-2, w/ dampers closed ,1982 frame res
		FWDC	H#6	1 1			33.03		120	Va es			19.03	30	ı			ll .				1 1	50 76	1 1		brick chimney & open fireplace 1950 Ottawa
		FWDC	H#3	1 1			37.75			Vs en			21.75									1 ;	76			1960 Ottawa
		FWDC	100000000	1 2			38.7			/s ea	1		25.23									1 7	82	ΙI	1	spring loaded damper on top of chimney
4	40 F	FWDC	H#4	1 1			51,91			Vs en			29.91									1	75	ш	1	1960 Ottawa
1	92 F	FWDC	h43	2 2			54.63			Vs ee	1		36.93				34)					1	62	ı		super energy construction
		FWDC		21 2			62.76			Vs en		19	40.93									1	82			ocated on interior wall
		WDC -		40 2			65,59	18.1	141.0			9.848	42.78	9232	1		- 1					1	62	5.5%		overall number (damper closed)
		FWDC		18 2			69.37			Vs ea			45,24		l			l .				1	62	0.00	1 9	ocated on exterior wall
		WDC		1 2			77.39			Vs ea			50.47								00000000	1	62	1 1	200500	typ cast iron damper-observation
		FWDC	F-1	3						Vs 6a						19199191	s. 11	1000			m2 e4	0.6	75	1		freplace w/ sealed combustion
		WDO	F-2	3												143.6	*	360			m2 ea	0.0	50	ıl	113	replace w/o damper or cover
		WDO		13											320	350	380	350	320	1	m2 ea	1 !	- 1			each
	19 F			100												350 100		350 100			m2 es	1 1	- 11	24		15% +/-4, w/o dampers, 1982 USA Frame residence
	14 F		F-5	3												4.108		100			m2 e4	0.6	50	l l	***	Surface of the days about
	92 F			1 2			25.95			Vs ea			16.93			-100		,,,			112 46	\ \frac{1}{4}	62	1 1	113	freplace, glass door, stove
5	92 F	EW-		1 2			33.03			Vs ea	1		21.54									1	62	ш		
151	14 F	WIDC	F-8	3							1			- 0	10.27	14,38	18.49	35	25	45 cr	m2 e4	0.6	50	ш	113	
		WIDC													26	36	46	36	26	48 cr		1	4	ш	3.12	
0.00		WIDC		3												36		36		CF	m2 e4	1	4	8		% +/- 1
	1000	WIDC	- C	7												65	120000-0	65			m2 ea	1	- 4	13	0.355	% +/-3, question if not glass doors
		WIDO	F-e	3											20,54	26.7	32.88	65	60	80 cr		0.6	50		113	
120		FWIDO BWH													40	65	90	65	40	90 cr		1	4			
	14 0		нэ	3											15	20	25	20	15		m2 ea	1	4			AT THE RESIDENCE OF THE PARTY.
	14 C		n.	3			30.50	35.00	20.24	las become			m ~			20.54		50		cf	m2 ea	0.6	50	-	113	domestic hot water heater exhaust stack
500	14 J		IW-10	3			30.34	30,88	30,34	(is-house		50.9	27.25	21.25		0.157		0.004		762		1 .1	50	8	2.22	peneling side joints
	61 J														0.5	1.5	2.5	0.381	0.5	25 cr	m2/m	0.6	50		113	Wal/celling crack
	39 J						65.12	42 47	65.12	l/s-bouse	l l	31 85	48.84	48 94	0,3	1.0	20	1,0	0,6	25 CT	nazim.	1	50	14		ceiling/wall joint w/o taped, plastered or wrapped V.B. wall/ceiling mobile
	48 J			1 36								31,00		-									16	23.1		Root/wall interface
	61 J		&JTP	7. E																		4	'4	42		(A3313) W/ fireplace
	61 J		& JTP									0											7	31		(A313)sill plate & w/cell w/fireplace
94	42 J	ISP													1			l .					7	60		(A3313)
8	92 J	ISP													1									90%		reduction due to cauliding
	14 J		EW-7	3												0.075		0.1829		er	m2/rr	0.6	50	22.55	113	caulked sill & final caulk
	14 J		IW-10	3											1	0.157		0.361			m2/rr	0.6	50	ΙI		wal/floor or wal/celling
	14 J		EW-8	3											1	0.373		0.9144			m2/m	0.6	50	1 1	113	incarfied sil
	14 J		EW-6	3												0.373		0.9144		cr	m2/m	0.6	50	1 1		paulited or fiber mat behind moking
	161 J													1	0.4	0.3	1,2	0,8	0.4	1,2 cr	m2/m	1	4	1 1	1332	sill caulked per m of perimeter
	61 J		0.01	260			Laurence .			50000					1	4	4	4	1	4 cr	m2/m	1	4	ΙI		sill, not caulked
- 252	08 J		lab	1			0.765			l'sm			0.435									1	75			plate-top of trim; plate and solid concrete block foundati
	11 J	ISP	lab	1			1.493			l'sm			0.861		1							1	75			sill plate-bottom of trim; plate and solid concrete block foun
			indirct-1	1 4 6	0.0707	0.807				Fem	0.638												_	50%		floor-wall joint (Indirect measurement w pressure balancing)

١.						
۱	l	Ī	J	Į	1	
	7	ì	í	Ī		•
		3	t			

												НΔ		ela fro	m	$\overline{}$	eta tron	n	7								
	017	TAIASS	172714	78-11	0741	·,·	-	10000	· Kappania	×100.00	1800	can de and	mir	flow		-	area	-						-	-	1	
	01 #	Ciass	Let 10 %	Cases A	& va	alue	n value	(avg)	nin	max	units	ela cal	min 4	avg 4	max 4	min 4	avg 4	max 4	NOA.	min area	max	units	d	rot. press	POTAL	Note #'a	pther .
			1		n S-		330			84		1	1	1	1	1	1	1	ы		S-I	4.5		P			
192	92	JSP	No.	50 2	. Alles		20	8,659	1	8.646	Varno	100	~	3.69	5,638	100			22000	*****	mer a		1	82	24,6		not cauliced
193		ЛРО	EW-13	3				1								ı	0.076		0.1829			cm2/m	0.6	50			Band Joist-ins w/ Internal partitions return air (causked)
194		JTPO	EW-12	3				1								ı	0.376		0,9144			cm2/m	0.6	50		113	Band joist - unins w/ internal partitions as return air
195	1261	PPWP		19												l			II .				1	4	13		(A3313) wfp
196	1261	PPWP		11									25			ı			Ι.			cm2 ea	1 !	4	12		(A3313) w/o fp
198	1261	PPWP						ll .								ı	1.6	1.6	1.8			cm2 ea	1	1			sealed or with continuous v.b., duct pentrations
199	1261	PPWP										1				2	8	10		2		cm2 ea	l i	4		1	not sealed
200	1261	PPWP						l								14	24	24		14		cm2 ea	1	4		II.	each, unsealed or w/o v.b., duct peritrations
201	1514	PPWP		3									l			10,000	24,65		60			cm2/duct	0.6	50		113	duct in wall
202		PPWP	22000	3								1				ı	6.162		15			cm2/pipe	0.6	50		113	
203		PPWP	EW-3	3							Transport Co.					ı	6.162		15			cm2/pipe	0.6	50		113	piping & wiring in walls
204		PPWP		3 3				9.202	11	71	Ve ea		8.26	8.901	63.25	ı			11				1 !	50 50	4%	1	mobile home (plumbing holes in floor)
206		ABMDC	V2	3 3				**	11	71	A2 04		820	20.0	63,25	2485	2.485	4,929		6	10	cm2 ea	1	50		113	plumbing to bath w/ bath enclosed
207	1157	VBWDC	,,,	6													11	4,04,3	11		12	cm2 ea	0.6	4	,	"13	% +/-0.1
208	1261	VBWDC		373		100										10	11	12		10	12	CITIZ 64	1	4	1		22.2
209	92	VBWDC		60 2				15.57	9.438	30.67	Vs on		6.156	10.16	20	1000			9,000				1	62	1.3%		unknown about damper position
210		VBWDO	V-3	3	i											6.162		10.27	20	15		cm2 ea	0.6	50	10000	113	The American Market Construction (Market Constructi
211	1261	ABMDO	- 27													18	20	22	105-01	18	22	cm2 ea	1	4	230		L
212		ABMDO ABMDO	H1	1 2				1410			Vo ea			9,232		I	20		20			cm2 ea	!	4	3		% +/-0.3
214		ABMDO	mobile					73.62	71.28	73.60	Vs-house		53.44	9.232 55,21	55.24	1			lí				1	62 50	14%		11th to be unsealed, not sure if damper open or not
215	1339		ILIOUM	1				3.49	71.20	7402	m3/m			00.21	- was	ı			ll .						177		elect clo dryer operating w/ 2m of .1m flex plastic tubing
216	1514	VDWD	V-B	3												ı	2875		7			cm2 ea	0.6	50		113	
217	1261	VDWD						ll .								1	3	8	3		6	cm2 ea	1	4		1,000	
218		VDWOD	V-9	3									1000000			1	1232		30			cm2 ea	0.6	50		113	
219	2000	VDWOD		50 2				33.5	17.93	52.65	Vs ea		11.89	21.85	34,47	1	12222						1	62	3%		September 1997
220		VKWDC	V-7 V-5	3												2.054	0.822 4.108	4.108	10	5		cm2 ea	0.6	50 50		113	light gasket
222	1261		4-0	•	,			II .								2054	4.100 B	7.100	10	3		cm2 ea	",	4	l l	113	
223		VKWDC		7												1	5		5			cm2 ea	1 1	4	4		% +/-0.3
224	1514	VKWDO	V-6	3	i			11								14.38	22.59	30.81	55	35	76	cm2 ea	0.6	50		113	
226	1167			12				11								2000	39		39			cm2 ea	1	4	8	12.000	% +/-0.4
226	1261	VKWDO									244.000s			722722		36	39	42	39	36	42	cm2 ea	1	4			CONTRACTOR
227		VKWDO	H1	1 2 50 2				61,35		***	Ve en			40.01	72.01	ı			11				1 1	62	L		rent-a-hood, 6" round
229	3577	WAEL	No4	1		0.46	0.46	0229		110,4	m3/s1000	3.371		40.62	/201	1			11				1	62	5.2%		5" round vent pipe concrete block
230	20,000	WAEL	No2.7	1	250	-	0.947	1			m3/s1000					1			1								past inplace concrete, front of concrete block
231		WAEL	No1	1			0.625				m3/s1000					ı			11						li .		past in place concrete, two sides concrete block
232	299	WAEL	No8	1	6	1.138	0.501	ll .			m3/s1000	8.827				1			1								clay the block
233	299	WAEL	No3	1		0.201	0.808				m3/s1000					ı			II .				1			318	cast in place concrete
234	299	WAEL	No5	1	10200 0	0.168	0.454	11			m3/s1000	1,221				1			11							318	past in place concrete
235	645	WAEX		1 3	0											1			II					32	4.5		party wall
236		WAEX		1 3												1			II .					30	35 27.9	I	(A3313) 2x4 brick veneer
238		WAEX	EW-14	3												1	0.22	222	0.64		5.4	cm/m2	0.6	50	21.8	1112	subtract for plastering, oil paint, old water paint
239	1281															1	24		24			cm2 ea	1	4		''*	wall/window air conditioner
240	798600001	WAEX	EW-10	3												l	41.08		100			cm2/hs	0.6	50	ı	113	
241		WAEX	EW-6	3									1			1	287.5		700			cm2/hs	0.6	50		2000	cm2 subtract for continuous polyethylene vapor barrier
242		WAEX		5 5												0.055	0.15	0.21	0.15	0.055	0,21	cm2/m2	1	4		20000	continous air infiltration barriers
243		WAEX		1 5												78:222	0.252		0.252	Margara.	06901	cm2/m2	1	4		ll .	arminated fiberboard/ foil
244	17077505	WAEX		5 5												0.292	0.349	0.414	0.349	0.292		cm2/m2	1	4			fgid sheathings
245		WAEX		6 5				35.34	35.00	30 24	Vs-house		26.0	27.25	97.05	0.515	0.732	0.918	0.732	0.515	0.918	cm2/m2	!	50	nor.		paper & foil sheathings or none
247	177	WAEX	ASH2					0.015	30,86	30,34	Varn2		20.9	0.012	21.25	1			11				!	45	5%	I	mobile, sealing plywood paneling butt joints
248	597	WAEX	6-2	1.5	5 0	0.0013	1.07	0.065			Varn2	0.023	1	0.012		1			11					50	I	3,106	ashrae lab values 8.5° brick wall-plaster inside 8-1 + 3 coats plaster inside
249	1.77	WAEX	7-2		5 0		1	0.169			Vsm2	0.053		0.052		l			II				;	50		3,106	7-1 + 3 coats plaster inside
250	597	WAEX	9			0.0102	0.87	0.339			Varn2	0.132		0.148		I			II .				i	50		3,108	SCR brick w/ Interior finish unvented air space
251	202223	WAEX	8			20177	1555555	0.423			Vern2	0.21		0.213		1			ll .				1	50		3,107	SCR brick w/ interior finish, vented air space
252		WAEX	5-1		5 0	0.0164	0,939	0,677			Varn2	0.233		0,245		1			1				1	60		3,105	n.w. concrete block (3 core) unfinished w/ expanded mica
253			NAAM		(1 . 00)			0.306			Vsm2			0.245					II .				1	45			NAAMM metal curtain wall std
254 258		WAEX	5-2 7-1	100 83	1200	0.0207		0.593			Vern2	0.264		0.262		l			ll .				1 1	50		3,105	5-2 + one coat latex paint incide
200]	D8/	TYAEA	7-1	1 6	5 0	0.0241	0.81	11 0.563			Verm2	10.287	1	0.297		1			11				11 1	50	11	3,106	playbrick cavity wall (unverted) w/ granulated

									ban	100	low		200	a trom										
	Class	tel a *	*	value	value	(avg)		nex units	ala cal		ma ma	x min	_	g n	nax	Yea	area va			P	ret.	•	40te	bank
			T	SH	Value			SH UFFEE	1 :	:	1	:1	1	4	1	84	min	max	units	4	prese	otal	4.5	
597	WAEX	8-1	1 5 8		0.81	0.593	les le	Varn2	0.287	, ,	0.297	1	3		۱,	P	lb-4	SI	l,		50			and the second s
91	WAEX	1	1 1			0.74		Vern2			0.426				- 1						75	15	3,108	cley brick cavity wall (unvented) w/ expanded mica 108 m2 wall area
597	WAEX	1-3	1 5 8	0.0417	0.851	1.19		Varn2	0.625	(0.537	- 1								1	50	"	3,103	1-2 + two coats stucco + 1 coat paint ext
159	WAEX	C	1 1	0.053	0.74	0.95		Vam2	0.573		0,568				_						50	- 1	1,102	precast concrete panel
150	WAEX	PB	1 1	0.061	0.78	1.2		Vern2	0,678	9 6	0,682	- 1			- 1					1	50	- 1	,102	0.33m plain brick wall
159		D	1 1			1.24		Vsm2	0,847		0.841	- 1			- 1					1	50		,102	notion steel panel
597	WAEX	4-2		0.0852	0.787	1.86		Varn2	0.982		0.987	- 1				6				1	50	- 1	3,104	6-1 + three coats stucco outside
	WAEX	4	•		o 029000W	1.27		Varn2			1.02				- 1					1	45	- 1		concrete, space, Insul, parge, black, plaster
159		1-2	1 5 8		0.731	1.78		Vsm2	1,12	(8	1.088									1	50	- 1	3,103	1-1 + two coats paint on inside
		A .	1 1	0.11	0.723	1.85		Van2	1.161		1.154	- 1				l				1	50	- 1	1,102	precast concrete panel
177 597		3				1,575		Varn2			1.265									1	45	- 1	i	stee(space, insul
597	100000000000000000000000000000000000000	4-1		0.0886		289		Vsm2	1.308	18	1.317				- 1	l				1	50	- 1	3,103	.w. c block wall (unfinished) w/ expanded mica fill
	WAEX	2	100	0.0991	0,894	1.83		Varn2	1.325		1.336				- 1					1	50	- 1	3,104	.w.c.b.w. (unfinished) 3 core
	WAEX	ASH1				2.032		Ven2			1.55				- 1					1	45			concrete insulation
	WAEX	В	1 1	0.207	0.524	1.8		Vsm2	1.658		1.632					1				1	45			astrae lab values 8.5° brick wall-plain
597		2-2	1 5 5			3.61		VsT2	1.762		1.788	- 1				60				1	50 50		1,102	precast concrete panel
177	WAEX	1	1			2.438		Van2	"		1.958	- 1								1	45		3,103	2-1 + volcanic dust fill insulation
91	WAEX	2	1.1			5.84		Varna			3,365	- 1				l				1	75	65		concrete, tile, ins, space, tile, plaster 125 m2 wall area
597	WAEX	2-1	1 5 5	i i		2.88		Varn2		100	3,389									1	25	~	3,103	w concrete block wall (unfinished)
597	WAEX	1-1	1			3.39		Varn2			3,99									1	25		3,103	w concrete block wall, 2 core (no fnish)
311	WAEX	Bldg C	1 4 6	0.0000000000000000000000000000000000000		1		Varn2	0.498											1	1000		(T)(277%)	Cone brick, rigid insulation, dry wall
311	WAEX	Ref	1 4 6			1		Varn2	0.511												Ш			13" Plain brick wall - 1977 HOF
311	WAEX	Bldg V Bldg M	1 4 6	6,0000	37777	1		Vam2	0.695						- 1	l						- 1		F. brik, conc blik, parging, rigid ins, gypsum board
311	WAEX	Bidg V	1 4 6			1		Varn2	2.303			- 1			- 1	l					- 11			Brick, VB, plaster
311		Bldg T	1 4 6	The state of the s	S 15075751			Varn2	1.03												- 11			F, brk, conc bilk, parging, rigid ins, gypsum board
311		Bldg A	1 4 6	7.00		ı		Varn2	0.277	l		- 1			- 1						- 11	- 1		prepour conc spandrel panel, insulation, VB, dry wall
311	WAEX	Blog C	1 4 6	0.717.000				Varn2	1.317						- 1	1					- 1	- 1		Clay bric, con bilk, parging, bid paper, bat ins, VB, gyp bd
88	WAEX	1	1 4 6			ı		Vern2	3.701												Ш	- 1		Cone brick, rigid insulation, dry wall
40	WAEX	ht	1 1			0.762		Vam2		1 7	0.439	- 1	0	716	- 1	1.111			cm2/ n2	١,	75	15	314	expanded polystyrene bead board (1"trick, 1pcf)
40	WAEX	h2	1 1			1.016		Varn2	1	12	0.585	- 1		984	- 1	1.5277			cm2/n2	1	75	21		0.016 in2/ft2 wall area (includes windows) 0.022 in2/ft2
	Sin 0.795500 H	he	1 1			3.404		V=m2			1.961	- 1		178		4.9302			cm2/ n2		75	66	314	0.071 h2/12
	WAEX	h4	1 1			4.978		Varn2	1	:	2.869	- 1	4.	697		7.2912			cm2/n2	1	75	42	314	0.106 in2/ft2
	WAEX	h6	1 1			5,08		Varn2	1	:	2.927		4.	921	- 1	7,6384			cm2/ n2	,	75	77	314	0.11 In2/ft2
0.00	WAEX	h3	1 1		10025	6,196		Vern2		,	3.571		5.	816	- 1	9.0272			cm2/n2	1	75	85	314	0.13 in2/ft2
	WAST	Not Nos	1 6		0.678	1		m3/s1000				- 1			- 1						Ш		318	cast in place concrete, parged
		No2	1 6					m3/s1000							- 1	l					- 11	- 1	318	past in place concrete, parged
299		Nos	1 1					m3/s1000	100000000000000000000000000000000000000						- 1	1					- 1	- 1		cast in place concrete, parged
299		Noo	1 6					m2/s1000								l					- 11	- 1	318	cast in place concrete, parged except door side of clay tile bil
299	WAST	No7	1 6					m3/s1000				- 1			- 1					1	- 11	- 1	318	
299	WAST	No4	1 6	0.0323	0.718			m2/s1000							- 1	1				1	- 1	_		clay tile block, plastered past in place concrete, parged
	C 30000	No5	1 6	0.0423	0.533			m3/s1000								1					II.			cast in place concrete, parged except front and back con blo
	WDL		1 3b						1000000	-						I					27	4.5	0,0	windows and doors
40	100000000000000000000000000000000000000		6													-				1		5-24		Control Contro
91	WDL	1	1 1			0.113		m3/s			0.065					1				1	75	20		window & doors lumped - with strn units
	WDL	2	1 1			0.217		m3/s			0.125									1	75	19		window & doors lumped w/ storm units
	WIANWS				- 1								0.6	1.6	24	1.6	0.8		cm2/ n2	1	4			wining
	WIAWS	2004	2 4 7	0.0040	0.722	ll .						- 1 '	0.4	0.8	1.2	0.8	0.4	1.2	cm2/ m2	1	4	- 1		moring
	WICA	type4 W-13-18	3	0.0218	0.733			Vsm	0.233									250		12.2			502	Awning, 2 windows-5.3x5.3' total (includes win trame/wall join
TOTAL	WICA	W-13-18	3			II .						0,0			0.025	0.0244	0,006	0,061		0.6	50			(W-18) w w.s. (50% of W13)
	WICA	W-13	3									0.0		011	ایر	0.0274	0015	0.000	cm2 mc	0.6	50	- 1		weatherstripped not only wood (50% of W2) (1.2cm2/ea)
	WICA	W-2	3									10.0		021	0.054	0.0518	0.015	0,131	cm2 mc	0,6	50 50	- 1		w/a weatherstripping
	WICA	750 5 50												0.8	1.2	0.0518	0.4	10	cm2 mc	0.6	50	- 1	113	including awning (2.3 cm2 ea)
261	WICA					ll .						11 3	0.8	1.6	24	1.6	0.8		cm2 m2	. ∶	- 21			weatherstripped non ws
458	WICA		2 9			0.204	0.157	0.236 Verno		0.091	0.118 0.1		5/15	100	102	""	0.0	-4	array rac		75	- 1		A TANAN A SAN A SA
458	WICA		30 9			0.299		0.77 Varno		100 CO 100 CO	0.172 0.4	1007/91								1	75			w/c stm, wood awning w/c stm, wood clad casement
			79 9			0.362	0.157	0.912 Vsmc			0.208 0.5	525				l				1	75			W/c stm, all casements
	WICA		47 9			0.409	0.063	0.912 Varno				525								1:	75	- 1		w/c strn, wood casement
	WICHW	11-77	1			0.487		Varno			0.281				- 1					1	75	I		42x42" wood, two single sash, side by side (12.45 sq ft)
40	WICW	h4	7 1			1.696		Varne		II S	0.978									1	75		314	w strn (basement) (windows locked)
40	WICW	h3	5 1		18	2.201		Varno	11	E 9	1.268	1			- 1						75	- 1	214	w stm (basement) (windows locked)

										ošn	Г	ela troc	'n		ela fron	9)	1			9	2				
10	# Class	ret id #	# U	0	T n	now	now va	MASON	Tow	John cal	min	flow	max	min	area	max	Nes	Mea va	nason	area.	lic .	ret. 18	-	Note	Street
			Cases A	& value	value	(avg)	min	max	units	4	4	4	4	4	4	4			mex	units	d	bress	otal	ø's	
20 ll	40 WICW	h5	4 1	184	1	3144	BH	184	Verne	1	1	1 1	1 1	1	1	1	84	B-I	84	1					2 92 2700
21	40 WICW	h2	7 1			4.354			Varne		ı	1.812		l			l				∥ !	75			w/o stm (basement) (windows locked)
2	40 WICW	ha	3 1			5.235			Varne	H .	ı	3,016		l			ŀ				1	76 76	- 1		w strn (basement) (windows locked)
<u>.</u>	119 WICW	11-77	•			0.299			Vamo		l			1			l				∥ ;	75	- 1	"	w strn (basement) (windows locked) 62x42' wood, two single eash, side by side (12.45 ag ft)
4	1514 WIDHW	W-15-18	3			9,000			•		ı			0.01	0.033	0.094	0.0792	0.024	0.229	cm2/lmc	0.6	50	- 1	113	W/ w/s (50% W15)
5	1514 WIDHW	W-7	3			11					1			22.5	0.044		0.1067	0.024		cm2/mc	0.6	50	- 1		W/ w/s (50% W8) (5 cm2/ea)
6	1261 WIDHW					1				1				1.8	3	4.4	3	1.6	4.4	cm2/m2	1	4	- 1		4 14 (01/4 114) (0 41/4 144)
7	119 WIDHW	10-77	1			0,424			Varno		1	0.245									1	75	- 1		34x48 wood w/ metal jamb liners (11,42 sq ft)
1	40 WIDHW	ha	10 1			0.519			Varno	1	l	0.299		l							1	75	- 1	314	with storm (44% reduction), windows locked
1	119 WIDHW	9-77	. 1			0.927			Varne	11	1	0.534		l							1	76	- 1		37x49 wood w/ vinyl jamb liners (12.78 sq ft)
2	40 WIDHW	ha	10 1			0.943			Varno	ll .		0.543		122		- 0					1 1	76	- 1		w/o storm, windows locked
· III	113 WIDHW		A A			0.55			Varne	11	l	0.616									1 1	27	- 1		pressurized tracks, w/s
	458 WIDHW		38 9			1.132	0.346	3.238			0,199	0.652	1.866	l							1 2	75	_		w/o stm, all double hung (wood)
	458 WIDHW		29 9			1.132		3,238		11	0.199	0.662		l			l				1 3	75 76	- 1		w/o stm, wood clad double hung
	40 WIDHW	h6	13 1			1.541	0.040	4200	Varne	11	V. 100	0.888	1.000	l							1 3	75	- 1		n/o stm, wood double hung vi stm (casement type stm) (25% reduction), windows locked
	40 WIDHW	h6	13 1			2.091			Varne			1.206		l			l					75	-		w/o storm, windows locked
1	113 WIDHW	THE STATE OF	A			1.132	0.236	3.301			0.264	1.267	3.695	l			1				1 4	27	- 1		n/s, (1987)
1	40 WIDHW	h4	10 1			2.358			Varne			1.350		l		- 1					1	75	- 1		w storm (29% reduction), windows locked
1	40 WIDHW	h4	10 1			3.301			Varno	1		1.902		l		- 4	l				1	75	- 1		w/o storm, windows locked
1	1721 WIDHW	TBL4-3	1 4 1		7 0.709				Varno	0.363	1			l		Ų.						-75	- 1	-	everage fit, w/s
	1721 WIDHW	TBL4-2	1 4 1			11			Vamo	0.785	1			ı		1						-75	- 1	∥ ∦	sverage fit, w/o w/s
II.	1721 WIDHW	TBL4-1	1 4 1	0.2	8 0.615	11			Varno	2544	1			on or other states		2-2-3	Total Control of the				7775	-75	- 1		cose fit, w/o w/s
1	1614 WIDHWN		3							ll .				0.019	0.068	0.188	0.1585	0.046	0.457		0.6	50	- 1		n/o w/s
1			3							11					0,089		0.2164			cm2/mc	0,6	50	- 1	113	w/o w/s (10 cm2/ea)
ı	208 WIDHWN					1,885			Vam	11	l .	1.087		3.2	6	8.6	6	3.2	8.8	cm2/m2	1 3	4	- 1	l I	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
	208 WIDHWN					4.716			Varn	1		2.717		l		1					1	75 75	- 1		sash only, w/o meeting rail 10.5 ft sash and meeting rail, 12.8 ft crack
1	208 WIDHWN	CO. 100000000				5.345			Varn	11		3.08		l			1					75	- 1		entire window (including frame) 24.8 ft
1	119 WIDHWN	9-77	1			1,493			Verno	1		0,861		l			l				1 6	75	- 1		37x49 wood w/ vinyl jamb linenii (12.78 sq ft)
	119 WIDHWN	10-77	1			1.651			Varno	11	l .	0.951		l			1				1	76	- 1		34x48 wood w/ metal jamb liners (11.42 sq ft)
H	113 WIDHWN		A			2.279	1.32	5.471	Vsmc	1	1.478	2.552	6.124				1				1	27	- 1		gives lab test data (<1970), w/o w/s
11	1514 WIDSNW		3											0.019	0.058	0.169	0.1372	0.046	0.411	cm2/mc	0.0	50	- 1		double slider w/o w/s
1	1514 WIDSNW	W-4	3								ı				0.071	00000	0.1737			cm2/lmc	0.6	50	- 1	113	w/o w/s (silder - all tumped) (8cm2/ea)
ı	1261 WIDSNW					11				11	ı			28	5.2	7.6	5.2	28	7.6		1	4	- 1	10000	
1	1514 WIDSW	W-14-18	3							11				0.01	0.028	0.065	0.0671	0.024	0.208		0.6		- 1		double alider w w/s
1	1514 WIDSW 1261 WIDSW	W-3	3							11	l				0.035		0.0853			cm2/mc	0.6	50		113	w w/s (50% of W4) (silder - all lumped) (4 cm2/ea)
ı	458 WIDSW		27 9			0.896	0.267	0.007	Vsmc					1.4	26	3.8	2.8	1.4	3.8	cm2/m2	1	41	- 1	11 11	H 1 2011 0 F
1	458 WIDSW		33 9			0.959		2.987		1		0,516		200			l				1 1	75	- 1		w/o stm, wood double sliders
1	458 WIDSW		6 9				1.006			1 3		0.725		-		11					1	76 75			w/o strn, all double sliders w/o strn, alum. double sliders
	942 WIF		3.5			1242	3	,,,,,,,			0.00			l								" "	20		(A3313) window & door perimeters
ı	1614 WIFM	W-5	3							11	l				0.023	III	0.0549			cm2/lmc	0.6	50	~~		cauliding (20% of W-6) (2.4 cm2/ea)
ı	1514 WIFM	W-e	3							1					0.111		0.2713			cm2/mc	0.6		- 1		no cauliding (12 cm2/ea)
ı	1261 WIFM					II .				11	10			1.1	1.3	21	1.3	1.1	21	cm2/m2	1	4	- 1		N/ cauliding
1	1261 WIFM										1			5.7	6.5	10.3	6,5	5.7	10.3	cm2/m2	1	4	- 1		without cauliding
	311 WIFM	oq2	1 4 6	0.018	4 0.678				l/sm	0.182	1			0.00000		43,4004	2012)					lh.	-0.1		window & frame wall joint
1	1514 WIFW	W-5	3							1					0,008		0.0183			cm2/imc	0.6	50		113	cauficed (0.8 cm2/ea)
	1514 WIFW	W-8	3							1					0.039		0,0945			cm2/mc	0.6	50			no cauliding (4 cm2/ea)
	1261 WIFW	\times												0.3	0.3	0.5	0.3	0.3	0.5		1	4			n/ cauliding
	1261 WIFW	tab 4								1				1.5	1.7	27	1.7	1.5	27	cm2/m2	1	4			without cauliding
	206 WIFW 339 WIFW	lab 1				39.17	00.30	440.0	Vs ea			22.57									1	75	الي		entire window including frame (24.8 ft)
	1261 WIL	1	19			1133	68.72	1113	Vs-house		66.64	84.94	84.94				1				1 1	50	8%	ll li	mobile, unsealing seq 1, windows and frame
	1261 WIL		11							1							I				II 1	1	10	ll li	MP
	92 WIL		50 2			10.85	3.303	31 82	Ve ee		2154	7.078	20.62								1 !	4	.14		w/otp
	92 WIL	H1	2 2			11.8	4.000	31.02	Vs on	1	2104	7.893	20.02								1	62	1.8	P	about same for sealed insu glass, strn w, or single glazing frm
	92 WIL	2000				"			Vs ea			1,000					1				∥ ¹	42	, A	l l	activities when an dead terms
	2257 WIL						0.32	7.4			0.184		4.264				l				- 7	75	20		eduction when caulked frame
	1721 WIL		1			0.786		5 9250	Varn	1	""	0.453					I					75	20		ANSI/AAMA,ANSI/NWMA prime (ft of sash seal)
	176 WIL					0.81			Vam	18		0.467					1				1	75			(a2257)
	1721 WIL		1			1.572			Varn			0,906				- 0						75		II IF	exterior storm window stds (ft of sash seal)
	178 WIL		5	90		0.377	0.189	0.55	Vame	1	0.109	0.217	0.317				I				l i	75			exterior walls of tall buildings (a2257)
ill.	176 WIL		5			0.503	0.252	0.755	Vamo		0.145	0.29	0.435								1	75			exterior walls of tall buildings (a2257)

												o&n		ela tron flow	000		ela Fon area	n .									
101 #	1	ciass	ret id #	cases A	ادار	ralue	value	(avg)	nin	_	now units	ela cal 4	min 4	avg 4	max 4	min 4	avg .	max 4	No.	area va	max	area units	T	el. press	otal [iote **s	pther
	- 1			7	ns	34		84		84		- 1	1	1	1	1	1	1	84		SH				·	3.0	
2.352	58	100000		192 1					0.016	3.584	Vsmc		0.009	0.471	2065	l			1			,	1	75	- 11		all window types
0.000	57	3372 FF0	1	3	33			4.5			Vs.			3,375					l				1	50			per louvre on louvre window
(2500)	77			1 1				0.788			Vsm			0.453		l						- 1	1	75	- 11		Soft
Dr. To Early	77	23222		1 3				0.707			Vsm Vsm			0.832					l				1	25		310	leaky, average fit w/o w/s or loose fit w/s
	05		H4	1 4		01255	0.333	2000			Vsm	0.771		2405		l			l .			- 1	1	25	- 11	309	
31		WISHS	Bldg A	. 100		0.0969		ll .			Vsm	1.045							ł			- 1		0-75			either casement or awning
31		WISHS	Bldg A	1 4		0.149		1			Varn	1.435				l.			l			- 1			- 11		5x4*-one fixed and one h. slider (includes win frame/wall joints) 5x4*-one fixed and one h. slider (includes win frame/wall joints)
31	11 1	WISHS	Bldg C	1 4	. 6	0.0187	0.719	ll .			Vsm	0.196				l			l						- 11		5.3x5.3'-one fixed & one h. slider (includes win frame/wall joints
0.000		WISHS	Bldg A	1 4	1970 - 3	0,169	0.693	II.			Vsm	1.711							l						- 11		5x4'-one fixed and one h. slider (includes win frame/wall joints)
31		WISHS	Bldg V			0.0722		ll .			Vsm	0.711															6.3x5.2'-one small fixed one h. slider (incids win fmv/wall ints)
31	100	WISHS	Bldg V	1	6	0.101	0.681	ll			Vsm	1.005							1						- 11		5.3x5.2'-one small fixed one h. slider (inclds win frm/wall ints)
		WISHS WISHS	Blog C Blog C	1 4		0.0273					Varn Varn	0.333											l .				5.3x5.3'-one fixed & one h. slider (Includes win frame/wall joints
100.0		WISHS	Bidg C	599	100	0.0261		ll .			Varn	0.41							l						- 11		5.3x5.3'-one fixed & one h. silder (includes win frame/wall joints
2070	Colon.	WISHS	Bldg C	-3.78	1000	0.0133		ll .			Vsm	0.208				l .									- 11		5.3x5.3"-one fixed & one h. slider (includes win frame/wall joints
31	11	WISHS	Bldg A	1 4		0.0873		1			Vsm	0.917							l						- 11		5.3x5.3*-one fixed & one h. slider (includes win frame/wall joints) 5x4*-one fixed and one h. slider (includes win frame/wall joints)
		WISHS	Bldg T	5.072	4000	0.0629					Vern	0.615													l ll		12.9x4.5'- single hor silder (includes win fm/wall joints)
2773		WISHS	Bldg V	1 4	NOTE:	0.053	0.751	I			l/sm	0.581							l						- 11		B.3x5.2-one small fixed one h. slider (inclds win frm/wall ints)
		WISHS	Bldg T	1 4	2000	0.034					Varn	0.32													- 11		12.9x4.5'- single hor silder (includes win fm/wall joints)
		WISHS WISHS	Bldg C	6 9		0.0321	0,713	0.755	0.472	1 712	Vame	0.334	0.000	0.436	0.00-				1						- 11		5.3x5.3'-one fixed & one h. slider (includes win frame/wall joint
1. 2655		WISHS		3 9				1.116	0.943	1.399	8.51.701.55C			0.643	0.907	l			1				1 1	75	- 11		w/o stm, wood single silders
45		WISHS		31 9				1.228		3.584		11		227000000000000000000000000000000000000	2.065	l			1				;	75 75	- 11		w/o stm, wood clad single sliders w/o stm, all single sliders
45	58	WISHS		22 0				1,383		3.584	Name of the last o	ll .		0.797									l ;	75			w/o stm, alum, single sliders
		WISHSNW		3	3			11								0.031	0.0*1	0.207	0.1737	0.076	0.503	cm2/1 nc	0.6	50	- 11	113	single silder w/o w/s
		WISHSNW		2	3												1.002		24364			cm2/1 nc	0.8	50	- 11		plider - all lumped, w/s
126		WISHSNW		5 52												1.8	20	5.4	3.6	1.8	5.4	cm2/in2	1	4	- 11		
			W-16-18													0.016	0,035	0.103	0.0853	0.04	0.251	cm2/lnc	0.8	50	- 11		single silder w w/s
126		WISHSW	W-3	3	3			- 23									0.501		1.2192	1000		cm2/1 nc	0,6	50	- 11	113	slider - all kumped, w/o w/s
0.755		WISHSW		Oths 3				1			Vam					0,9	1.8	27	1,8	0.9	27	cm2/in2	1 1	4			and the control of th
			ht	4 1				0.44			Varne	1		0.254		ı			1				1 :	50 75	- 11		/ms conversion terms in paper 1357
	40	WISHSW	h2	4 1				0.66			Varno	1		0.38		1							1	75	- 11		w stm
	40	WISHSW	ht	4 1				1.541			Varno			0.888		1			1				1	75	- 1		w/o strn
			h2	4 1	Ę			1.998			Varno			1.15		1							1	76	- 11		w/o strn
		WISHSW	he	9 1				2798			Varno	1		1.612		ı		8.2	1				1	78	- 11		w/ stm
90000		WISHSW	he	9 1				4,009			Varne			231		257555566			TO A CONTROL			986	1	75	- 11		w/o stm
		WISHW	W-17-18	3												0.031		0.063				cm2/l nc	0.6	50	- 11		w/ w/a (50% W-17)
		WISHW WISHW	W-17	3	•											0.063	0.089	0.125	0.2164			cm2/Inc	0.6	50	- 1	113	w/o w/s single hung
		WISHW		11 8				1 500	1.069	2154	1/erne		0.816	0.87	1 241	1,8	22	29	22	1.8	29	cm2/in2	!	-4	- 11		
		WISHWN									141.10		0.010	J.07		3.6	44	5.8	44	3.6	5.0	cm2/1n2	1	75			w/o stm, alum single hung
		WISILL	direct	1 4	. 6	0.0176	0.819				Varn	0.212						0			0.0	WHITE I		7	8%		direct measuremetris (fig 4)
31		WISILL	Indect	1 4	1 6	0.0086	1.034	I			Vam	0.139											.0		ctest		indirect measurements (fig 4)
13	200	WIST		535		48.112					Vs-house	675.5											0,8				entire house storm windows out
		WIST	122201			80,305					Vs-house												0,8	75			entire house storm windows in
		WIST	lab	1 4		28.8																		0-45	H	308	mobile in lab, storms in (little difference)
		WIST	lab	1 4	5	143	0.928				Va-house	200.5				2								0-45		308	
		WIST		- 1				0.788			Varn			0.453		1							1	75			ANSI/AAMA Interior storm windows (ft of sash seal)
		WIST	2 track	1				0.472	0.388	2,657	RESERVED AND THE		0,435	0.500	2.974								1	27		315	
100	27500	WIST	2 track		ì			1.1			Varne Varne			1,232									1	27			bressurized track, w/s at head, meeting rail and sill
		WIST	3 track		ì			2.201			Varne			2.484									1	27			ni or vinyi ni or vinyi
		WIST	HS	1	Ĕ			0.031	0.016	0.031	0.7000000000000000000000000000000000000		0.009		0.018				ll .				-	75		316	near shrink films with adhesive or mechanical seals (over avg.)
		WIST	RG/MAG	1				0.204	0.031	0.424			0.018	0.118	0.245								1	75			igid glazing with magnetic seals (over avg prime)
172	21	WIST	FSMECI	1 1				0.267	0,031	1.448	Verns		0,018	0.154	0.833				ll .				1	75			flexible sheets with mechanical seals (over avg prime)
		WIST	ROMEC	H 1				0.892	0.079	1.448	Varna		F-600 (2002)	0.399	0.833								1	75			rigid glazing with mechanical seals (over avg prime)
			p track		١.			0.424	0,346	0.503			0.387	0.475	0.563								1	27		315	pressurized track prime; double, pressurized, 3 track storm
		WISTOH		35	١.			0.707	0,393	0.927	Verno		100000000000000000000000000000000000000	0.792	1.038								1	27			w.s. prime; double, pressurtzed, 3 track storm
11	13	WISTOH						0.865	0.424	1.525	Verno	ll l	0.475	0.968	1.707	ı			II					27	- 11		w/o W/S prime, double(avg), pressurized(min), 3 track storm(m

APPENDIX C Notes to Literature Leakage Tables

Legend for Data Testing Coding - Column 6 (Reported by the source)

1. 2. 3. 3a. 3b. 4. 5. 6. 7. 8. 9.	Single reading at reference pressure - 75 Pa Single reading at reference pressure - 62 Pa Single reading at reference pressure - 50 Pa Single reading at reference pressure - 26.8 Pa (15 mph) Single reading at some other reference pressure Multiple readings over a pressure range with eqn for readings Multiple readings over a pressure range - calculated at P _{ref} E779-81 CGSB CAN2-149.10 ASTM C-236 ASTM C-283 Multiple readings over a pressure range - data for 26.8 Pa (15 mph)
	Legend for C and n Coding - Column 7
1. 2. 3. 4. 5. 6. 7.	Equation originally given (SI) Equation given I-P not converted yet Equation given I-P still in I-P Equation comes from subtraction of two equations given Data given - Equation regressed by RP 438 Data points shown on graph - digitized and regressed by RP 438 Graph given - points selected, digitized and regressed by RP 438 Equation converted to SI
	Legend for Note #'s - Column 24
1. 2. 3. 4. 5.	Data point pulled from graph Data pulled from graph and regress equation Data values given, equation regressed by RP438 Data from regression equation given Data from difference between open and closed
101. 102. 103. 104. 105. 106.	Lightweight concrete block wall with polystyrene pellets in the cores 12x8x16 (2 core) 2 cores latex on the exterior Fixed glazing area 24% to 38% of wall area Lightweight concrete block (expanded clay aggregate) 2 core (8x8x16) Lightweight concrete block (expanded slag aggregate) 3 core (8x8x16) Concrete block (sand and gravel aggregate) 3 core (8x8x16) Two rows brick (2 3/8 x 3 3/4 x 8) with 2" cavity Single row SCR brick (2 1/6 x 5 1/2 x 11 1/2) with 3/8 vented furring strips, sheathing paper, furring strips with fiberglass insulation, vapor barrier,

tempered wallboard

- 108. Same as 107 except 3/8" air space not vented.
- 109a. Single stud wall conventional vapor barrier location whole house values
- 109b. Single stud wall sandwiched vapor barrier location whole house values
- 110. Double stud wall conventional vapor barrier location whole house values
- 111. Double stud wall sandwiched vapor barrier location whole house values
- 112. 50 Pa with $C_d = 0.611$
- 113. 50 Pa with orifice equation $C_d = 0.60$
- 201. $Q = C A (\Delta P)^n$ where A =area of building envelope, 228 m²
- 301. Only if in unconditioned space
- 302. Only if in conditioned space
- 303. Unheated flue with 0.15 m diameter, 0.075m restriction orfice and rain cap
- 304. Area, vol, C, n, SLA, ACH₅₀, ACH given for each house (SLA based on envelope area)
- 305. Fan on flow is corrected for standard restrictions like 1/4" screening, louvers, elbows, straight duct and grease filter
- 306. Leakage areas for opaque walls: data values, C, n, r² also given in paper, no significant differences between sidings
- 307. Gives house specifics (including ELA, SLA and average ACH for each) for 312 houses which have been found in literature - big whole house leakage data set
- 308. Mobile home in lab storm windows inside louvered jalousie type windows. Window area of 6 m²
- 309. "Very leaky" loosely fitting window, much worst than average (1.3 cfm/ft@ 25 Pa)
- 310. "Leaky" Average fit, unweatherstripped or weatherstripped with loose fit (0.45 cfm @ 25 Pa)
- 311. "Tight" (0.5cfm/ft @ 75 Pa)
- 312. $A = Q/2400(\Delta P)^{0.5}$
- 313. Negative values were given in some cases becasue paint seal was broken
- 314. Exclusive of windows and doors, but including leakage between wall and door and window frames [area term given by $A = Q/(2400(\Delta P0.3^{\circ})^{0.5})$]
- 315. Approximately 17 ft crack/window
- 316. Exterior wall leakage rates on tall buildings
- 317. Subtraction of registers sealed measurement value from registers unsealed value
- 318. Units = $m^3/s-1000m^2$

Note: The numbers are not sequential due to not using and/or combining or deleting some of the raw data.

APPENDIX D Conversion Factors

Physical	To convert			To conver	t	
Quantity	From	То	Multiply by	From	То	Multiply by
Length in	m	0.0254				
The state of the s	ft	m	0.3048	m	ft	3.281
Area	ft ²	m²	0.09294	m²	ft²	10.76
	in ²	cm ²	6.452	cm ²	in ²	0.1550
Volume	ft ³	m³	0.02832	m³	ft ³	35.32
	ft ³	l .	28.32	1	ft ³	0.03531
Mass	lbm	kg	0.4536	kg	lbm	2.205
Density	lbm/ft ³	kg/m³	16.02	kg/m ³	lbm/ft ³	0.06243
Flow	cfm	m³/s	4.719*10⁴	m³/s	cfm	2119
Flow	cfm	I/s	0.4719	l/s	cfm	2.119
Velocity	fpm	m/s	0.00508	m/s	fpm	196.8
	mph	m/s	0.44704	m/s	mph	2.237
	mph	km/h	1.609	km/h	mph	0.6215
Pressure	in wg	Pa	248.66	Pa	in wg	0.004022
	in Hg	Pa	3386.4	Pa	in Hg	0.0002953
Spec Leakage						
area	in ² /ft ²	cm ² /m ²	69.44	cm ² /m ²	in ² /ft ²	0.0144
	cm ² /ft ²	cm ² /m ²	0.0929	cm ² /m ²	cm ² /ft ²	10.76
	cm ² /ft	cm ² /m	0.3048	cm ² /m	cm ² /ft	3.281
	cm ² /100ft	cm ² /m	30.48	cm ² /m	cm ² /100ft	0.0328
				cm ² /m	in²/ft	0.5086
Flow per unit						
leakage area	cfm/in ²	m ³ /s-cm ²	0.2632	m ³ /s-cm ²	cfm/in ²	3.80
length leakage	cfm/ft	I/sm	1.572	I/sm	cfm/ft	0.636
	cfm/ft	m³/sm	0.0001439	m³/sm	cfm/ft	6949.
area surface	cfh/ft²	I/sm²	0.08467	I/sm²	cfh/ft²	11.81
C NO REW 5 Test	cfm/ft ²	I/sm ²	5.080	I/sm ²	cfm/ft ²	0.1969
	cfm/ft ²	m ³ /sm ²	0.0050802	m ³ /sm ²	cfm/ft ²	196.8
	\$5407FFFFFFFFFF	WANTE STATES		100000207YEP00YY67	SURVEY GOVERNMENT	

Other Conversions:

 $1 N = 1 kg-m/s^2$

Pressure (in wg) = 0.000482 V^2 (mph)

Pressure (Pa) = $0.1200575 \text{ V}^2 \text{ (mph)}$

Pressure (Pa) = 0.601 V^2 (m/s)

Pressure (Pa) = $0.601 [(1/3.6) V]^2 (km/h)$

15mph = 27 Pa, 25mph = 75 Pa

Standard Air Density = 0.075 lb/ft³ = 1.20 kg/m³

APPENDIX E

Derivation of Dimensionless Crack Flow Equation

From Sun, 1992

CHAPTER 3

THEORY AND DEVELOPMENTS

3.1 Theory Preparation

As mentioned in previous chapters, three basic alternative equations (orifice equation, power equation and dimensionless flow equation) are used in the airtightness literature. It is important to demonstrate their developments and indicate some of the assumptions involved. From these examples we might get some ideas for improvements which will enable us to make equation(s) which more closely describe the natural performance of crack flow.

The fundamental theorem to describe the airtightness problem is the Bernoulli equation. It is widely used in hydrodynamics, especially in one dimensional steady flow problems. The basic point of the Bernoulli equation is the energy balance in which the pressure changes and velocity along a streamline are related. For crack flow, the flow velocity and flow rate have a simple relation. Hence with the help of the Bernoulli equation, we can obtain the pressure and flow relationship which governs airtightness and crack flow problems.

3.1.1 Introduction of the derivation of Bernoulli equation based on energy conservation law

The first law of thermodynamics applies to a thermodynamic, volume system which is originally at rest and after some event, is finally at rest again. Under these conditions, it is stated that the "change in internal energy, due to the event, is equal to the sum of the total work done on the system during the course of the event and any heat which was added " (Currie, 1974). Consider a control volume as shown below:

Figure 3-1. Differential controll volume of a flow pipe

 $d\tau$ -----differential control volume

dA----differential control surface

 \vec{n} ----unit normal to the surface of the body

 \vec{v}_1, \vec{v}_2 --flow velocity vectors

A₁, A₂--cross sectional areas

Control volume---a finite length mini stream tube which is a region whose sidewalls are made up of streamlines.

The energy of the fluid consists of two parts (on the basis of per unit mass): 1) internal energy, e, and 2) the kinetic energy, $(\vec{v}\cdot\vec{v})/2$. Hence the total energy contained in the control volume will be $\int_{\tau} \rho\left(e+((\vec{v}\cdot\vec{v})/2)d\tau\right)$.

Two types of external forces which may act on the fluid mass are the body force and the surface stress. Body force per unit mass is denoted by the vector, \vec{f} . Then the total work done due to this body force will be $\int_{\tau} \vec{v} \cdot \rho \vec{f} d\tau$. The magnitude of the surface stress per unit area is represented by the vector, \vec{P}_n . Then the total work done is $\int_{A} \vec{v} \cdot \vec{P}_n \ dA$. Finally, if the vector \vec{q} denotes the conductive heat flux leaving the control volume, then the quantity of heat leaving the fluid mass per unit time per unit surface area will be $\vec{q} \cdot \vec{n}$, and the net amount of heat leaving the fluid per unit time will be $\int_{A} \vec{q} \cdot \vec{n} dA$.

The law of energy conservation requires that the rate of change of total energy is equal to the rate at which work is being done plus the rate at which heat is being added, that is:

$$\frac{D}{Dt} \int_{\tau} \rho \left(e + \frac{1}{2} \vec{v} \cdot \vec{v} \right) d\tau = \oint_{A} \vec{v} \cdot \vec{P}_{n} dA + \int_{\tau} \vec{v} \cdot \rho \vec{f} d\tau - \oint_{A} \vec{q} \cdot \vec{n} dA$$
 [3.1]

where Lagrangian derivatives D/Dt is employed to a specific mass of fluid which is arbitrarily chosen. For the control volume system, we may convert to Eulerian derivatives by use of Reynolds' Transport Theorem, suppose any physical parameter

 $\alpha = \alpha(x, y, z, t)$,

$$\frac{D}{Dt} \int_{\tau} \alpha \, d\tau = \int_{\tau} \left[\frac{\partial \alpha}{\partial t} + \nabla \cdot (\alpha \vec{v}) \right] d\tau$$

Then the left side of equation [3.1] is,

$$\frac{D}{Dt}\int_{\tau}\rho\left(e+\frac{1}{2}\vec{v}\cdot\vec{v}\right)d\tau$$

$$= \int_{\tau} \frac{\partial}{\partial t} \left(\rho e + \frac{1}{2} \rho \vec{v} \cdot \vec{v} \right) d\tau + \int_{\tau} \nabla \cdot \left[\rho \vec{v} \left(e + \frac{1}{2} \vec{v} \cdot \vec{v} \right) \right] d\tau$$

$$= \int_{\tau} \frac{\partial}{\partial t} \left(\rho e + \frac{1}{2} \rho \vec{v} \cdot \vec{v} \right) d\tau + \oint_{A} \vec{n} \cdot \rho \vec{v} \left(e + \frac{1}{2} \vec{v} \cdot \vec{v} \right) dA$$

(using Gauss theorem in the second term)

If we assume,

- 1) steady flow, $\partial/\partial t=0$, that is, $\partial/\partial t (\rho e+\frac{1}{2}\rho \vec{v} \cdot \vec{v})=0$
- 2) no heat transfer involved, $|\vec{q}|=0$
- 3) body force is conservative, such as gravity, then \vec{f} may be written as the gradient of some scaler function U, that is, $\vec{f}=-\nabla U$
- 4) inviscid fluid without shear stress to resist deformation, therefore the normal stress is the only stress exerted on the surface, hence $\vec{P}_n = -\vec{n} \cdot P$, which means the surface stress is the pressure in outward normal direction. P is the static pressure.

Then the first term on the right hand side of equation [3.1]

is:

$$\oint_{A} \vec{v} \cdot \vec{P}_{n} dA - \oint_{A} \vec{v} \cdot (-\vec{n}P) dA$$

$$= -\oint_{\mathbf{A}} \vec{\mathbf{v}} \cdot \vec{\mathbf{n}} \, \mathbf{P} d\mathbf{A}$$

the second term of the right side is (assuming ρ constant):

$$\int_{\tau} \vec{v} \cdot (\rho \vec{f}) d\tau = \int_{\tau} \rho \vec{v} \cdot \vec{f} d\tau$$

=
$$\int_{\tau} \rho \vec{v} \cdot (-\nabla U) d\tau$$
 = $\int_{\tau} -\rho (\vec{v} \cdot \nabla U) d\tau$

$$= \int_{\tau} -\rho [\nabla \cdot (\vec{v}U) - U\nabla \cdot \vec{v})] d\tau$$

$$- - \int_{\tau} \rho \nabla \cdot (\overrightarrow{v}U) \, d\tau + \int_{\tau} \rho U \nabla \cdot \overrightarrow{v} \, d\tau$$

$$= -\int_{\tau} \rho \nabla \cdot (\vec{v} U) d\tau \qquad \text{(continuity: } \nabla \cdot \vec{v} = 0\text{)}$$

$$= - \oint_{\Lambda} \rho \, U \, (\vec{v} \cdot \vec{n}) \, dA \qquad \text{(Gauss theorm)}$$

and the third term,

$$-\oint_{\mathbf{A}} \vec{\mathbf{q}} \cdot \vec{\mathbf{n}} \, d\mathbf{A} = 0$$

In all, equation [3.1] based on above assumptions reduces to be:

$$\oint_{A} \vec{n} \cdot \rho \vec{v} \left(e + \frac{1}{2} \vec{v} \cdot \vec{v} \right) dA = -\oint_{A} \vec{v} \cdot \vec{n} P dA - \oint_{A} \rho U (\vec{v} \cdot \vec{n}) dA$$

that is:

$$\oint_{A} \rho \vec{v} \cdot \vec{n} \left[e + \frac{1}{2} \vec{v} \cdot \vec{v} + \frac{P}{\rho} + U \right] dA = 0$$
 [3.2]

Equation [3.2] may be thought of as another energy conservation equation based on the assumptions of: steady flow, no heat transfer, invisicid fluid and body force is conservative, where,

e-----internal energy per unit mass, $\vec{v}\cdot\vec{v}/2$ ---kinetic energy per unit mass, P/ρ ----pressure potential energy per unit mass, and U-----body force potential energy related with gravity, hence U=gZ which may be called elevation energy per unit mass.

The meaning of equation [3.2] is that the algebraical sum of total energy which is flowing in or out the control surface A is zero during unit time. That is to say, accompanied with fluid

flowing in or out of any differential area dA, the net gain of energy flow in all the control surface A is zero during unit time. Where e + $\frac{1}{2}\vec{v}\cdot\vec{v}$ + P/ ρ + gZ is considered as total energy per unit mass.

For the following special case, if the control volume can be thought of as a very small stream tube where there is no flow cross the tube surface, except for the section areas 1-1 and 2-2 in Figure 3-1, and also any parameters on these section areas are treated as being uniform, we can obtain from equation [3.2]:

$$\left(\int_{A1} + \int_{A2}\right) \left[\rho \vec{v} \cdot \vec{n} \left(e + \frac{1}{2} \vec{v} \cdot \vec{v} + \frac{p}{\rho} + gZ\right) dA\right] = 0$$

That is:

$$\rho \vec{v}_{1} \cdot \vec{n}_{1} \left(e_{1} + \frac{1}{2} \vec{v}_{1} \cdot \vec{v}_{1} + \frac{P_{1}}{\rho} + gZ_{1} \right) A_{1} + \rho \vec{v}_{2} \cdot \vec{n}_{2} \left(e_{2} + \frac{1}{2} \vec{v}_{2} \cdot \vec{v}_{2} + \frac{P_{2}}{\rho} + gZ_{2} \right) A_{2} = 0$$

In A_1 section area, $\vec{v}_1 \cdot \vec{n}_1 = -V_1$ (\vec{v}_1, \vec{n}_1 different directions) and in A_2 section area, $\vec{v}_2 \cdot \vec{n}_2 = V_2$ (\vec{v}_2, \vec{n}_2 same direction). Where $V_1 = |\vec{v}_1|$, $V_2 = |\vec{v}_2|$. That is, V_1 and V_2 are the magnitude of the vector \vec{v}_1 and \vec{v}_2 respectively. We know from the continuity condition $A_1 \cdot V_1 = A_2 \cdot V_2$, therefore, we get the equation commonly called the Bernoulli equation:

$$e_1 + \frac{1}{2}v_1^2 + \frac{P_1}{\rho} + gZ_1 = e_2 + \frac{1}{2}v_2^2 + \frac{P_2}{\rho} + gZ_2$$

This equation can be satisfied at two distinct sectional

areas along the stream tube and of course be satisfied at two distinct points along stream line.

We can further assume: internal energy keeps constant because of no heat transfer and friction involved, and there is no (or negligible) elevation change, i.e, $e_1=e_1$, and $Z_1=Z_2$.

Hence we obtain the following result which is important to introduce the orifice flow equation and the dimensional crack flow equation:

$$\frac{1}{2}v_1^2 + \frac{P_1}{\rho} = \frac{1}{2}v_2^2 + \frac{P_2}{\rho}$$
 [3.3]

In summary, to obtain the above equation [3.3], several important assumptions had to be applied to the basic energy conservation equation [3.1]:

- (1) steady flow, $\partial/\partial t=0$
- (2) incompressible flow, ρ =constant inside the stream tube
- (3) frictionless flow, e=constant
- (4) no elevation change, Z=constant
- (5) no heat transfer involved, $|\vec{q}|=0$
- (6) inviscid fluid, $\vec{P}_n = -\vec{P} \cdot n$, sometimes however, it is used to approximate viscid fluid flow, and
- (7) uniform parameters at any two distinct sectional areas along small stream tube.

3.1.2. Application of Bernoulli equation to orifice flow

Figure 3-2. Orifice flow

As shown in the figure, the mainstream flow continues to accelerate from the orifice throat to form a vena contracta and then decelerates again to fill the duct. We set section (1) at a uniform flow inlet part. In the vena contracta section, the flow area is minimum, streamlines are essentially straight, and the pressure is uniform across the channel section. Hence section (2) is set at the vena contracta. Then the Bernoulli equation is applied in form of equation (3),

$$\frac{v_1^2}{2} + \frac{P_1}{\rho} = \frac{v_2^2}{2} + \frac{P_2}{\rho}$$

Using the continuity condition $V_1 \cdot A_1 = V_2 \cdot A_2$,

$$V_2 = \sqrt{\frac{2(P_1 - P_2)}{\rho \left[1 - \left(\frac{A_2}{A_1}\right)^2\right]}}$$

$$Q = A_2 V_2 = A_2 \sqrt{\frac{2 (P_1 - P_2)}{\rho \left[1 - \left(\frac{A_2}{A_1}\right)^2\right]}}$$

There are the following four points which should be mentioned:

The section (2) area A_2 at the vena contracta is hard to measure. The location of the vena contracta section and the section area A_2 vary with flow conditions which might change with different test requirements. In practice, we may use orifice area A_0 instead of A_2 .

Secondly, it is difficult to place pressure tap(s) exactly at the location of the vena contracta to measure P_2 . The location of the pressure taps influences the empirically determined discharge coefficient C_d . For practical orifice measurement, location of the pressure taps consistent with C_d may be selected (Doebelin 1966, pp.466, Fox and McDonald 1978, pp.453).

Thirdly, we should note that the Bernoulli equation is

derived from inviscid flow case. In order to expand it to viscid fluid, the internal friction which might cause actual velocity less than the ideal velocity should be included.

Furthermore, we have to use some coefficient(s) to correct for the differences caused by the above factors. Therefore contributed by these three factors, the discharge coefficient, $C_{\rm d}$, may be introduced. The following equation may also be satisfied by $C_{\rm d}$ adjustment, hence

$$Q = C_d A_0 \sqrt{\frac{2(P_1 - P_2)}{\rho \left[1 - \left(\frac{A_0}{A_1}\right)^2\right]}}$$
 [3.4a]

If and only if $A_0 << A_1$, i.e, orifice area is much smaller than the duct section area, we get a simpler and common expression:

$$Q = C_d A_0 \sqrt{\frac{2\Delta P}{\rho}}$$
 [3.4b]

Equation [3.4b] is often called the <u>orifice equation</u>. It is obvious that equation [3.4b] is an approximation from equation [3.4a] by neglecting A_0/A_1 . Hence the C_d value in equation [3.4b] is also affected by the value of A_0/A_1 which is neglected.

In conclusion, on the basis of the discussion above, the discharge coefficient C_d based on equation [3.4b] is influenced by:

- a) A_2/A_0 . In which A_2 varies with flow condition, therefore it is hard to measure
- b) location of pressure taps
- c) viscid friction
- d) A_0/A_1 , denoted by β , which can be determined by the structure itself and does not vary with flow condition.

We may write C_d as the following function: $C_d = \text{f(A}_2/A_0, \text{ tap location, viscid friction, } \beta \text{)}$

If and only if the tap locations have been determined, it can be written as:

 $C_d = f(A_2/A_0, \text{ viscid friction, } \beta),$

 D_h is the hydraulic diameter and ν is viscosity.

3.1.3 Application of orifice equation to crack flow

The equation [3-4b], called the orifice equation, is widely applied to crack flow studies and is considered as a fundamental equation, although the power equation is more commonly used (ASHRAE Handbook Fundamentals 1989, pp.23.6 & 23.11). But it is a way for us to treat the crack flow problem more analytically than empirically.

Crack flow is much more complicated than orifice flow either in geometry or in flow model. There are several things which cause the difference. One is that we assume the flow length in orifice flow is zero while in real crack flow it typically is not. Secondly in orifice flow, we neglect the viscid friction and assume $P/\rho+2V\cdot V$ is constant along the stream tube, and the friction effect is simply contributed to the C_d term; while in crack flow, the $P/\rho+2V\cdot V$ values across the crack might be significantly different and there may be better ways to describe them. Thirdly, the relation that Q is proportional to $\sqrt{\Delta P}$ may be suitable for orifice flow only, but it is really a restriction for crack flow because it just covers a square root relationship of $Q-\Delta P$, it is lack of generality of application.

3.1.4 Application of Bernoulli equation to crack flow

For orifice flow we neglect the effect of friction in the derivation and treat the flow length as zero. But for crack flow we are concerned with the geometry of the crack channel which causes an amount of pressure loss due to friction. It is commonly called "Head loss".

Figure 3-3. Crack flow

To simplify the analysis, the total head loss denoted by h_t may be divided into major loss, denoted by h_m , and minor loss, denoted by h_n . See Figure 3-4 (Fox and McDonald 1978, pp.369), note that the entrance length for the developing section is estimated by the formula of, L \approx 0.06 Re·D_h,

Figure 3-4. Variation of static pressure in a pipe inlet section (From Fox and McDonald 1973)

The major loss h_{m} is due to friction in fully-developed laminar flow in constant area portions of the system. The minor loss h_{n} is due to the difference between fully-developed laminar

Ł

and developing laminar flow, bends, entrance and exit losses, and any other nonconstant area frictional effects. Refer to Figure 3-3, we have:

$$\left(\frac{v_1^2}{2} + \frac{P_1}{\rho}\right) - \left(\frac{v_2^2}{2} + \frac{P_2}{\rho}\right) = h_T = h_m + h_n$$
 [3.5]

It is obvious that if we assume no flow length (which means no developing and developed regimes, and no pressure drops on the length), no inlet-outlet and no bends, the total head loss h_t will be zero. Then equation [3.5] reduces to the Bernoulli equation.

Let us first find the major loss expression due to friction in a constant sectional area crack with fully-developed laminar flow, $A_1=A_2$, hence $V_1=V_2$ from continuity, also with $h_n=0$. Therefore, $(P_1-P_2)/\rho=h_t=h_m$ for fully-developed flow in a constant area crack.

Based on this condition, we can easily obtain the h_m expression for fully-developed laminar flow for regular geometry channels such as infinite parallel plate and circular opening flows with the derivation from basic fluid mechanics theory. The following is the derivation for the fully-developed laminar flow for infinite parallel plate with a limited width as shown in Figure 3-5 as the first example, this result can also be applied to the rectangular channel with small aspect ratios:

Figure 3-5. Laminar flow between infinite parallel plates

The Navier-Stokes equation for laminar viscid flow is (Currie 1974, pp.220-225):

$$\frac{\partial \vec{\nabla}}{\partial t} + (\vec{\nabla} \cdot \nabla) \vec{\nabla} = -\frac{1}{\rho} \nabla P + \nu \nabla^2 \vec{\nabla} + \vec{f}$$

where

 $\vec{\nabla}$ ---velocity vector

P---pressure

 \vec{f} --body force (=- \vec{g} , gravity vector)

t---time

 ρ ---air density

 μ ---dynamic viscosity.

Using the following assumptions:

- 1) steady flow $\partial/\partial t=0$
- 2) one dimension flow $\vec{V}=u\vec{k}$,ie, u=u(y), v=0, w=0
- 3) since no flow in x, y directions, P=P(z)
- 4) body force (gravity) is negligible , $|\vec{f}|=0$
- 5) boundary condition, u(0)=0, u(D)=0
- 6) pressure is linear distribution in flow direction, $dP/dz \, = \, -\Delta P/Z \label{eq:deltapprox}$

Hence

$$(\vec{\mathbf{v}} \cdot \nabla) \vec{\mathbf{v}} = (\mathbf{u} \vec{\mathbf{k}} \cdot \frac{\partial}{\partial z} \vec{\mathbf{k}}) \mathbf{u} \vec{\mathbf{k}} = 0$$
 ($\mathbf{u} = \mathbf{u}(\mathbf{y})$)

$$\nabla P = \frac{\partial P}{\partial x} \vec{i} + \frac{\partial P}{\partial y} \vec{j} + \frac{\partial P}{\partial z} \vec{k} = \frac{dP}{dz} \vec{k} \qquad (P = P(z))$$

$$\nabla^2 \vec{V} = \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2} \qquad (\vec{V} = u\vec{k})$$

$$= \frac{d^2u}{dy^2} \qquad (u=u(y))$$

$$\frac{\partial \vec{v}}{\partial t} = 0$$
 (Steady flow: $\frac{\partial}{\partial t} = 0$)

Therefore the Navier-Stokes equation reduces to be:

$$0 = \frac{1}{\rho} \left(-\frac{dP}{dz} \right) + \mu \left(\frac{d^2u}{dy^2} \right)$$

By integrating the velocity variable u with respect to y twice, then a fully-developed laminar velocity profile is given:

$$u(y) = \frac{1}{\mu} \frac{dP}{dz} \left(\frac{y^2}{2} + Ay + B \right)$$

Applying the boundary conditions to determine integration constants A and B

$$\begin{cases} u(0) = 0 , B = 0 \\ u(y) = 0 , A = -(\frac{D}{2\mu}) \frac{dP}{dz} \end{cases}$$

Then,

$$u(y) = \frac{1}{2u} \frac{dP}{dz} y(y-D)$$

Assuming that the width of the infinite parallel is w, then the volumetric flow rate Q for the rectangular channel with a small ratio is:

$$Q = \int_{0}^{w} \int_{0}^{d} u(y) \, dy \, dx = -\frac{b^{3}w}{12\mu} \, \frac{dP}{dz} = \frac{D^{3}w}{12\mu} \, \frac{\Delta P}{Z}$$

Average velocity \overline{V} :

$$\overline{V} = \frac{Q}{A} = \frac{Q}{wD} = \frac{D^2}{12 \mu} \frac{\Delta P}{Z}$$

$$\Delta P = \frac{12 \mu Z \overline{V}}{D^2}$$

Applying hydraulic diameter $D_h=2D$ for parallel plates:

$$\Delta P = \frac{48 \,\mu Z \bar{V}}{D_h^2}$$

Using major loss expression $h_m = \Delta P/\rho$

$$h_{m} = \frac{48 \nu Z \bar{V}}{D_{h}^{2}} = \frac{96 Z}{\left(\frac{\bar{V}D_{h}}{\nu}\right)D_{h}} \frac{\bar{V}^{2}}{2} = \frac{96 Z}{\text{Re} D_{h}} \frac{\bar{V}^{2}}{2}$$

Using a similar method for fully-developed laminar flow in a circular pipe, we obtain:

$$h_m = \frac{64 \text{ Z}}{\text{Re D}_h} \frac{\overline{V}^2}{2}$$

where $D_h=D$ for the circular case.

In general, we find the difference existing in the major loss expression for rectangular or circular openings is the coefficient only. We may define B as friction coefficient and f as friction factor for the fully-developed laminar flow of any type of crack as:

$$h_m = \frac{B}{Re} \frac{Z}{D_h} \frac{\overline{V}^2}{2} = f \frac{Z}{D_h} \frac{\overline{V}^2}{2}$$

This is the form for the major loss for fully-developed laminar flow; where f=B/Re, B=64 for circular pipe, B=96 for rectangular channel and friction factor f is linear with the Re number.

We note that sometimes when the pressure drop across an orifice, pipe or even building components is higher, the Re number may be in the turbulent regime in which case the friction factor, f, will not be linearly related to the Re number. There are several empirical correlations for different cases (Fox and McDonald 1978, pp.467):

For turbulent flow in smooth pipes (Re \leq 100,000), the Blasius correlation is:

$$f = \frac{0.316}{Re^{0.25}}$$

For turbulent flow in the fully-rough flow regime, the Von Karman correlation is (e/D is the relative roughness, see details in Fox and McDonald 1978 pp. 467):

$$f = \frac{1}{4[0.57 - \log_{10}(\frac{e}{D})]^2}$$

Actually for most medium-roughness pipes, the correlation curves of the friction factor may be found numerically (see Figure 8.12 in Fox and McDonald 1978).

In summary, the general form for the major loss is:

$$h_m - f \frac{Z}{D_h} \frac{\bar{V}^2}{2}$$

Where for fully-developed laminar cases: f=64/Re and f=96/Re

for circular and rectangular pipes respectively. For flow in the turbulent regime, f depends on the relative roughness (using Blasius or Von Karman correlations or others) and the Re number.

We then consider minor loss which is due to inlet-outlet loss, hydrodynamic development loss, section area change, the roughness of internal surface and bends. Because it has such a large variation and is affected by so many factors, the minor loss, in practice, is impossible to be theoretically estimated. However, we might express minor head loss as:

$$h_n = K \frac{\overline{v}^2}{2}$$

K is called the minor loss coefficient, which must be determined experimentally for each case or each similar group. Some suggested K values can be found in the literature for pipe entrances, exits, enlargements and contractions, gradual contraction and bends (Fox and McDonald 1978, pp.368-374).

In conclusion

$$\frac{\Delta P}{\rho} = h_T = h_m + h_n = \frac{B}{Re} \frac{Z}{D_h} \frac{\overline{V}^2}{2} + K \frac{\overline{V}^2}{2}$$

An alternative form with dimensionless pressure drop expression of the above equation can be written as:

$$\frac{\Delta P}{\frac{1}{2}\rho \overline{V}^2} = \frac{B}{Re} \frac{Z}{D_h} + K$$
 [3.6]

where

to the difference between fully-developed and developing flow, inlet and outlet losses, area changes and bends.

The equation [3.6] is called the <u>dimensionless crack flow</u> equation. The derivation of the equation in this way may be more stringent than other approaches used, such as the power model or the orifice model. A number of researchers have applied this dimensionless crack flow equation (Hopkins and Hansford 1974, Etheridge 1977, Kronvall 1980 and Chastain et al.1987).

APPENDIX F

Definition and Combination of Crack/Position Coding

Definition and Combination of Crack/Position Coding

1) Individual Crack

Crack	А	B1	B2	E	F1	F2
Name (Outer Layer)	A-1	B1-1	B2-1	E-1	F1-1	F2-1
Name (Inner Layer)	A-2	B1-2	B2-2	E-2	F1-2	F2-2

Note:

Refer to Figure 4.2.2 for placement location and Table 4.1 for dimensions of the individual cracks.

2) Parallel Connection

Parallel Type	A and B1	A and E	A and F1	B1 and B2	B1 and F1	B1 and E	F1 and F2
Name	A@B1	A@E	A@F1	B1@B2	B1@F1	B1@E	F1@F2

3) Series Connection

Inner	Α	B1	B1	E	E	F1	F1
Outer	B1	Α	E1	B1	F1	B1	E
Name	A~B1	B1~A	B1~E1	E~B1	E~F1	F1~B1	F1~E

APPENDIX G

Data Tables for Individual Openings

Crack Leakage Calculation By Individual Crack: A-1

Pressure Diff Across Crac				Flow		Rate		Powe Predic	Model		New I	Model cted Q	
ACIOS CIA	^	Rep.1	Rep.2	Rep.3	System Leak	Correct	ed Mean	- 1	200 (2				
(In_Wg)	(Pa)	(cfrrt)	(clm)	(cfm)	(dm)	(clm)	(m*3/sec.)	(m*3	(Sec.)		(m^3/	sec)	
0.02	5]	0.82	0.82	0.92		0.46	0.00022		0.00022			0.00021	
0.04	10	1.37	1.38	1.37	0.56	0.82	0.00039		0.00040			0.00041	
0.06	15	1.91	1.87	1.98	0.68	1.24	0.00059		0.00057			0.00058	
0.08	20	2.35	2.36	2.42		1,60	0.00075		0.00072			0,00075	
0.10	25	2.81	2.75	2.81	0.87	1.92	0.00091		0.00068			0.00091	
0.12	30	3.18	3.19	3.18	0.95	223	0.00105		0.00102			0.00105	
0.14	35 40	3.54	3.55	3.60	1.03	2.54	0.00120		0.00117			0.00120	
0.16	45	3.91 4.25	4.25	3.96 4.30	1.16	3.11	0.00147		0.00144			0.00146	
0.20	50	4.53	4.60	4.58	1.22	3.34	0.00158		0.00158			0.00158	
0.22	55	4.86	4.87	4.97	1.28	3.62	0.00171		0.00171			0.00171	
0.24	60	5.13	5.14	5.23	1.34	3.83	0.00181		0.00184			0.00182	
0.26	65	5.45	5.50	5.51	1.39	4.10	0.00193		0.00197			0.00193	
0.28	70	5.77	5.78	6.82	1.44	4.34	0.00205		0.00210			0.00204	
0.30	75	6.07	6.05	6.12	1.49	4,59	0.00216		0.00223			0.00215	
0.32	80	6.28	6.30	6.34	1.54	4.76	0.00225		233080 10			200000000000000000000000000000000000000	
0.34	85	6.53	6.55	6.69	1.09	4.37	www	1					
0.36	90	6.79	6.76	6.88	1.63	5.18	0.00244	C-	5.7E-05		C1 =	4.00E-04	
0.38	95	7.04	7.10	7.14	1.68		0.00256						
0.40	100	7.29	7.31	7.A2	1.72	2000,000,000	0.00265	1925		- 1	C2 =	4.77	
0.42	105	7.57	7.64	7.70	1.76	5.88	0.00277	n-	0.8489		~	400	
. 0.44	110	7.82	7,88	7.87	1,80	6.05	0.00296			- 1	C3 -	1.07	
0.46	115 120	8.01 8.33	8.11 8.26	8.16 8.35	1.84		0.00295	C.V	2.6485	(%)	C.V.=	0.6518	CX
0.5	125	8.58	8.59	8.62	1.92		0.00315	~.v.=	20103	(74)	W.V.	0.0516	1,

Crack Leakage Calculation By Individual Crack: A-2

Pressure Diffe Across Crac				Flow		Rate		Predic	r Model		New A		
ACCOS CIAL		Rep.1	Rep.2	Rep.3	System	Correcte	od Mean	7 '''	200 G		71001	2000	
(in.Wg)	(Pa)	(clm)	(cfm)	(cfm)	(dm)	(cfm)	(m*3/sec.)	(m*3	rsec.)		(m*3/s	sec.)	
0.02	5]	0.62	0.70	0.62	0.40	0.25	0.00012]		0.00015			0.00017	
0.04	10	1.22	1.22	1.22	0.56	0.66	0.00031		0.00029			0.00032	
0.06	15	1.63	1,71	1.63	0.68	0.98	0.00046		0.00043			0.00047	
90.0	20	210	2.03	2.03	0.78	1.27	0.00060		0.00056			0.000060	
0.10	25	251	2.45	2.45	0.87	1.60	0.00075		0.00069			0.00073	
0.12	30	2.84	2.80	2.86	0.95	1.88	0.00089		0.00002			0.00065	
0.14	35	3.17	3.12	3.13	1.03	2.11	0.00100		0.00095			0.00097	
0.16	40	3.33	3.43	3.34	1.10	2.27	0.00107		0.00108			0.00109	
0.18	45	3.69	3.73	3.65	1.16	2.52	0.00119		0.00121			0.00119	
0.20	50	3.87	4.03	3.89	1.22	271	0.00128		0.00133			0.00130	
0.22	55	4.23	4.28	4.23	1.28	2.96	0.00140		0.00146			0.00140	
0.24	60	4.51	4.56	4.46	1.34	3.17	0.00150		0.00158			0.00150	
0.26	65	4.75	4.79	4.74	1,39	3.36	0.00159		0.00171			0.00160	
0.28	70	5.02	5.07	5.02	1.44	3.59	0.00170		0.00183			0,00169	
0.30	75	5.30	5.29	5.24	1.49	3.78	0.00179		0.00196			0.00178	
0.32	80	5.37	5.52	5.37	1.54	3.88	0.00183						
0.34	85	5.69	5.65	5.65	1.59	4.08	0.00192						
0.36	90	6.00	5.91	5.95	1.63			C-	3.3E-05	- 1	C1 -	4.00E-04	
0.38	95	6.12	6.08	6.13	1.68	4.43	0.00209			- 1			
0.40	100	6.29	6.33	6.29	1.72	4.58	0.00216		22002	- 1	C2 -	4.76	
0.42	105	6.40	6.46	6.42	1.76	4.67	0.00220	u-	0.9455	- 1			
0.44	110	6.76	6.76	6.71	1.80	4.94	0.00233			- 1	C3 -	0.83	
0.46	115	7.01	6.97	6.97	1.84	5.14	0.00243	2007	5422020	9.0	52547	3 2 3	
0.48	120 125	7.05 7.29	7.17 7.29	7.08 7.25	1.88		0.00246	C.V	8.0702	(%)	C.V	2.0118	. (

Crack Leakage Calculation By Individual Crack: B1-1

Pressure Diffe Across Crac	(S)(S)(S)(S)(S)(S)(S)(S)(S)(S)(S)(S)(S)(Flow		Rate			r Model cted Q		New I	***************************************	
(in Wg)	(Pa)	Rep.1	Rep.2 (clm)	Rep.3 (cfm)	System Leak (clm)	Correction (cfm)	od Mean (m*3/sec.)		/sec.)		(m*3/		
0.02	5]	2.52	2.83	2.58	0.40	2.25	0.00106		0.00108			0.00097	
0.04	10	4.19	4.31	4.15	0.56	3.66	0.00173		0.00173			0.00169	
0.06	15	5.55	5.65	5.47	83.0	4,88	0.00230		0.00228			0.00228	
0.08	20	6.68	6.82	6.63	0.78	5.93	0.00280		0.00276			0.00280	
0.10	25	7.75	7.91	7.66	0.87	6.90	0.00326		0.00321			0.00327	
0.12	30	8.57	8.81	8.53	0.95	7.68	0.00363		0.00363			0.00370	
0.14	35	9.56	9.80	9.48	1.03	8,59	0.00405		0.00403			0.00410	
0.16	40	10.50	10.57	10.30	1.10	9.36	0.00442		0.00441			0.00448	
0.18	45	11.22	11.44	11.14	1.16	10.11	0.00477		0.00478			0.00483	
0.20	50	11.93	12.19	11.85	1.22	10.76	0.00508		0.00513			0.00516	
0.22	55	12.73	13.13	12.76	1.28	11.59	0.00547		0.00547			0.00548	
0.24	60	13.49	13.95	13.46	1,34	12.30	0.00580		0.00580			0.00579	
0.26	65	14.06	14,56	14.06	1,39	12.84	0.00606		0.00612			0.00609	
0.28	70	14.81	15.26	14.81	1.44	13.51	0.00638		0.00644			0.00637	
0.30	75	15.59	15.99	15.61	1.49	14.24	0.00672		0.00674			0.00665	
0.32	80	16.05	16.64	16.05	1.54	14.70	0.00694						
0.34	85 90	16.84	17.39	16.77	1.59	15.41	0.00727	C-	3.66E-04		C1 =	8.50E-04	
0.38		17,32	17.85	17.34	1.63	15.87	000143	0-	3.000-04		01-	0.002-04	
0.40	95 100	18.01 18.71	18.65	17,98 18,69	1,68	17.17	0.00790				C2-	2.23	
0.42	105	19.41	19.84	19.37	1.76	17.78	0.00839	l	0.6749	- 0	~~	حد	
0.44	110	19.96	20.52	19.89	1.80	18.32	0.00865	n-	UD149	1	C3=	1.28	
0.46	115	20.06	21.20	20.54	1.84	18.76	0.00685			- 1		120	
0.48	120	21.20	21.60	21.08	1.88	19.41	0.00916	C.V.	0.8202	(%)	C.V.	1.5074	0
0.5	125	21.70	22.39	21,60	1.92	19.98	0.00943	1 2		,,,,,			

Crack Leakage Calculation By Individual Crack: B1-2

Pressure Diffe Across Crac				Flow		Rate		Powe	Model ded O		New N	0.00	
(fn.Wg)	(Pa)	Rep.1	Rep.2 (cfm)	Rep.3	System Leak (cfm)	Correcte	od Mean (m*3/sec.)	(m*3			(m*3/s	MATECON	
(<i>a</i>		()	,,	(((,	,	V			V —		
0.02	5]	2.33	2.33	2.46	0.40	1.98	0.00093		0.00096			0.00088	
0.04	10	3.86	3.18	3.97	0.56	3.11	0.00147		0.00154			0.00153	
0.06	15	5.13	5.18	5.23	0.68	4.50	0.00212		0.00203			0.00207	
0.08	20	6.14	6.19	6.19	0.78	5.39	0.00254		0.00248			0.00254	
0.10	25	7.04	7.13	7.15	0.87	6.24	0.00294		0.00289			0.00296	
0.12	30	7.99	8.03	8.08	0.95	7.08	0.00334		0.00327			0.00334	
0.14	35	8.83	8.83	8.92	1.03	7,83	0.00370		0.00363			0.00370	
0.16	40	9.56	9.67	9.62	1.10	8.52	0.00402		0.00398			0.00404	
0.18	45	10.28	10.40	10.40	. 1.16	9.20	0.00434		0.00432			0.00436	
0.20	50	10.86	11.10	11.10	1.22	9.79	0.00462		0.00464		-	0.00466	
0.22	55	11.57	11,65	11.65	1.28	10.34	0.00488		0.00495			0.00494	
0.24	60	12.35	12.43	12.47	1.34	11.08	0.00523		0.00526			0.00522	
0.26	65	12.97	12.86	12.97	1,39	. 11.54	0.00545		0.00555			0.00549	
0.28	70 75	13.54	13.80	13.73 14.26	1.44	12.24	0.00578		0.00584			0.00574	
0.32	80	14.19	14.75	14.96	1.54	13.32	0.00629		ULUGIS			0.00399	
0.34	85	15.44	15.41	15.52	1.59	13.87	0.00655	1					_
0.36	90	15.91	15.97	15.93	1.63	14.30	0.00675	l c-	3.18E-04		ci-	8.50E-04	
0.38	95	16.54	16.58	16.58	1.68	14.89	0.00703	"-	W.10C 01	- 1	•,-	CLOSE OF	
0.40	100	17.05	17.08	17.12	1.72	15,36	0.00725			- 1	C2-	1.96	
0.42	105	17.63	17.72	17.70	1.76	15.92	0.00751	n=	0.6852	- 1	1000	38337.1	
0.44	110	18.05	18.12	18.09	1,80	16.29	0.00769	700.00	W. 1845-194	- 1	C3-	1.03	
0.46	115	18.55	18.75	18.63	1.84	16.80	0.00793				11 11 11 11 11 11	255.00	
0.48	120	19.18	19.22	19.25	1.89	17.34	0.00818	C.V.=	1.9047	(%)	C.V.=	1.0089	(%
0.5	125	. 19.54	19.68	19.68	1.92	17.71	0.00836						

Crack Leakage Calculation By Individual Crack: B2-1

Pressure Diff Across Crax	55578757			Flow		Rate		1000000000	r Model cted Q		New I		
(In.Wg)	(Pa)	Rep.1 (cfm)	Rop.2 (cfm)	Rep.3 (cfm)	System Leak (cfm)		od Mean (m*3/sec.)	(m*3			(m*3/	207 (70) 77)	
				_									
0.02	5	2.42	2.36	2.16	0.40	1.92			0.00093			0.00083	
0.04	10	3.80	3.80	3.63	0.56	3.19	0.00150		0.00150			0.00146	
0.06	15	4.99	4.99	4.74	83.0	4.23	0.00200		0.00198			0.00199	
80.0	20	6.13	5.99	5.73	0.78	5.17	0.00244		0.00242			0.00245	
0.10	25 30	7.05 7.89	7.05 7.89	6.80 7.56	0.87	6.10	0.00288		0.00282			0.00287	
7.7.7.5	35	8.79	8.62	8.43	1.03	7.59	0.00358		0.00355				
0.14	40	9.59	9.46	9.06	1.10	8.27	0.00390		0.00390			0.00361	
0.18	45	10.28	10.20	9.87	1.16	8.95	0.00423		0.00423			0.00426	
0.20	50	11.05	11.01	10.56	1.22	9.65	0.00455		0.00454			0.00456	
0.22	55	11.61	11.68	11.26	1.28	10.23	\$70.4 S (50) 275.75.		0.00485			0.00484	
0.24	60	12.35	12.30	12.01	1.34	10.88			0.00515			0.00512	
0.26	65	13.11	12.99	12.48	1.39	11.47	0.00541		0.00545			0.00538	
0.28	70	13.71	13.65	13.06	1,44	12.03	0.00568		0.00573			0.00564	
0.30	75	14.29	14.21	13.64	1.49	12.55	0.00592		0.00601			0.00589	
Ü.SZ	80	14.04	14.04	14.95	1 54		0.00618						
0.34	85	15.51	15.47	14.88	1,59	13.70	0.00647						
0.36	90	16.06	16.19	15.50	1.63	14.28	0.00674	C-	3.06E-04	- 1	C1 -	8.50E-04	
0.38	95	16.68	16.60	15.95	1.68	14.73	0.00695	1		- 1			
0.40	100	17.15	17.17	16.52	1.72	15.23	0.00719			- 1	C2 -	217	
0.42	105	17.79	17.68	17.07	1.76		0.00743	n-	0.6897	- 1			
0.44	110	18.35	18.32	17.64	1.80	100000000000000000000000000000000000000	0.00769			- 1	C3 =	1,04	
0.46	115	18.81	18.91	18.15	1.84		0.00792	0.100		- 1	Seek!		
0.48	120	19.30	19.41	18.58	1.88		0.00813	C.V.=	1.0208	(%)	C.V.=	0.9215	(%
0.5	125	20.03	19.90	19.33	1,92	17.84	0.00842						

Crack Leakage Calculation By Individual Crack: B2-2

Pressure Diff Across Crac				Flow		Rate		Powe Predk	r Model		New I		
(In.Wg)	x (Pa)	Rep.1 (cfm)	Rep.2 (cfm)	Rep.3 (cfm)	System Leak (cfm)		ted Mean (m*3/sec.)	(m*3			(m*3/		
0.02	-51	2.16	216	2.16	0.40	1.76	F0.000831		0.00067			0.00081	
0.04	10	3,63	3.49	3.43	0.56	2.96	0.00140		0.00141			0.00141	
0.06	15	4.69	4.69	4.74	83.0	4.03	0.00190		0.00188			0.00192	
0.08	20	5.77	5.77	5.78	0.78	4,99	0.00236		0.00230			0.00236	
0.10	25	6.71	6.76	6,75	0.87	5.87	0.00277		0.00269			0.00276	
0.12	30	7.59	7.51	7.A7	0.95	6.57	0.00310		0.00305			0.00313	
0.14	35	8.43	8.38	8.34	1.03	7.36	0.00347		0.00340			0.00347	
0.16	40	9.10	9.15	9.15	1.10	8.04	0.00379		0.00374			0.00379	
0.18	45	9.78	9.87	9.81	1.16	8.66	0.00409	7.	0.00406			0.00409	
0.20	50	10.46	10.62	10.63	1.22	9.35			0.00437			0.00438	
0.22	55	11.04	11.23	11.24	1.28	9,89	0.753767697677		0.00467			0.00466	
0.24	60 65	11.35 12.15	11.75	11,83	1,34	10.30	0.00486		0.00497			0.00492	
0.28	70	12.13	12.92	1291	1.44	11.47	0.00541		0.00554			0.00542	
0.30	75	13.49	13.53	13.49	1.49		0.00567		0.00581			0.00542	
0.32	80	14.06	14.13	14.13	1.54		0.00593		0.00001	7		0.0000	
0.34	85	14.66	14.73	14.73	1.59	13.12						_	_
0.36	90	15.15	15.33	15.33	1.63	13.64	0.00644	l c-	2.80E-04	-	C1 =	8.50E-04	
0.38	95	15.73	15.70	15.70	1.68	14.03	0.00662	1000		- 1	100000		
0.40	100	16.25	16.36	16.38	1.72	14.61	0.00690				C2-	2.03	
0.42	105	16.75	16.69	16.72	1.76	14.96	0.00706	n-	0.7025				
0.44	110	17.30	17.23	17.30	1,80	15.47					C3 -	0.95	
0.46	115	17.77	17.74	17.80	1.84		0.00752	100000		Division			
0,48	120	18.30	18.29	18.33	1.88		0.00775	C.V	2.2226	(%)	C.V.=	0.6390	(%
0.5	125	18.72	18.69	18.75	1.92	16.80	0.00793			1000			

Crack Leakage Calculation By Individual Crack: E-1

Pressure Diff Across Crac	R021077			Flow		Rate			r Model cted Q		New N		
(in.Wg)	x (Pa)	Rep.1 (cfm)	Rep.2 (cfm)	Rep.3 (clm)	System Leak (cfm)		(mr3/sec.)		/sec.)		(m*3/s		
0.02	5]	13.33	12.48	13.60	0.40	12.74	0.00601		0.00621			0.00623	
0.04	10	19.72	19.07	20.30	0.56	19.14	0.00903		0.00897			0.00906	
0.06	15	24.41	23.85	25.26	0.68	23.83	0.01125		0.01113			0.01123	
0.08	20	28.49	28.15	29.40	0.78	27.90	0.01317		0.01297			0.01306	
0.10	25	32.46	31.71	32.88	0.87	31.48	0.01486		0.01460			0.01468	
0.12	30	35.32	35.27	35.71	0.95	34,48	0.01627		0.01608			0.01614	
0.14	35	38.26	37,86	38.75	1.03	37.26	0.01759		0.01746			0.01749	
0.16	40	41.06 43.62	40,54	41.29	1.10	39.87	0.01881		0.01874			0.01991	
0.18	45 50	45.72	45.68	43.83 45.94	1.16	44.56	0.02103		0.02110			0.02103	
0.22	55	48.21	47.84	48.62	1.28	46.94	0.02215		0.02220			0.02208	
0.24	60	50.30	49.94	50.60	1.34	48.94	0.02310		0.02325			0.02309	
0.26	65	52.62	51.87	52.32	1.39	50.88	0.2007.00.000		0.02426			0.02406	
0.28	70	54.11	54.05	54,39	1.44		0.02489		0.02523			0.02499	
0.30	75	56.32	56.17	56.61	1.49	54,88	0.02590		0.02617			0.02589	
0.32	80	58.21	57.87	57.82	1.54	56.42	0.02663						
0.34	85	60.15	59.63	69.76	1.59	58.26	0.02749	200	Carecastonese		-		
0.36	90	61.77	61.44	61,30	1.63	59.87	0.02826	C-	0.00264		C1 =	3.145E-03	1
0.38	95	63.71	63.13	62.99	1.68		0.02907			- 1	102.27	0000000	
0.40	100	65,36	64.86	64.90	1.72		0.02988			- 1	C2 =	0.21	
0.42	105	67,08	66.67	66.64	1.76		0.03069	n-	0.5313			222	
0.44	110	68.69	68.28	67,98	1.80		0.03139			- 1	C3 -	0.95	
0.46	115	70.33	69.93	69,65	1.84		0.03215	1	4 0000		6 14		
0.48	120	71,88	71.65	71.04	1.88	0.000	0.03287	C.V.	1,0927	(*)	C.V.	0.5853	(%
0.5	125	73.33	73.02	72.35	1.92	70.98	0.03350	1					

Crack Leakage Calculation By Individual Crack: E-2

Pressure Diffe Across Crac		1		Flow		Rate		Powe	r Model		New M		
(In.Wg)	(Pa)	Rep.1 (cfm)	Rep.2 (cfm)	Rep.3 (clm)	System Leak (cfm)		ted Mean (m*3/sec.)	(m^3			(m*3/s		
			-avvisari		11.197 (2.55.25)	7.95.5A.C.A.	13.1001.0010.110					310000	_
0.02	5]	1216	12.16	1276	0.40	11.97	0.00565		0.00586			0.00589	
0.04	10	18.41	18.62	18.84	0.56	18.06	0.00653		0.00854			0.00867	
0.06	15	23.47	23.64	24.00	83,0	23.03	0.01087		0.01065			0.01081	
90.0	20	27.67	27.50	27,82	0.78	26.88	0.01269		0.01245			0.01261	
0.10	25	31.12	31.40	31.26	0.87	30.39	0.01434		0.01406			0.01420	
0.12	30	34,45	34,30	34.58	0.95	33.49	0.01581		0.01553			0.01564	
0.14	35	37.32	37.44	37.44	1.03	36.37	0.01717		0.01689			0,01696	
0.16	40	39.79	40.03	40.14	1.10	38.89	0.01835		0.01816			0.01819	
0.18	45	42.16	4213	42.39	1.16	41.06	0.01938		0.01936			0.01934	
0.20	50	44.54	44.64	44.75	1.22	43.42	0.02049		0.02050			0.02044	
0.22	55	46.73	46.72	47.05	1.28	45.55	0.02150		0.02159			0.02148	
0.24	60	48.86	49.06	48.85	1.34	47.58	0.02246		0.02264			0.02247	
0.26	65	50,71	50.91	51.02	1.39	49.49	0.02336	500	0.02365			0.02343	
0.28	70	52.63	52.82	52.82	1.44	51.31	0.02422		0.02462			0.02434	
0.30	75	54.68	54.78	54.88	1.49	53.29	-		0.02556			0.02523	
0.32	80	56.69	56.77	56.78	1.54		0.02606						
0.34	85	68.39	58.37	58.57	1.59	56.85	0.02683					2001	
0.36	90	60.23	60.29	60.31	1.63	58.64	0.02768	C-	0.00244	- 1	C1 -	3.145E-03	
0.38	95	61.75	61.81	62.09	1.68	60.21				- 1			
0.40	100	63.69	63.58	63.68	1.72	61.93			05444	- 1	c2 =	0.29	
0.42	105	65.25	65.07	65.50	1.76	7.5	0.02998	n-	0.5441	- 1			
0.44	110 115	67.15	66.94 68.28	67.12	1.80	65.27				- 4	ca =	0.92	
200	7177	68.65			237.5	10000000	0.03147	0.11	4 5057			0.7040	
0.48 0.5	120 125	69.80 71.60	69.94 71.47	69.88 71.58	1.88	67.99	0.03209	C.V.=	1.5057	(%)	C.V.	0.7912	(

Crack Leakage Calculation By Individual Crack: F1-1

Pressure Diff Across Crac		1		Flow		Rate		Powe	Model		New A	305.5050	
(In.Wg)	(Pa)	Rep.1	Rep.2		System Leak (dm)		(m*3/sec.)	(mrs			(m*3/:		
(wrash)	(ray	(Carry	(dm)	(cfm)	(Only	land	(III SSEC)	(,,, 3	oo)		(111 3	~~ ,	
0.02	5]	34.22	32.43	27.13	0.40	30.86	0.01457		0.01484			0.01489	
0.04	10	47.11	47.10	42.95	0.56	45.17	0.02132		0.02131			0.02149	
0.06	15	58.89	57.81	54.33	0.68	56.33	0.02659		0.02633			0.02655	
0.08	20	67.96	66,98	64,60	0.78	65.73	0.03102		0.03059			0.03082	
0.10	25	75.48	74.90	72.12	0.87	73.30	0.03459		0.03437			0.03459	
0.12	30	82.69	82.41	79.28	0.95	80.51	0.03800		0.03780			0.03799	
0.14	35	89.66	88.89	86.46	1.03	87.31	0.04120		0.04096			0.04112	
0.16	40	95.71	94,96	92.43	1.10	93.28	0.04402		0.04392			0.04403	
0.18	45	101.00	100,76	98.53	1.16	98,94	0.04669		0.04670			0.04676	
0.20	50	106,71	106.04	104.35	1.22	104,48	0.04931		0.04934			0.04935	
0.22	55	112.17	111.54	109.06	1.28	109,64	0.05175		0.05186			0.05181	
0.24	. 60	116.84	116.22	114.42	1.34	114,49	0.05403		0.05426			0.05416	
0.26	65 70	121.94	120.76	119.19	1.39	119.24	0.05627	*	0.05658			0.05642	
0.30	S. 1800	126,44	125.70	123,61	1.44	123.81	0.05843						
0.32	75	130.69 135.17	129.95	128.28	1.49	128,15	0.06048		0.06096			0.06068	
0.34	85	139.53	138.63	136.33	1.59	136.58	0.06446			_			_
0.36	90	142.77	142.57	140.65	1.63	140.36	0.06624	l c.	ERP	-6	C1-	6.431E-03	
0.38	95	146.77	146.57	144.67	1.68	144.33	0.06811	-					
0.40	100	151.16	150.01	148.14	1.72	148.05	0.06987	1		- 1	C2-	0.17	
0.42	105	154.67	154.01	152.00	1.76	151.80	0.07164	l n-	0.5217	- 1	- ADDRESS	744.14	
0.44	110	158.26	157.62	155.65	1.80	155,38	0.07333	1	r-monomital	- 1	C3 -	1.23	
0.46	115	161,95	161.01	159.06	1,84	158.83	0.07496			- 1	2000		
0.48	120	165.87	164.34	162.73	1.88	162.43	0.07666	C.V.	0.6701	(%)	C.V.	0.3635	(
0.5	125	168.83	167.92	166.01	1.92	165.67	0.07819				20040 1000		

Crack Leakage Calculation By Individual Crack: F1-2

Pressure Diffe Across Crac				Flow		Rate		Powe Predic	Model O bet	1	New A		
ACCOS CHAL	•	Rep.1	Rep.2	Rep.3	System	Correc	led Mean	7	400 G		11000		
(in.Wg)	(Pa)	(cfm)	(cfrrt)	(cfm)	(cfm)	(cfm)	(m*3/sec.)	(m*3	rec.)		(m*3/s	ec)	
0.02	51	31,82	31,79	31,79	0.40	31.41	0.014821		0.01520			0.01530	
0.04	10	46.70	46.64	46.64	0.56	46.10	0.02176		0.02162			0.02171	
0.06	15	57.46	58.14	58.50	8a.0	57,36	0.02707		0.02657			0.02663	
0,08	20	66.70	66,62	00.01	0.78	65.77	0.03104		0.03075			0.03078	
0.10	25	74.34	74.86	74.56	0.87	73.72	0.03479		0.03445			0.03444	
0.12	30	81.65	81.29	81,29	0.95	80.46	0.03797		0.03779			0.03775	
0.14	35	87.66	87.58	87.06	1.03	86.41	0.04078		0.04067			0.04078	
0.16	40	94.06	93.74	93.72	1.10	92.74	0.04377		0.04374			0.04361	
0.18	45	99.43	99.33	99.33	1.16	98.20	0.04635		0.04644			0.04627	
0.20	50	105.00	104.46	105.12	1.22	103.64	0.04891		0.04899			0.04878	
0.22	55 60	110.13	109.19	109.60	1.28	108.35	0.05114		0.05143			0.05117	
0.24	65	114.65 119.81	114.75	114.75	1,34	113.38	0.05351		0.05598			0.05565	
0.28	70	124.24	124.12	123.93	1.44	122.65	0.05789		0.05813			0.05776	
0.30	75	128.35	127.85	127.85	1.49		0.05971		0.06020			0.05979	
0.32	80	132.71	132.40	132.58	1.54		0.06184	45				495713	
0.34	B5	136.60	136.47	136,47	1.59	134,93	0.06368						
0.36	90	140.75	140.27	140,44	1.63	138.85	0.06553	C-	0.00671	- 1	C1 -	6.431E-03	
0.38	95	144.63	144.49	144.16	1.68	142.75	0.06737	58,500,00		- 3			
0.40	100	148.43	147.80	147,63		146.23	0.06901			- 1	C2-	0.03	
0.42	105	152.15	151.69	151,84	1.76	150.13	0.07086	n-	0.5082	- 1			
0.44	110	155.65	155.17	155.50	1.80	153.64	0.07251			- 1	C3-	1.16	
0.46	115	158.76	158.92	158.77	1.84	156.98	0.07408	200	1512000	20000	222		
0.48	120	162.74	162.13	162.27	1.88	160.50	0.07575	C.V	0.7040	(%)	C.V.	0.5893	(%
0.5	125	165.60	165.29	165.29	1.92	163.47	0.07715						

Crack Leakage Calculation By Individual Crack: F2-1

Pressure Diffe Across Crac	-	1		Flow		Rate		1.05000000	Model Det		New M	lebok	
12000 01120		Rep.1	Rep.2	Rep.3	System Leak	Correct	ed Mean		400 4		11000		
(In.Wg)	(Pa)	(cfm)	(cfm)	(cfm)	(dm)	(cfm)	(m*3/sec.)	(m^3	/sec.)		(m*3/	iec.)	
0.02	5]	30,09	30.09	30.73	0,40	29,90	0.01411		0.01464			0.01472	
0.04	10	45.59	45.59	45,58	0.56	45.03	0.02125		0.02113			0.02137	
0.06	15	57.75	57.75	56.63	83.0	56,70	0.02676		0.02619			0.02647	
0.08	20	66.71	66.71	66.69	0.78	65.92	0.03111		0.03050			0.03077	
0.10	25	74,43	74.43	74,12	0.87	73.46	0.03467		0.03433			0.03456	
0.12	30	81.79	81.79	81.22	0.95	80.65	0.03806		0.03781	-		0.03799	
0.14	35	88.37	88.37	88,34	1.03	87.33	0.04122		0.04103			0.04115	
0,16	40	94.55	94.55	94.29	1.10	93.37	0.04406		0.04403			0.04408	
0.18	45	100,64	100.64	100.38	1.16	99.39	0.04691		0.04687			0.04684	
0.20	60	105.99	105.99	106.18	1.22	104.83	0.04947		0.04956			0.04945	
0.22	55	111.13	111.13	110.89	1.28	109.76	0.05180		0.05213			0.05193	
0.24	60	116.48	116.48	116.24	1.34	115.06	0.05430		0.05458			0.05430	
0.26	65	120.65	120.65	121,01	1.39	119.38	0.05634		0.05695			0.05657	
0.28	70	125.47	125.47	125,44	1.44	124.02	0.05853		0.05923			0.05876	
0.30	75	130,32	130.32	130,11	1.49	128,76	0.06077		0.06143			0.06087	
0.32	80	134,50	134.50	134.10	1.54	132.82	0.06269						_
0.34	85 90	137,68 142,53	137,68	138.18	1.59	136.26	0.06431	C-	0.00624		C1=	6.431E-03	
0.36	175.77	100000000000000000000000000000000000000		142.50	1.63	140.89	120000000000000000000000000000000000000	-	0.00024	- 1	CI-	6A31E-W	
0.38	95 100	146.25 150.22	146.25	146.54	1,68	144.67	0.06828	- 1		- 1	C2 -	0.22	
0.42	105	93/12/04/19	107935550	150.01	0.0000000	148,43	0.07196		0.5207	- 1	· -	022	
0.44	110	154,42 157,90	154.42 157.90	153.90 157.55	1.76	152,48 155,98	0.07362	n-	0.5297	- 1	C3=	1.25	
0.44	115	161.63	161.63	160.98	55.550	159.57	0.07531			- 1	ω-	123	
0.48	120	164,84	164.84	164.65		162.90	0.07688	c.v.	1.0847	(%)	C.V.	0.5709	0
0.5	125	168.15	168.15	167.95	177555	166.16	0.07842	J	12041	`~'	~	0.0103	1,
4.5	123	100,15	100.10	101,20	1,02	100.10	WITCHE	100		- 1			

Crack Leakage Calculation By Individual Crack: F2-2

Pressure Diff Across Crac				Flow	Rate			Predic	leboM n	- 1	New M		
(In.Wg)	(Pa)	Rep.1 (cfm)	Rep.2 (clm)	Rep.3 (cfm)	System Leak (cfm)	100000000000000000000000000000000000000	ed Mean (m*3/sec.)	(m*3			(m*3/s		
0.02	51	35,40	33.65	34.77	0.40	34.21	0.016157		0.01606			0.01562	
0.04	10	47.62	48.86	47.11	0.56	47.31	0.02233		0.02250			0.02209	
0.06	15	58.98	59.27	58.91	0.68	58.38	0.02755		0.02741			0.02706	
0.08	20	67.74	67.66	67.66	0.78	66.91	0.03158		0.03152			0.03124	
0.10	25	74.44	75.23	75.52	0.87	74.19	0.03502		0.03514			0.03493	
0.12	30	82.82	82.47	81.65	0.95	81.36	0.03840		0.03840			0.03826	
0.14	35	88.78	88.93	88.15	1.03	87.59	0.04134		0.04139			0.04133	
0.16	40	94.17	94.79	94.55	1.10	93.41	0.04408		0.04417			0.04418	
0.18	45	100.01	100.58	100.12	1.16	99.08	0.04676		0.04677			0.04686	
0.20	50	105.13	106,11	105.23	1.22	104.27	0.04921		0.04923			0.04940	
0.22	55	110,05	111.19	110,14	1.28	109.18	0.05153		0.05157			0.05181	
0.24	60	115.41	115.89	115.48	1.34	114.25	0.05392		0.05380			0.05411	
0.26	65	119.58	121.20	119.64	1.39	118.74	0.05604		0.05593			0.05632	
0.28	70	124.20	124.83	124.25	1.44	122.98	0.05904		0.05799			0.05845	
0.30	75	128.50	128.92	129.27	1.49	127A1	0.06013		0.05997			0.06050	
0.32	80 85	132,87 136,77	133.62	132.72	1.54	131,53	0.06208						_
0.36	90	140.75	141.45	141.11	1.63	139.47	0.06582		0.00734	- 1	C1-	6.431E-03	
0.38	95	144.47	145.48	144,98	1.68	143.30	0.06763	0-	0.00734	- 1	01=	0A31E-03	
0,40	100	147.11	149.43	148.77	12000	146.72	0.06924			- 1	C2 -	0.00	
0.42	105	152.01	152.97	152.32		150.67	0.07111	n-	0.4865	- 1	-	.000	
0.44	110	155.20	156.45	155.81	1.80	154.02	0.07269			- 1	C3 =	1.18	
0.46	115	158.95	159.86	159,54	1.84	157.61	0.07438			- 1	1755		
0.48	120	162.17	163.36	162.90	1.88	160.93	0.07595	C.V.	0.2495	(%)	C.V.=	0.7401	(%
0.5	125	166.09	166.66	166.22	1.92	164,40	0.07759	2	0.00		1		

APPENDIX H

Data Tables for Openings in Parallel

Parallel Crack Leakage Calculation: (A@B1)

Pressure Diff. Across Crac	70000070			Flow		Rate		Powe	r Model cted Q		New A	77.575	
		Rep.1	Rep.2	Rep.3	System	Correct	od Mean						
(ln.Wg)	(Pa)	(clm)	(cfm)	(clm)	(dm)	(clm)	(m*3/sec.)	(m*3	/sec.)		(m*3/s	ec)	
0.02	5	2.58	2.52	2.64	0.40	2.19	0.00103		0.00109			0.00098	
0.04	10	4.70	4.50	4.47	0.56	4.00	0.00189		0.00185			0.00180	
0.06	15	6.20	6.76	6.20	83.0	5.37	0.00254		0.00251			0.00252	
80.0	20	7.54	7.65	7.70	0.78	6.85	0.00323		0.00313			0.00318	
0.10	25	8.78	8.93	8.93	0.87	8.01	0.00378		0.00370			0.00378	
0.12	30	10.24	10.16	10.13	0.95	9.22	0.00435		0.00425			0.00434	
0.14	35	11.16	11.30	11.31	1.03	10.23	0.00483		0.00478			0.00486	
0.16	40	12.23	11.87	12.46	1.10	11.09	0.00523		0.00529			0.00536	
0.18	45	13.30	13.42	13.52	1.16	12.25	0.00578		0.00579			0.00584	
0.20	50	14.40	14.51	14.58	1.22	13.27	0.00626		0.00627			0.00629	
0.22	65	15.40	15.40	15.50	1.28	14,15	0.00668		0.00674			0.00672	
0.24	60	16.40	16.44	16.53	1.34	15.12	0.00713		0.00720			0.00714	
0.26	65	17,32	17.48	17.46	1.39	16.03	0.00756		0.00765			0.00754	
0.28	70	18.29	18.40	18.46	1.44	16.94	0.00799		0.00810			0.00793	
0.30	75	19.26	19.33	19,15	1.49	17.75	0.00838		0.00853			0.00831	
0.32	80	20,18	19.62	20.28	1.54	18.49	0.00872						
0.34	85	20.96	21.04	20.96	1.59	19,40	0.00915		001501		C1=	4 0505 00	
0.36	90	21.89	21.98	22.08	1.63	20.35	0.00960	C=	3.21E-04	- 1	CI-	1.250E-03	
0.38	95	22.75	23.00	22.90	1.68	21,21	0.01001			- 1	~	0.45	
0.40	100	23.56	23.57	23.66	1.72	21,88	0.01033	1 -	0.7507	- 1	c2-	3,45	
0.42	105 110	24,42 25,35	24.53 25.25	24.60 25.25	1.76	22.76	0.01074	n-	0.7697	- 1	C3-	1.2	
0.46	115	26.09	26.24	26.17	1.84	24.32	0.01148				₩.	1.2	
0.48	120	26.82	26.87	26.17	1.88	25.01	0.01180	C.V.	1,6127	(94)	C.V.	1,1842	0
0.5	125	28.00	27.61	27.82	1.92	25.89	0.01222	~~~	12121	,~	~,,,	1.1042	1,

Parallel Crack Leakage Calculation: (A@E)

Pressure Diffe Across Crac				Flow		Rate			Power		- 1	New A		
(In.Wg)	(Pa)	Rep.1	Rep.2 (clm)	Rep.3 (cfm)	System Leak (cfm)	Correcte (ctm)	od Mean (m*3/sec.)		(iu.3/	1,00.2		(m*3/i		
0.02	51	14.48	14.98	15.24	0.40	14.50	0.006847			0.00669			0.00656	
0.04	10	20.19	20.60	20.80	0.56	19.97	0.00943			0.00960			0.00956	
0.06	15	25.16	25.68	25.97	83.0	24.93	0.01176			0.01185			0.01186	
0.08	20	29.48	29.94	30.10	0.78	29.06	0.01372			0.01376			0.01380	14
0.10	25	33.24	33.52	33.80	0.87	32.65	0.01541			0.01545			0.01552	
0.12	30	36.59	36.85	36.72	0.95	35.77	0.01688			0.01698			0.01707	
0.14	35	40.21	40.70	40,82	1.03	39.55	0.01866			0.01840			0.01849	
0.16	40	42.69	43.16	43.28	1.10	41.94	0.01980			0.01972			0.01982	
0.18	45	45.28	45.73	45.85	1.16	44.46	0.02098			0.02097			0.02106	
0.20	50	48.01	48.44	48.55	1.22	47.11	0.02223			0.02215			0.02224	
0.22	65	60.62	51.04	51.14	1.28	49.65	0.02343			0.02327			0.02336	
0.24	60	52.75	53,16	53.16	1.34	51,68	0.02439	15		0.02435			0.02443	
0.26	65	54.91	55.20	55.30	1.39	53.75	100000000000000000000000000000000000000						0.02546	
0.28	70 75	57.21 59.35	57.50 59.73	57.60 59.82	1.44	56,00 58,14	0.02643			0.02638			0.02645	
0.32	80	61.46	61.82	61.91	1.54	60.19	0.02841			0.02134			0.02140	
0.34	85	63.42	63.78	63.87	1.59	62.10	0.02931				$\overline{}$			_
0.36	90	65.33	65.69	65.69	1.63	63.94	0.03017		C-	0.00290	- 1	C1 =	3.545E-03	
0.38	95	67,31	67.66	67.74	1.68	65.89	0.03110		"-	0.000	- 1			
0.40	100	68.99	69.42	69.51	- 1.72	67.59	0.03190		1	¥.	- 1	C2-	0.21	
0.42	105	71.06	71.56	71.73	1.76	69.69	0.03289		n-	0.5197	- 1			
0.44	110	72.69	73.18	73.34	1.80	71.27	0.03363				- 1	C3 =	0.84	
0.46	115	74.68	75.17	75.33	1.84	73.22	0.03456							
0.48	120	76.42	76.74	76.90	1.88	74.80	0.03530		C.V.	0.6479	(%)	C.V.	0.6876	(9
0.5	125	77.67	78.06	78.22	1,92	76.07	0.03590				200			

Parallel Crack Leakage Calculation: (A@F1)

Pressure Diffe Across Crac			3	Flow		Rate			or Model cted Q		New I		
ACCOS CIA.	^	Rep.1	Rep.2	Rep.3	System Leak	Correcte	od Mean	-	ueu u		11001	200 (2	
(In.Wg)	(Pa)	(cfm)	(cfm)	(cfm)	(dm)	(cfrrt)	(m,3/2ec)	(m*3	Vsec.)	3	(m*3/	sec.)	
0.02	5]	32.98	32.39	32.99	0.40	32.39	0.01529		0.01554			0.01557	
0.04	10	47.91	47.05	48.34	0.56	47.21	0.02228		0.02219			0.02232	
0.06	15	59.16	58.81	59,52	83.0	58.49	0.02760		0.02734			0.02751	
0.08	20	68.49	68.80	67.86	0.78	67,60	0.03190		0.03169			0.03187	
0.10	25	77.36	76.82	76.82	0.87	76.13	0.03593		0.03555			0.03572	
0.12	30	83.10	84.17	83.90	0.95	82.77	0.03906		0.03904			0.03920	
0.14	35	90,26	90.77	91.02	1.03	89.65	0.04231		0.04227			0.04240	
0.16	40	96.97	96.75	96,98	1.10	95.81	0.04522		0.04527			0.04538	
0.18	45	103.07	103.09	103.31	1.16	102.00	0.04814		0.04810			0.04818	
0.20	50	108.69	108.91		1.22		0.05079		0.05078				
0.22	55 60	113.66 119.23	114.09 119.45	114.07	1.28	112.66	0.05317		0.05333			0.05334	
0.26	65	123.85	124.06	124.06	1.39	122.60	0.05786		0.05811			0.05806	
0.28	70	129.24	128.89	129.27	1,44	127.69	0.06026		0.06037			0.06028	
0.30	75	133.02	133.22	133.58	1.49	131.78	0.06220		0.06255			0.06242	
0.32	80	13/25	138.32	130.34	1.54	130.00	200160		5.05-50				
0.34	85	142.90	142.42	142.92	1.59	141.16	0.06662						
0.36	90	146.57	146.58	146.59	1.63	144.94	0.06841	C-	0.00679	- 1	C1 -	6.831E-03	10.0
0.38	95	150.63	150.49	150.32	1.68	148.80	0.07023			- 1	5000		
0.40	100	154,93	154.78	154.48		153.01	0.07221			- 1	C2 =	0.11	
0.42	105	158.82	158.70	158,70		156.98	0.07408	R-	0.5143		CONTRACTOR OF THE PARTY OF THE		
0.44	110	162.33	162.51	162.51	7.3555E	160.65	0.07582			- 1	C3 =	1.14	
0.46	115	166.37	166.11	165.67		164.21	0.07760	1	K4 020001		212	02122222	120
0.48	120	169,04	169.81	169,35		167.52	0.07906	C.V.	0.4866	(%)	C.V.	0.3658	C
0.5	125	173.54	173.13	173.13	1.92	171,35	0.08087						

Parallel Crack Leakage Calculation: (B1@B2)

Pressure Diffe Across Crac		-		Flow		Rate		Powe	Model		New M	35555	
(In.Wg)	(Pa)	Rep.1 (cfm)	Rep.2 (cfm)	Rep.3 (clm)	System Leak (cfm)		ed Mean (m*3/sec.)	(m*3			(m*3/s		
-			-	-		-		_	-	-	-	_	-
0.02	5	5.35	5.44	5.49	0.40	5.03	0.00237		0.00226			0.00191	
0.04	10	7.56	7.74	7.79	0.56	7.14	0.00337		0.00357			0.00335	
0.06	15	10.44	10,60	10.69	0.68	9.90	0.00467		0.00467			0.00456	
0.08	20	12.49	12.09	1277	0.78	11.87	0.00560		0.00565			0.00562	
0.10	25	14.59	14.74	14.89	0.87	13.87	0.00655		0.00655			0.00658	
0.12	30	16.54	16.65	16.76	0.95	15.70	0.00741		0.00739			0.00745	
0.14	. 35	18.14	18.24	18,42	1.03	17.24	0.00814		0.00819			0.00827	
0.16	40	19.84	20.01	20.15	1.10	18.90	0.00892		0.00895			0.00904	
0.18	45	21,37	21.57	21.78	1.16	20.41	0.00963		0.00967			0.00976	
0.20	50	22.91	23.11	23.31	1.22	21.89	0.01033		0.01037			0.01045	*
0.22	65	24.47	24.67	24.90	1.28	23.40	0.01104		0.01105			0.01110	
0.24	60 65	26.06 27.63	26.32 27.82	26.55	1.34	24.97	0.01179		0.01170			0.01173	
0.28	70	28.96	29.12	29.31	1.44	27,69	0.01307		0.01296			0.01234	
0.30	75	30.33	30.52	30.74	1.49	29.04	0.01371		0.01256			0.01232	
0.32	80	31.63	31.88	32.04	1.54	30.31	0.01431		W1557			0.01545	
0.34	85	33.26	33,48	33.60	1.59	31.86	0.01504		-				_
0.36	90	34,49	34.73	34.88	1.63	33.07	0.01561	l c-	7.8E-04		C1 =	1.700E-03	
0.38	95	35,68	35.86	35.95	1.68	34.16	0.01612	"-				002 00	
0.40	100	37.36	37,60	37.75	1.72	35.85	0.01692		¥:		C2-	2.46	
0.42	105	38.58	38.79	38.91	1.76	37.00	0.01746	n=	0.6624				
0.44	110	39.70	40.00	40.02	1.80	38.11	0.01798			- 1	C3 -	1,36	
0.46	115	41.22	41.51	41.60	1.84	39.60	0.01869					300	
0.48	120	42.54	42.86	42.97	1,88	40,91	0.01931	C.V	1.1146	(%)	C.V.	1,9902	(*
0.5	125	43.69	44.04	44.12	1.92	42.03	0.01984						

Parallel Crack Leakage Calculation: (B1@E)

Pressure Diffe		1		Flow		Flate		0.000	Model O beto		New N		
(In.Wg)	(Pa)	Rep.1 (cfm)	Rep.2 (cfm)	Rep.3 (clm)	System Leak (dm)		ed Mean (m*3/sec.)		/sec.)		(m*3/s		
0.02	5]	14.66	13.56	13.83	0.40	13.62	0.00643] -		0.00678			0.00669	-
0.04	10	22.77	22.54	22.16	0.56	21,94	0.01035		0.01018		6.1	0.01035	
0.06	15	29.21	28.40	28.55	0.68	28.04	0.01323		0.01291			0.01320	
0.08	20	34.08	33.88	33.74	0.78	33,12	0.01563		0.01529			0.01562	
0.10	25	38.72	38.40	38.14	0.87	37.55	0.01772		0.01742			0.01776	
0.12	30	42.88	42.69	42.80	0.95	41.84	0.01975		0.01939			0.01969	
0.14	35	47.11	46,36	46.47	1.03	45.62	0.02153		0.02122			0.02148	
0.16	40	50.16	50.07	49.75	1.10	48.90	0.02308		0.02295			0.02314	
0.18	45	53.48	53.38	53,07	1.16	52.15	0.02461		0.02459			0.02470	
0.20	50	57.05	56.28	56.65	1.22	55.44	0.02616		0.02615			0.02618	
0.22	65	59.74	59.45	59.26	1.28	58.20	0.02747		0.02766			0.02758	
0.24	60	62.45	62.34	62.24	1.34	61.01	0.02879		0.02910			0.02893	
0.26	65	65.33	65.22	65.13	1.39	63.83	0.03013		0.03050			0.03022	2
0.28	70	67.89	67.69	68.01	1.44	66.42	0.03135		0.03186			0.03146	
0.30	75	70,54	70.42	70.50	1.49	68.99	0.03256		0.03317			0.03266	
0.32	80	73.06	72.86	72.93	1.54	71.41	0.03370						
0.34 0.36	85 90	75.61 77.86	75.40 77.80	75.22 77.87	1,59	73.82 76.21	0.03484	C-	0.00264		C1-	3.995E-03	
20000	90 95	80.30	79.56	80.30	1.68	78.37	0.03699	"-	WW204		01-	3.8502-00	
0.38	100	80.30 82.55	82.93	82,77	1.72	81.03	0.03824			- 1	C2 =	0.73	
0.42	105	84.76	85.11	84.74	1.76	83.11	0.03922	n-	0.5862	- 8	~~-	0.73	
0.44	110	87.07	86.92	86.84	1.80	85.14	0.04018		0.0002		C3 -	1.05	
0.46	115	89.28	89.27	89.26	1.84	87.42	0.04126			- 1		1100	
0.48	120	91,59	91.37	91.14	1.88	89.49	0.04223	C.V.	1,6083	(%)	C.V.	0,4862	(%
0.5	125	93.73	93.51	93.70	1.92	91.73	0.04329		3.00 3.70.70	,	PARTIES AND	2009 WAR	

Parallel Crack Leakage Calculation: (B1@F1)

Pressure Diff	200000000000000000000000000000000000000		- 5	Flow		Rate		Powe Predik	Model	- 1	New M		
(in.Wg)	(Pa)	Rep.1 (clm)	Rep.2 (ctm)	Rep.3 (cfm)	System Leak (cfm)	TOO STA	ed Moan (m*3/sec.)	(m²3			(m^3/s		
0.02 [51	36.04	36.06	34,31	0.40	35.07	0.016551		0.01680		-	0,01676	
0.04	10	51.09	52.31	51.86	0.56	51.20	0.02416		0.02402			0.02408	
0.06	15	63.95	64.63	63.93	0.68	63,49	0.02997		0.02960			0.02970	
0.08	20	74.30	74.02	73.38	0.78	73.12	0.03451		0.03433			0.03444	
0.10	25	82.45	83.00	83,22	0.87	82.02	0.03871		0.03851			0.03861	
0.12	30	91.45	90.97	90.68	0.95	90.08	0.04251		0.04231			0.04238	
0.14	35	98.16	98.16	98.57	1.03	97.27	0.04590		0.04581			0.04585	
0.16	40	104,70	105.36	104.88	1.10	103.88	0.04903		0.04907			0.04908	
0.18	45	111.55	111.56	111.29	1.16	110.30	0.05206		0.05214			0.05212	
0.20	50	118.46	117.64	117.60	1.22	116.68	0.05507		0.05505			0.05499	
0.22	55	123.90	121.40	124.22	1.28	121.89	0.05753		0.05782			0.05772	
0.24	60	128.98	129.53	129.65	1.34		0.06043		0.06047			0.06033	
0.26	65	134.60	135.13	134.89	1.39	133.48	0.06300		0.06302			0.06283	
0.28	70 75	140.02	140.38	139.79 144.57	1.44	138.62	0.06542		0.06547			0.06523	
0.32	80	149.59	150.27	151.00	1.54	148.75	0.07020		0.00764			0.05736	
0.34	85	155.23	154.91	154.85	1.59	153.41	0.07240				_		
0.36	90	159,46	159.31	159,40	1.63	157.76	0.07445	C=	0.00733	- 1	C1 =	7.281E-03	
0.38	95	163.30	163.61	163.39	1,68	161.75	0.07634	,	0.00.00	- 1	0,-	12012 00	100
0.40	100	167.66	168,41	167.88	1.72	166.27	0.07847			- 1	C2 -	0.13	
0.42	105	172.08	173.11	172.01	1.76	170.64	0.08053	n=	0.5154	- 1	1977/2		
0.44	110	175.98	176.98	176.20	1.80	174.59	0.08240	1			C3 -	1.18	
0.46	115	180.52	181,07	180.58	1.84	178.88	0.08442						
0.48	120	184.41	185.10	184.19	1.88	182.69	0.08622	C.V.=	0.4207	(%)	C.V.=	0.3150	(%
0.5	125	189.05	188,79	188.29	1.92	186.79	0.08816			2000			

Parallel Crack Leakage Calculation: (F1@F2)

Pressure DIM Across Crac	3000000000			Flow		Rate				r Model cted O	1	New M		
(In.Wg)	(Pa)	Rep.1	Rep.2	Rep.3	System Leak (cfm)		od Mean (m*3/sec.)			/sec.)		(m*3/s		
V01		,,	(1000	(4	(y	V		V					
0.02	51	66.04	67.90	66.03	0.40	66.26	0.031271			0.03140			0.03139	
0.04	10	95.24	94.80	94,78	0.56	94.38	0.04454			0.04458			0.04460	
0.06	15	116.83	117,19	117.19	83.0	116.39	0.05493			0.05472			0.05473	
0.08	20	136.63	135.63	135.30	0,78	135.08	0.06375			0.06329			0.06328	
0.10	25	150.91	150.89	150.59	0.87	149.93	0.07076			0.07084			0.07081	
0.12	30	165.73	165.44	165,72	0.95	164.68	0.07772			0,07768			0.07762	
0.14	35	178.95	179,19	178.43	1.03	177.83	0.08393			0.08396			0.08388	
0.16	40	191.14	192.57	191.36	1.10	190.59	0.08995			0.08984			0.09970	
0.18	45	202A5	203.80	202.18		201.65	0.09517			0.09535			0.09518	
0.20	60	213.88	214.08	214,08		212.79	0.10043			0.10057			0.10035	
0.22	55	224.60		225.84		223.80	0.10562			0.10563			0.10528	
0.24	60	236.92	234,67	235,49		234.35	0.11060			0,11028			0.10998	
0.26	65	244.08	243.23	242.84	1.39	241.99	0.11420		3	0.11483			0.11449	
0.28	70				1.8									0.00
0.301	80					- 1								
0.34	85							- 0			_			_
0.36	90							- 1	C-	0.01392	- 1	Ct-	1,29620E-02	
0.38	95							- 1			- 1			
0.40	100							- 1			- 1	C2-	0.04	
0.42	105								n-	0.5055	- 1		100000	
0.44	110							- 1			- 1	C3 -	1.23	
0.46	115							- 1						
0.48	120						+:	- 1	C.V.	0.3487	(%)	C.V.	0.3652	CX
0.5	125							- 1			1150400			- 0

APPENDIX I

Data Tables for Openings in Series

Series Crack Leakage Calculation: (A~B1)

Pressure Diffe		1		Flow		Rate		Powe Predk	r Model		New A	97.55%	
(in.Wg)	(Pa)	Rop.1	Rop.2 (clm)	Rep.3	System Leak (cfm)	0.00000000	ted Mean (m*3/sec.)	(m²3			(m*3/		
2 24	199116		- N 197	A.		680 6	h 6						
0.02 [5]	0.62	0.62	0.72	0.40	0.26	0.00012		0.00014			0.00015	
0.04	10	1.05	1.13	1.22	0.56	0.58	0.00027		0.00027			0.00029	
0.06	15	1.56	1.49	1.63	83.0	88.0	0.00042		0.00039			0.00042	
80.0	20	1.90	1.90	1.96	0.78	1.14	0.00054		0.00051			0.00055	
0.10	25	2.26	232	2.32	0.87	1.43	0.00067		0.00063			0.00067	
0.12	30	2.54	2.66	2.60	0.95	1.65	0.00078		0.00075			0.00078	
0.14	35	2.94	2.94	3.00	1.03	1.93	0.00091		0.0006			0.00089	
0.16	40	3.14	3.27	322	1.10	211	0.00100		0.00098			0.00099	
0.18	45	3.52	3.52	3.58	1.16	238	0.00112		0.00109			0.00109	
0.20	50	3.76	3.73	3.83	1.22	2.55	0.00120		0.00120			0.00119	
0.22	55	4.00	4.07	4.07	1,28	2.77	0.00131		0.00131			0.00128	
0.24	60	4.25	4.25	4.30	1.34	2.93	0.00138		0.00142			0.00137	
0.26	65	4.50	4.44	4.50	1,39	3.09	0.00146		0.00154			0.00146	
0.28	70	4.72	4.87	4.67	1.44	3.25	0.00153		0.00165			0.00155	
0.30	75	4.91	4.96	5.01	1.49	3.46	0.00164		0.00175			0.00163	
0.02	90	5.14	E 14	5.19	1.54	3.62	0.00171						
0.34	85	5.36	5.31	5.37	1.59	3.76	0.00177		- Care extremes			January Warner and Alb	
0.36	90	5.59	5.53	5.54	1.63	3.92	0.00185	C-	3.12E-05		C1 -	3,606E-04	
0.38	95	5.85	5.80	5.75	1.68	4.12	0.00195				5.00		
0.40	100	5.98	5.98	5.98	1.72	4.26	0.00201	1			C2-	5.1	
0.42	105	6.15	6.19	6.19	1.76	4.41	0.00208	n-	0.9333		and the same		
0.44	110	6.40	6.36	6.36	1.80	4.57	0.00216			- 1	C3 -	0.89	
0.46	115	6.57	6.65	6.61	1.84	4.77	0.00225	2700000			(Sesociero		
0.48	120	6.70	6.78	6.78	1,88	4.87	0.00230	C.V	6.0876	(%)	C.V.	1.8970	C
0.5	125	6.81	6.89	6.90	1.92	4.95	0.00234			25/332			
									4. 4.00	_			

Series Crack Leakage Calculation: (B1~A)

Pressure Diffe Across Crad				Flow	Rate			Powe	r Model		New A	2 700 PC	
(in.Wg)	(Pa)	Rep.1 (cfm)	Rep.2 (clm)	Rep.3 (cfm)	System Leak (cfm)		(m*3/sec.)	(m*3			(m*3/s		
					\Box								
0.02	5]	0.70	0.62	0.72	0.40	0.28	0.00013		0.00017			0.00019	
0.04	10	1,30	1.30	1.22	0.56	0.71	0.00034		0.00032			0.00036	
0.06	15	1.85	1.78	1.78	0.68	1.12	0.00053		0.00047			0.00052	
80,0	20	221	2.27	2.15	0.78	1.43	0.00067		0.00062			0.00068	
0.10	25	2.63	2.63	257	0.87	1.74	0.00082		0.00076			0.00082	
0.12	30	3.07	3.01	3.02	0.95	2.08	0.00098		0.00091			0.00096	
0.14	35	3.33	3.38	3.33	1.03	2.32	0.00109		0.00105			0.00109	
0.16	40	3.70	3.70	3.70	1.10	2.60	0.00123		0.00120			0.00122	
0.18	45	4.04	3.99	4.04	1.16	2.86	0.00135		0.00134			0.00135	
0.20	50	4.38	4.43	4.34	1.22	3.16	0.00149		0.00148			0.00147	
0.22	55	4.62	4.57	4.62	1.28	3.32	0.00157		0.00162			0.00158	
0.24	60 65	5.01 5.08	4.94 5.23	4.96 5.13	1.34	3.63	0.00171		0.00176			0.00169	
0.28	100000	5.49	5.44	5.49	1.39	4.03	0.00190		0.00190				
0.30	70 75	5.80	5.70	5.80	1.49	4.03	0.00202		0.00204			0.00191	
0.32	80	5.96	6.07	5.96	1.54	200000000000000000000000000000000000000	0.00210		0.00217			0.00201	
0.34	85	6.27	6.27	6.27	1.59	4.69	0.00221			-			_
0.36	90	0.50	6.49	6.58	1.63	500000	0.00232	C-	3.58E-05		C1 =	4.262E-04	
0.38	95	6.78	6.71	6.79	1.68	5.08	0.00240	1		- 1			
0.40	100	7.00	6.91	6.99	1.72	5.24	0.00247	1			C2 -	5.33	
0.42	105	7.20	7.11	7.20	1.76	5.41	0.00255	n-	0.9511	- 1			
0.44	110	7.53	7.44	7.49	1.80	5.68	0.00268			- 1	C3 =	0.97	
0.46	115	7.59	7.69	7.60	1.84	5.79	0.00273	34		- 1			
0.48	120	7.71	7.76	7.72	1.88	5.85	0.00276	C.V	6.7966	(%)	C.V	1.8753	0
0.5	125	7.96	8.01	7.93	1.92	6.05	0.00285						

Series Crack Leakage Calculation: (B1~E)

	0.000000	New M		Model ted O	Predic			Rate	Flow				Pressure Diffe Across Crad
		(m*3/s		587.07	(m*3/	ed Mean (m*3/sec.)		System Leak (dm)	Rep.3 (cfm)	Rep.2 (clm)	Rep.1 (cfm)	(Pa)	(In.Wg)
	0,00090			0.00099		0.00095	2.02	0.40	243	2.43	2.40	0.06 15 0.08 20	
	0.00154			0.00156		0.00158	3.36	0.56	3.91	3.91	3.91	10	0.04
	0.00206			0.00205		0.00207	4.39	83.0	5.08	5.18	4.93		0.06
	0.00251			0.00248		0.00248	5.25	0.78	6.00	6.05	6.05		0.08
	0.00291			0.00287		0.00291	6.17	0.87	7.11	7.01	7.01	25	0.10
	0.00328			0.00324		0.00326	6.91	0.95	7.86	7.77	7.95	30	0.12
	0.00362			0.00359		0.00360	7.63	1.03	8.63	8.63	8.69	35	0.14
	0.00394			0.00392		0.00389	8.24	1.10	9.31	9.31	9.39	40	0.16
	0.00424	- 3		0.00424		0.00420	8.91	1.16	10.05	10.01	10.15	45	0.18
	0.00453			0.00455		0.00452	9.57	1.22	10.83	10.71	10.83	60	0.20
	0.00480			0.00484		0.00481	10.20	1.28	11.47	11,47	11,51	65 60	0.22
	0.00532			0.00541		0.00536	11,36	1.34	12.05	12.02	12.09	65	
	0.00556			0.00568		0.00555	11.75	1,44	13.18	13.34	13.07	8	0.26
	0.00579			0.00595		0.00583	12.35	1.49	13.83	13.79	13.90	76	0.30
				www.		0.00607	12.87	1.54	14.42	14,35	14.46	80	0.32
						0.00633	13.42	1.59	14.99	14.99	15.03	85	0.34
	7,269E-04	C1 -		3.40E-04	C-	0.00653	13.83	1.63	15.51	15.54	15.34	90	0.36
			- 1			0.00680	14.42	1.68	16.12	16.09	16.06	95	0.38
	1.9	C2-	- 1			0.00704	14.92	1.72	16,68	16.61	16.64	100	0.40
			- 1	0.6628	n-	0.00717	15,19	1.76	16.90	17.08	16.87	105	0.42
	1.25	ca -	- 1	**************************************		0.00739	15.67	1.80	17.37	17.58	17.45	110	0,44
					1000000	0.00765	16.21	1.84	17.98	18.12	18.05	115.	0.46
(7	0.9164	C.V.	(%)	1,6334	C.V.	0.00786	16.64	1,88	18.51	18.61	18,45	120	0.48
		12			1	0.00806	17.07	1.92	18.94	19.01	19.01	125	0.5

Series Crack Leakage Calculation: (E~B1)

	sure Diffe				Flow	Rate			Predk Predk	Model ted O		New A	22777200	
7.00.10	in.Wg)	(Pa)	Rep.1 (cfm)	Rep.2 (cfm)	Rep.3 (clm)	System Leak (cfm)	Correcte (cfm)	od Mean (m*3/sec.)	(mra			(m*3/s		
-			100	222			0.234					_	12/200201	
	0.02	5	2.34	2.30	2.30		1.92	0.00090		0.00094			0.00084	
	0.04	10	3.69	3.86	3.81	0.56	323	0.00153		0.00151			0.00147	
	0.06	15	5.00	4.99	5.06		4.34	0.00205		0.00200			0.00201	
	0.08	20	6.10	6.05	6.17 7.13		5.33 6.08	0.00251		0.00244			0.00248	
	2 35 34 G (L) +	107100	7.02		0.000	(C) (C) (C) (C)	700700	94040 E 2-34044 N		0.00323			0.00329	
	0.12	30 35	7.99 8.19	7.91 8.73	7.96 8.77	0.95	7,00	0.00330		0.00360			0.00365	
	0.16	40	9.34	9.48	9.46	7. 3333.7	8.33	0.00393		0.00395			0.00399	
	0.18	45	10.34	10.22	10.28	1.16	9.12	0.00430		0.00428			0.00431	
	0.20	50	10.98	10.87	11.04	1.22	9.74	0.00460		0.00460			0.00462	
	0.22	55	11.68	11.70	11.64		10.39	0.00490		0.00492			0.00491	
	0.24	60	1243	12.40	12.34	1.34	11.05	0.00522		0.00522			0.00519	
	0.26	65	13.01	12.98	12.96	1.39	11,59	0.00547		0.00552			0.00546	
	0.28	70	13.73	13.64	13.49	1.44	12.18	0.00575		0.00581			0.00572	
	0.30	75	14.42	14.30	14.22	1.49	12.82	0.00605		0.00609			0.00597	
	0.32	80	15.01	14.84	14.77	1.54	13.33	0.00629						
	0.34	85	15.46	15.44	15.47	1.59	13.87	0.00655						
	0.36	90	16.14	16.13	16.02	1.63	14.46	0.00683	C-	3.08E-04	- 1	C1 =	B.444E-04	
	0.38	95	16.73	16.71	16.63	1.68	15.01	0.00709			- 1	-		
	0.40	100	17.34	17.24	17.18	1.72	15.53	0.00733		00010		c2 -	225	
	0.42	105	17.90	17.79	17.75		16.05	0.00758	n-	0.6913	- 1	~	4.00	
	0.44	110	18.40	18.25	18.32	1.80	16.52	0.00780				C3 -	1.09	
	0.46	115	18.86	19,81	19.37		17.51	0.00826	0.1	4 4050		٥٧/	4 0000	***
	0.48	120 125	19.52 20.08	19.27	19.37		18.02	0.00826	C.V.	1.1358	(%)	C.V.=	1.3203	(%

Series Crack Leakage Calculation: (E~F1)

Pressure Diffe Across Crack				Flow		Rate			or Model cted O		New I	Model O bet	
		Rep.1	Rep.2	Rep.3	System Leak	- 4							
(in.Wg)	(Pa)	(clm)	(dm)	(dm)	(dm)	(dm)	(m*3/sec.)	(m²s	ysec.)		(m*3/	sec.)	
0.02	5]	11.29	10.97	10.63	0.40	10.57	0.00499		0.00524			0.00527	
0.04	10	17.16	17.40	17.16	0.56	16.68	0.00787		0.00769			0.00784	
0.06	15	21.16	21.56	21,36	0.68	20.68	0.00976		0.00962			0.00981	
0.08	20	25,17	25.35	25.18	0.78	24.45	0.01154		0.01128			0.01148	
0.10	25	28.42	28.75	28.59	0.87	27.72	0.01308		0.01277			0.01295	
0.12	30	31.55	31.44	31.27	0.95	30,47	0.01438		0.01412			0.01428	
0.14	35	34.21	33.96	33.81	1.03	32.97	0.01556		0.01538			0.01550	
0.16	40	36.34	36,62	36.49	1.10	35,39	0.01670		0.01656			0.01664	
0.18	45	38.99	38.77	38.65	1.16	37.64	0.01776		0.01767			0.01771	
0.20	50	40.94	40.96	41.08	1.22	39.77	0.01877		0.01873			0.01873	
0.22	55	42.93	43.07	42.95	1,28	41.70	0.01968		0.01975			0.01969	
0.24	60	45.09	45.11	44.99	1.34	43.72	0.02064		0.02072			0.02061	
0.26	65	46.40 48.55	46.97	46.86 48.46	1.39	45.35 47.09	0.02140		0.02166			0.02149	
0.28	100	17.00	48.57	1000	1,44	40.75			0.02237			0.02316	
0.30	75 J	50.13	51.89	51.68	1,54	50.30	0.02374		mizas			0.02316	
0.34	85	53.66	53.59	53.59	1.59	52.02	0.02455			_			_
0.36	90	54.94	55.25	55.35	1.63	53.55	0.02527	C-	0.00215		C1-	1.808E-03	
0.38	95	56.67	56.88	56.59	1.68	55.03	0.02597	1 0-	OLOZIO		0	1.0002-00	
0.40	100	58.27	58.11	57.91	1.72	56.38	0.02661			- 1	C2=	0.59	
0.42	105	59.75	59.78	59.59	1.76	57.94	0.02735	n-	0.5534	- 1			
0.44	110	61.11	60.31	60.30	1.80	58.78	0.02774	1 ""			C3 -	2.39	
0.46	115	62.56	62.66	62.66	1.84	60.79	0.02869				100000000	-	
0.48	120	63.88	64.18	64.09	1.88	62.17	0.02934	C.V.=	1.5720	(%)	C.V.	0.7352	0
0.5	125	65.45	65.39	65.21	1.92	63.43	0.02994	1 2000000	U10000000		7-7-659Ct		

Series Crack Leakage Calculation: (F1~B1)

Pressure Diff Across Crac				Flow		Rate			Predic	r Model Hed O		New I		
700000	`	Rep.1	Rep.2	Rep.3	System	Correct	ed Mean		7			, 100.		
(In.Wg)	(Pa)	(clm)	(dm)	(clm)	(cfm)	(dm)	(m*3/sec.)		(m*3	/sec.)		(m*3/	sec.)	
0.02	5]	2.33	2,40	2.33	0.40	1.96	0.00092			0.00097			0.00088	
0.04	10	3.97	3.91	3.91	0.56	3.37	0.00159			0.00157			0.00155	
0.06	15	5.18	5.18	5.18	0.68	4.50	0.00212			0.00208			0.00210	
90.0	20	6.33	6.26	6.28	0.78	5.51	U.00260			0.00254			0.00259	
0.10	25	7.27	7.22	7.18	0.87	6.35	0.00300			0.00297			0.00303	
0.12	30	8.23	8.15	8.15	0.95	7.22	0.00341			0.00337			0.00344	
0.14	35	. 9.21	9.04	9.00	1,03	8.06	0.00380			0.00375			0.00381	
0.16	40	9.87	9.83	9.79	1.10	8.73	0.00412			0.00412			0.00416	
0.18	45	10.68	10.60	10.55	1.16	9.45	0.00446			0.00447			0.00450	
0.20	50	11.44	11.44	11,36	1.22	10.19	0.00481	*		0.00481			0.00481	
0.22	55	12.17	1210	1210	1.28	10.84	0.00512			0.00514			0.00512	
0.24	60	12.80	12.84	12.76	1.34	11.46	0.00541			0.00546			0.00541	
0.26	65	13.49	13.45	13.41	1.39	12.06	0.00569			0.00577			0.00569	
0.28	70	14.13	14.12	14.05	1.44	12.66	0.00597			0.00607			0.00596	
0.30	75	14.68	14.79	14.79	1.49	13.26	0.00626			0.00637			0.00622	
0.32	80	15.43	15.36	15.43	1.54	13.87	0.00654							
0.34	85	15.98	16,05	16.05	1.59	14.44	0.00681		2021	Service en		100000	912311000435 <u>22</u> 000011	
0.36	90	16.59	16.55	16.55	1.63	14.93	0.00705		C-	3.2E-04	- 1	C1 =	8.142E-04	
0.38	95	17.20	17,16	17.13	1.68	15.49	0.00731				- 1			
0.40	100	17.73	17.74	17.66	1.72	15.99	0.00755		1	and the same of	- 1	C2 =	237	
0.42	105	18.23	18.27	18.20	1.76	16.47	0.00777		n-	0.6950	ı	100000		
0.44	110	18.96	18.93	18.90	1.80	17.13	80900.0				- 1	C3 =	1.26	
0.46	115	19.49	19,43	19,43	1.84	17.61	0.00831							
0.48	120	20.15	20.04	20.03	1.88	18.19	0.00859		C.V.=	1,4703	(%)	C.V	0.7696	(%
0.5	125	20.67	20.57	20.54	1.92	18.67	0.00881							

Series Crack Leakage Calculation: (F1~E)

Pressure Diffe Across Crac				Flow		Rate		Powe Predk	leboM s		New M		
(in.Wg)	(Pa)	Rep.1	Rep.2 (cfm)	Rep.3 (cfm)	System Leak (cfm)	Correcte (cfm)	d Mean (m*3/sec.)	(m*3	/sec.)		(m*3/s	ec)	
A 170	10 00	1 12 6	(6 6)	S 80	120.00	.0 8					1654		
0.02	5	10.96	11.30	10.85	0.40	10,64	0.00502		0.00529			0.00530	
0.04	10	17.15	17.40	17.64	0.56	16.84	0.00795		0.00774			0.00786	+1
0.06	15	21.74	21.76	21.78	83.0	21,08	0.00995		0.00968			0.00984	
0.08	20	25.34	25.35	25.20	0.78	24.52	0.01157		0.01134			0.01151	
0.10	25	28.42	28.74	28.61	0.87	27.72	0.01308		0.01282			0.01298	
0.12	30	31.13	31.44	31.31	0.95	30.34	0.01432		0.01417			0.01431	
0.14	35	34.07	34.23	33.98	1.03	33.07	0.01561		0.01543			0.01553	
0.16	40	36.47	36.49	36.38	1.10	35.35	0.01668		0.01660			0.01667	
0.18	45	38.76	38.90	38.80	1.16	37,65	0.01777		0.01772			0.01774	
0.20	50	40.94	41,08	40.88	1.22	39.74	0.01876		0.01877	Κ.		0.01875	
0.22	55	42.93	43.19	43.11	1.28	41.80	0.01973		0.01979		- 2	0.01972	
0.24	60	44.97	45.44	45.37	1.34	43.92	0.02073		0.02076			0.02064	
0.26	65	46.95	46.98	46.90	1.39	45.55	0.02150		0.02169			0.02152	
0.28	70	48.87	48.79	48.62	1.44	47.32	0.02233		0.02259			0.02237	
0.30	75	50.43	60.56	50,40	1.49	48.97	0.02311		0.02347			0.02319	
0.32	80	52.26	52.39	52,13	1.54	60.72	0.02394						
0,34	85	53.96	54.09	53.94	1.59	52A1	0.02474						
0.36	90	55.52	55.65	55.50	1.63	53.92	0.02545	C=	0.00218	- 1	C1-	1.750E-03	
0.38	95	57.33	67.07	57.03	1.68	55.47	0.02618			- 1			
0.40	100	58.73	58.76	58.63	1.72	56.99	0.02690	1		- 1	C2-	0,59	
0.42	105	60.20	60.42	60.29	1.76	58.54	0.02763	n=	0.5504	- 1	23	5.00	
0.44	110	61.57	61.88	61.66	1.80	59.90	0.02827			- 1	C3 -	2.55	
0.46	115	63.09	63,48	63.45	1.84	61.50	0.02902	1		- 1			
0.48	120	64.67	64.79	64.58	1,88	62.80	0.02964	C.V.	1,3651	(%)	C.V.	0.6415	(7
0.5	125	65.89	65.92	65.72	1.92	63.92	0.03017						-

Component Leakage Test: Exterior Frame / Gypsum Board: CO-1

Pressure Dif					Flow Rate				Model			Model	
Across Cra	ok .	Rep.1	Rep.2	Rep.3	Charriber Leak	Correct	ed Mean	Predic	ted Q		Predi	cted Q	
(in.Wg)	(Pa)	(cfm)	(dm)	(cfm)	(cfm)	(dm)	(m*3/sec.)	(m*3/	sec.)		(m*3/	sec)	
0.02 [51	0.37	0.37	0.35	0.29	0.06	0.000041		0.00005			0.00007	
0.04	10	0.70	0.70	0.57	0.41	0.24	0.00011		0.00010			0.00013	
0.06	15	0.94	0.94	0.84	0.51	0.39	0.00019		0.00016			0.00019	
0.08	20	1.17	1.17	1.09	0.60	0.55	0.00026		0.00021			0.00024	
0.10	25	1.31	1.39	1.15	0.67	0.62	0.00029		0.00026			0.00029	
0.12	30	1.52	1,51	1.37	0.74	0.73	0.00034		0.00032			0.00034	
0.14	35	1.64	1.71	1.49	0.00	0.81	0.00038		0.00037			0.00039	
0.16	40	1.83	1.83	1.75	0.86	0.95	0.00045		0.00043	- 3		0.00044	
0.18	45	1,95	2.01	1.88	0.91	1.03	0.00049		0.00048			0.00048	
0.20	50	213	2.13	1.99	0.97	1.12	0.00053		0.00053			0.00052	
0.22	66	223	2.24	2.16	1.01	1.20	0.00056		0.00059			0.00056	
0.24	60	240	2.40	2.27	1.06	1.30	0.00061		0.00064			0.00060	
0.26	65	2.51	2.51	2.38	1.11	1.36	0.00064		0.00070			0.00064	
0.28	70	2.62	2.62	249	1.15	1,43	0.00067		0.00075			0.00068	
0.30	75	2.73	2.79	2.59	1.19	1,51	0.00071		0.00081			0.00072	
0.32	80	283	2.89	2.75	1.24	1.59	0.00075		0,00001			0.00012	
0.34	85	292	2.98	2.86	1.28	1.64	0.00078		7				
0.36	90	3.03	3.08	2.90	1,31	1,69	0.00080	l c-	1.01E-05		C1-	1,260E-04	
0.38	95	3.13	3.18	3.01	1,35	1.70	U.UU05		15701715757		17.00		
0.40	100	3.23	3.28	3.16	1.39	1.83	0.00087	1		- 1	C2 -	6.04	
0.42	105	3.38	3.38	3.25	1.43	1.91	0.00090	n-	1.0145	1			
0.44	110	3.47	3.52	3.40	1.46	2.00	0.00095			- 4	C3-	1,35	
0.46	115	3.56	3.62	3.50	1.49	2.07	0.00098	1		0			
0.48	120	3.66	3.71	3.60	1.53	2.13	0.00100	C.V.	10.5207	(%)	C.V.=	2,9093	(%
0.5	125	3.81	3.96	3.69	1.56	223	0.00105		REDITED TELL	.03		105345550	0.00

Component Leakage Test: Exterior Frame / Insulating Board: CO-2

Pressure Dif		_			Flow Rate			Power		1		Model	
Across Cra	ck	Rep.1	Rep.2	Rep.3	Chamber Leak	Correct	ed Mean	Predic	led CI		Predi	cted Q	
(in.Wg)	(Pa)	(clm)	(cfm)	(cfm)	(cfm)	(cfm)	(m*3/sec.)	(m*3/	sec.)		(m*3/	pec)	
0.02	5]	3.72	4.42	4.73	0.29	4.00	0.00189		0.00200			0.00209	
0.04	10	5.95	6.97	6.88	0.41	6.19	0.00292		0.00294			0.00305	
0.06	15	7.45	8.91	8.78	0.51	7.86	0.00371		0.00369			0.00380	
0.08	20	8.97	10.80	10.47	0.60	9,48	0.00447		0.00432			0.00443	
0.10	25	10.12	1219	12.06	0.67	10.79	0.00509		0.00489			0.00498	
0.12	30	11.23	13.34	13,42	0.74	11,93	0.00563		0.00542			0.00548	
0.14	35	12.51	14.49	14.09	0.80	12.90	0.00609		0.00590			0.00594	
0.16	40	13.41	15.45	15.20	0.86	13.83	0.00653		0.00635			0.00637	
0.18	45	14.39	16.27	15.95	0.91	14.63	0.00090		0.00678			0.00677	
0.20	50	15.26	17.06	16.67	0.97	15.37	0.00725		0.00719			0.00715	
0.22	55	16.16	17.79	17.31	1.01	16.07	0.00759		0.00758			0.00752	
0.24	60	16.71	18,47	17,88	1.06	16.62	0.00785		0.00796			0.00786	
0.26	65	17.45	18,99	18,44	1.11	17.19	0.00811		0.00832			0.00819	
0.28	70	17.96	19.58	18,76	1.15	17,61	0.00831		0.00967			0.00651	
0.30	75	18.61	20,13	19,37	1.19	18.17	0.00658		0.00901			0.00682	
0.32	80	19.21	20.55	19.81	1.24	18.62	0.00879						
0.34	85	19.87	20.85	20.34	1.28	19.08	0.00900						
0.36	90	20.26	21.25	20.78	1.31	19.45	0.00918	C-	8.19E-04	965	C1 -	3.940E-04	
0.38	95	20.54	21.53	21.06	1.35	19.69	0.00929	100000		1			
0.40	100	21.02	21,81	21.65	1.39	20.10	0.00949	1			C2 -	0.71	
0.42	105	21.25	22.28	22.15	1.43	20.47	0.00966	n-	0.5554				
0.44	110	21.39	22.76	22.57	1.46	20.78	0.00981	1			C3-	7.11	
0.46	115	21,61	22.97	23.01	1.49	21.03	0.00993	1		- 1			
0.48	120	21.93	23.63	23.46	1.53	21.48	0.01014	C.V	3.4685	(%)	C.V	2.4459	C
0.5	125	22.34	23.87	23.84	1.56	21.79	0.01028	200000000000000000000000000000000000000					•

APPENDIX J

Data Tables for Component Leakage Tests

Component Leakage Test: Wall Penetrations / Outlets: CO-3

Pressure Diff					Flow Rate	,			Model			Model	
Across Crax	OK .	Rep.1	Rep.2	Rep.3	Chamber Leak	Correct	ed Mean	Predk	ted C		Pred	cted Q	
(In_Wg)	(Pa)	(clm)	(dm)	(dm)	(cfm)	(cfm)	(m*3/sec.)	(m*3/	sec.)		(m*3	(sec.)	
0.02	57	2.16	223	223	0.29	1,92	0.00090		0.00092			0.00082	
0.04	10	3.46	3.58	3.52	0.41	3.11	0.00147		0.00147			0.00143	
0.06	15	4.69	4.64	4.69	0.51	4.16	0.00196		0.00193			0.00193	
0.08	20	5.48	5.60	5.48	0.60	4.92	0.00232		0.00234			0.00237	
0.10	25	6.38	6.57	6.33	0.67	5.76	0.00272		0.00271			0.00276	
0.12	30	7.24	7.29	7.16	0.74	6.49	0.00306		0.00307			0.00312	
0.14	35	7.99	8.12	8.08	0.80	7.27	0.00343		0.00340			0.00346	
0.16	40	8.69	8.81	8.72	0.86	7.88	0.00372		0.00372			0.00377	
0.18	45	9.36	9.57	9.49	0.91	8.56	0.00404		0.00403			0.00407	
0.20	50	10.19	10.23	10.11	0.97	9.21	0.00435		0.00432			0.00435	
0.22	55	10.79	10.79	10.71	1.01	9.75	0.00460		0.00461			0.00462	
0.24	60	11.43	11.39	11,43	1.06	10.35	0.00489		0.00489			0.00488	
0.26	65	11,99	11.99	11.99	1.11	10.88	0.00514		0.00516			0.00512	
0.28	70	12.31	12.75	12.30	1.15	11.31	0.00534		0.00542			0.00536	
0.30	75	13.08	13.26	12.96	1.19	11.91	0.00562		0.00568			0.00559	
0.32	80	13.66	13.80	13,72	124	IZAS	O.COCOCO						
0.34	85	14.26	14,36	14.29	1.28	13.03	0.00615						
0.36	90	14.89	14,86	14.93	1.31	13.58	0.00641	C-	3.12E-04		C1 -	7.80E-04	
0.38	95	15.44	15.41	15.45	1.35	14.08	0.00665	1					
0.40	100	15.88	15.75	15.86	1.39	14.44	0.00682				C2-	2.01	
0.42	105	16.47	16.48	16.48	1.43	15.05	0.00710	n=	0.6720				
0.44	110	17.06	16.88	16.99	1.46	15.52	0.00732			- 1	C3 -	1.07	
0.46	115	17.56	17.53	17.53	1.49	16.05	0.00757	1		10000000			
0.48	120	18.09	17.95	18.03	1.53	16.49	0.00778	C.V.	0.9346	(%)	C.V.	1.1585	C
0.5	125	18.72	18.42	18.63	1.56	17.02	0.00803	1		85.12			-

Component Leakage Test: Wall Penetrations / Outlets with Gaskets: CO-4

Pressure Diff					Flow Rate				Model			Model	
Across Crac	ok .	Rep.1	Rep.2	Rep.3	Chamber Leak	Согтесь	ed Mean	Predic	ted Q		Predi	cted Q	
(In.Wg)	(Pa)	(cfm)	(dm)	(dm)	(cfm)	(clm)	(m*3/sec.)	(m*3/	sec.)		(m*3	sec)	
0.02	5]	2.02	1.95	1,81	0.29	1,64	0.00078	110	0.00000			0.00074	
0.04	10	3.20	3.14	3.26	0.41	2.79	0.00131		0.00128			0.00127	
0.06	15	4.24	3.81	3.59	0.51	3.37	0.00159		0.00167			0.00170	
0.08	20	5.11	4.95	5.01	0.60	4.43	0.00209		0.00203			0.00207	
0.10	25	5.00	5.00	6.76	0.67	5,15	0.00243		0.00235			0.00240	
0.12	30	6.60	6.46	6.36	0.74	5.73	0.00271		0.00266			0.00271	
0.14	35	7.27	7.23	7.05	0.80	6.38	0.00301		0.00294			0.00299	
0.16	40	7,86	7.73	7.69	0.86	6.90	0.00326		0.00322			0.00326	
0.18	45	8.47	8.39	8.22	0.91	7.45	0.00352		0.00348			0.00351	
0.20	50	8.91	8.61	8.86	0.97	7.83	0.00369		0.00374			0.00375	
0.22	55	9.66	8.92	9.34	1.01	8.29	0.00391		0.00398			0.00397	
0.24	60	10.12	9.92	10.04	1.06	8.96	0.00423		0.00422			0.00419	
0.26	65	10.65	9.77	10.42	1.11	9.17	0.00433		0.00445			0.00440	
0.28	70	11.22	10,27	11.03	1.15	9.69	0.00457		0.00468			0.00460	
0.30	75	11.75	11.47	11.48	1.19	10.37	0.00490		0.00490			0.00479	
0.32	80	12.23	11,33	11,96	1.24	10.60	0.00500						
0.34	85	12.73	12.43	1243	1.28	11.26	0.00531						
0.36	90	13.28	13.01	12.91	1.31	11.75	0.00555	C-	2.74E-04		C1 =	5.81E-04	
0.38	95	13.70	13.39	13.34	1.35	1213	0.00572				25/2		
0.40	100	14.04	13.89	13.53	1.39	1243	0.00587			- 1	C2 -	2.01	
0.42	105	14.54	14.32	13.96	1.43	12.85	0.00606	n-	0.6679		547		
0.44	110	15.10	14.81	14.08	1.46	13.20	0.00623	(882)			C3 =	1.35	
0.46	115	15.44	15.19	15.05	1.49	13.73	0.00648			1.00	1000		
0.48	120	15.78	15.63	15.61	1.53	14.15	0.00668	C.V	2.2372	(%)	C.V.=	1.8031	(3
0.5	125	16.43	16,23	15.99	1.56	14.65	0.00692				1.0		

Component Leakage Test: Wall Penetrations / Outlets, Top Wire Holes: C0-5

Pressure (C. 100 C.		х		Flow Rate				Model			Model	
Across C	rack	Rep.1	Rep.2	Rep.3	Chambor Leak	Соттеся	ed Mean	Predic	D best	36	Predi	cted Q	
(ln.Wg)	(Pa)	(clm)	(dm)	(dm)	(cfm)	. (dm)	(m^3/sec.)	(m*3/	sec.)		(m^3	(sec.)	
0.02	[5]	2.09	2.33	2.68	0.29	2.08	0.00098		0.00099			0.00067	
0.04	10	3.80	3.66	3.71	0.41	3.31	0.00156		0.00154			0.00148	
0.06	15	4.79	4.81	4,81	0.51	4.29	0.00203		0.00201			0.00199	
0.08	20	6.77	5.82	5.65	0.60	5.15	0.00243		0.00242			0.00242	
0.10	25	6.71	6.45	6.56	0.67	5.90	0.00278		0.00279			0.00282	
0.12	30	7.49	7.19	7.28	0.74	6.58	0.00311		0.00314			0.00318	
0.14	35	8.27	8.03	7,98	0.80	7.29	0.00344		0.00347			0.00351	
0.16	40	9.09	8.71	8.80	0.86	8.01	0.00378		0.00378			0.00382	
0.18	45	9.74	9.31	9.48	0.91	8.60	0.00406		0.00408			0.00411	
0.20	50	10.53	9.97	10.10	0.97	9.23	0.00436		0.00437			0.00439	
0.22	55	11.37	10.38	10.68	1.01	9.79	0.00462		0.00464			0.00466	
0.24	60	12.03	11.30	11.27	1.06	10.47	0.00494		0.00491			0.00491	
0.26	65	12.52	11,86	11,86	1.11	10.98	0.00518		0.00517			0.00516	
0.28	70	13.15	12.60	12.46	1.15	11.58	0.00547		0.00543			0.00539	
0.30	75	13.87	13.00	13.03	1.19	12.10	0.00571		0.00567			0.00562	
0.32	80	14.72	13.65	13.58	1.24	12.75	0.00602						
0.34	85	15.18	14.44	14.18	1.28	13.32	0.00629				-		
0.36	90	15.76	14,99	14.74	1.31	13.85	0.00654	C-	3.49E-04		C1 -	7.73E-04	
0.38	95	16.41	15.47	15.04	1,35	14.29	0.00674				28.0		
0.40	100	17.02	15.98	15.99	1.39	14,94	0.00705		14.5		C2-	1.78	
0.42	105	17.67	16.67	16,44	1.43	15.50	0.00732	n-	0.6459		=5		
0.44	110	18.24	17.21	17.01	1.46	16.03	0.00756				C3 -	1.05	
0.46	115	19.01	17.97	17.79	1.49	16,76	0.00791				1 2 2 3 2		
0.48	120	19.78	18,59	18.19	1.53	17.32	0.00918	C.V.	0.6784	(%)	C.V.	1.7696	(7
0.5	125	20.45	19.27	18.78	1.56	17.94	0.00847	2010000		2000	Design of the second		

Component Leakage Test: Wall Penetrations / Outlets, Top Wire Holes Sealed: CO-6

Pressure Off					Flow Flate			Power			23700	Model	
Across Crax	*	Rep.1	Rep.2	Rep.3	Chamber Leek		ed Mean	Predic	D bet		Predi	ded O	
(in.Wg)	(Pa)	(cfm)	(cfm)	(dm)	(cfm)	(cfrtt)	(m*3/sec.)	(mrs/	sec.)		(m^3	sec.)	
0.02	5]	1,66	1.74	1,69	0.29	1,41	0.00066		0.00067			0.00058	
0.04	10	2.81	2.75	2.74	0.41	235	0.00111		0.00110			0.00105	- 5
0.06	15	3.72	3.60	3.55	0.51	3.11	0.00147		0.00148			0.00145	
80.0	20	4.61	4,53	4.27	0.60	3.87	0.00183		0.00181			0.00181	
0.10	25	5.33	5.28	5.00	0.67	4.53	0.00214		0.00213			0.00215	
0.12	30	6.09	5.95	5.63	0.74	5.16	0.00243		0.00243			0.00245	
0.14	35	6.76	6.71	6.22	0.80	5.76	0.00272		0.00271			0.00274	
0.16	40	7.39	7.30	6.79	0.86	6.30	0.00297		0.00298			0.00301	
0.18	45	8,15	7.84	7.43	0.91	6.89	0.00325		0.00324			0.00326	
0.20	50	8,66	8.53	7.83	0,97	7.37	0.00348		0.00350			0.00351	
0.22	55	9.31	9.01	8.40	1.01	7.89	0.00372		0.00375			0.00374	
0.24	60	9.80	9.53	8,97	1.06	8.37	0.00395		0.00399			0.00397	
0.26	65	10.43	10.20	9,53	1.11	8.94	0.00422		0.00422			0.00418	
0.28	70	10.91	10.76	10.03	1.15	9.42	0.00444		0.00445			0.00439	
0.30	75	11.60	11.22	10.48	1.19	9.90	0.00467		0.00468			0.00459	
0.32	80	12.15	11.85	10.94	1.24	10.41	0.00491						
0.34	85	12.70	1240	11.41	1.28	10.90	0.00514	1		7			
0.36	90	13,35	12.92	11,94	1.31	11.42	0.00539	C-	2.12E-04		C1 =	7.59E-04	
0.38	95	13.66	13.35	12.38	1.35	11.78	0.00556	2.500			00/8		
0.40	100	14,39	13.88	12.81	1.39	1230	0.00581	1			C2 =	2.61	
0.42	105	14.98	14.38	13.29	1.43	12.79	0.00604	n-	0.7167		10000		
0.44	110	15.47	14.86	13.85	1.46	13.27	0.00626	1			C3-	0.91	
0.46	115	15.94	15.35	14.24	1.49	13.68	0.00646	1 .			1988		
0.48	120	16.46	15.95	14.63	1.53	14.15	0.00668	C.V.=	0.5342	(%)	C.V	1.5568	(9
0.5	125	17.09	16.42	15.26	1.56	14.70	0.00694			100			

Component Leakage Test: Wall Penetrations / Outlets with gaskets, Top Wire Holes: CO-7

Pressure Diff					Flow Rate			Power Model		New A		
Across Crac	×	Rep.1	Rep.2	Rep.3	Chamber Leak	Соггес	ed Mean	Prodicted Q		Predic	D Det	
(In.Wg)	(Pa)	(dm)	(dm)	(clm)	(cfm)	(dm)	(m*3/sec.)	(m^3/sec.)		(m^3/s	sec.)	
0.02	5]	1,81	1.66	1,81	0.29	1,47	0.00070	0.00071			0.00062	
0.04	10	- 2.87	2.87	3.00	0.41	2.50	0.00118	0.00116			0.00112	
0.06	15	3.72	3.77	3.91	0.51	3.29	0.00155	0.00155			0.00154	
0.08	20	4,61	4.56	4.87	0.60	4.08	0.00193	0.00190			0.00191	
0.10	25	5.28	5.33	5.56	0.67	4.72	0.00223	0.00222			0.00225	
0.12	30	5.97	6.09	6.19	0.74	5.35	0.00252	0.00253			0.00256	
0.14	35	6.62	6.83	6.92	0.80	5.99	0.00283	0.00282			0.00285	
0.16	40	7.25	7.48	7,65	0.86	6.60	0.00312	0.00310			0.00313	
0.18	45	7,81	7.97	8.31	0.91	7.12	0.00336	0.00337			0.00339	
0.20	50	8,42	8.40	8.90	0.97		0.00359	0.00363			0.00363	
0.22	55	8,94	9.31	9,33	1.01	8.18	0.00386	0.00388			0.00387	
0.24	60	9.49	9.78	9.93	1.06	8,67	0.00409	0.00412			0.00410	
0.26	65	10.08	10.31	10.63	1.11		0.00436	0,00436			0.00432	
0.28	70	10.50	10,87	11.03	1.15		0.00455	0.00460			0.00453	
0.30	75	11.22	11.45	11.70	1 10		0.00481	0.00483			0.00473	
0.32		11.47	11.85	12.03	1.24		0.00498					
0.34	85	11,99	12.58	1270	1.28		0.00526			1		
0.36	90	12.39	13.06	13.35	1.31		0.00548	C- ERR		C1 =	7.21E-04	
0.38	95	12.97	13.60	13.67	1,35		0.00569		- 1	~	0.40	
0.40	100	13.40	14.05	14.24	1.39	100000000000000000000000000000000000000	0.00590			C2=	249	
0.42	105 110	13.75	14.51	14.66	1.43		0.00624	n = 0.7061	- 1	C3-	101	
0.46	115	14.14 14.81	15.56	14.93	1.46 1.49		0.00655			W=	1.01	
0.48		150000000000000000000000000000000000000						04 07700	~l	011	4 4510	~
0.5	120 125	15.19 15.64	15.79 16.27	16.10	1.53 1.56		0.00689	C.V.= 0.7768	(%)	C.V	1.4510	(

Component Leakage Test: Wall Penetrations / Outlets with Gaskets, Top Wire Holes Sealed: CO-8

Pressure Diff	7470070				Flow Rate	10.00		Power	225555		New		
Across Crac	*	Rep.1	Rep.2	Rep.3	Chambor Leak	Correct	ed Mean	Predict	ed Q		Predic	cted Q	
(in.Wg)	(Pa)	(dm)	(clm)	(clim)	(cfm)	(clm)	(m*3/sec.)	(m^3/s	ec.)		(m*3/	sec.)	
0.02	51	1,35	1,31	1.39	0.29	1.06	[0.00050]		0.00053			0.00048	
0.04	10	2.33	223	2.36	0.41	1.89	0.00089		0.00086			0.00085	
0.06	15	2.93	2.93	3.05	0.51		0.00116		0.00115			0.00116	
0.08	20	3.64	3.58	3.69	0.60	3.04	0.00143		0.00140			0.00143	
0.10	25	4.19	4.14	4.25	0.67	3.52	0.00166		0,00164			0.00168	
0.12	30	4.73	4.68	4,88	0.74	4.02	0.00190		0.00187			0.00191	
0.14	35	5.24	5.19	5.39	0.80	4.A7	0.00211		0.00208			0.00212	
0.16	40	5.79	5.65	5.79	0.86	4.88	0.00231		0.00229			0.00232	
0.18	45	6,18	6.14	6.23	0.91	5.27	0.00249		0.00249			0.00251	
0.20	50	6.57	6.62	6.71	0.97	5.67	0.00267		0.00268			0.00269	
0.22	55	7.04	7.00	7.18	1.01	6.06	0.00296		0.00286			0.00286	
0.24	60	7.A1	7.37	7.63	1,06	6.41	0.00303		0.00304			0.00303	
0,26	65	7.83	7.80	8.00	1.11	6.77	0.00319		0.00322			0.00319	
0.28	70	8.25	8,07	8.45	1.15	7.10	0.00335		0.00339			0.00334	
0.30	76	03.8	8.56	8.76	1,19	7.45	0.00351		0.00356			0.00349	
0.32	80	8.92	8.87	9.15	1.24	7.75	0.00366	924					
0.34	85	9.31	9.15	9.54	1.28		0.00380						
0.36	90	9.74	9,59	9.89	1,31	8.42	0.00397	C-	1.70E-04	- 0	C1 =	5.00E-04	
0.38	95	10.00	10.01	10.20	1.35		0.00411				1000		
0.40	100	10.35	10.27	10.66	1.39		0.00427				C2 -	2.37	
0.42	105	10.77	10.65	10.91	1,43	35.74 Sec. 10	0.00441	n-	0.7047		20355		
0.44	110	11.14	10.99	11.29	1.46		0.00457	1			C3-	1.09	
0.46	115	11.41	11.17	11.63	1.49		0.00468	1	8120000	10000	2.0	Valenta Mari	1039
0.48	120	11.84	11.70	11.96	1.53		0.00486	C.V	1.2873	(%)	C.V	0.9263	(3
0.5	125	12.13	12.01	12.35	1.56	10.60	0.00500						

Component Leakage Test: Wall Penetrations / Copper Water Line: CO-9

Pressure DI					Flow Rate			Power			New!		
Across Crac	CK .	Rep.1	Rep.2	Rep.3	Chamber Leak	Correcte	od Mean	Predic	led Q		Predk	Q bet	
(in.Wg)	(Pa)	(dm)	(cfm)	(clm)	(cfm)	(dm)	(m*3/sec.)	(m^3/	sec.)		(m*3/	sec)	
0.02	5]	0,40	0.40	0,40	0.29	0.12	0.00005		0.00007			0.00007	
0.04	10	0.72	0.72	0.62	0.41	0.27	0.00013		0.00012			0.00013	
0.06	15	0.89	0.89	0.89	0.51	0.38	0.00018		0.00017			0.00018	
0.08	20	1.13	1.05	1.05	0.60	0.48	0.00023		0.00021			0.00023	
0.10	25	1.27	1.27	1.27	0.67	0.60	0.00028		0.00026			0.00027	
0.12	30	1.48	1.41	1.41	0.74	0.70	0.00033		0.00030			0.00032	
0.14	35	1.61	1.54	1.54	0.80	0.76	0.00036		0.00035			0.00036	
0.16	40	1.74	1.67	1.60	0.86	0.81	0.00038		0.00039			0.00040	
0.18	45	1,86	1.79	1.72	0.91	88.0	0.00041		0.00043			0.00043	
0.20	50	1,98	1.98	1.91	0.97	0.99	0.00047		0.00047			0.00047	
0.22	55	214	2.09	1.96	1.01	1.05	0.00050		0.00051			0.00050	
0.24	60	2.26	221	2.08	1.06	1.12	0.00053		0.00055			0.00054	
0.26	65	237	237	219	1.11	1.20	0.00057		0.00058			0.00057	
0.28	70	2.48	242	229	1.15	1.24	0.00059		0.00062			0.00060	
0.30	75	2.65	2.52	2.46	1.19	1.35	0.00064		0.00066			0.00063	
0.32	80	2.69	2.63	2.57	1.24	1.40	0,00066	_					
0.34	85	2.85	2.74	2.68	1,28	1.48	0.00070	1	0.000		7/22/17	12/20/20/20/20	
0.36	90	296	2.84	2.73	1.31	1,53	0.00072	C-	1.67E-05		C1 -	1.08E-04	
0.38	95	3.06	2.95	2.83	1.35	1.59	0.00075			1	**		
0.40	100	3.16	3.05	2.93	1.39	1.66	0.00078		20202		œ-	4.15	
0.42	105	3.20	3.20	3.04	1.43	1.72	0.00081	n-	0.8518				
0.44	110 115	3.35 3.45	3.25	3.08	1.46 1.49	1.76	0.00083	1			cs -	1.10	
53.55	1997	(27740007)			10020000	0.0000000000000000000000000000000000000		G.V.	E 4407	-	CV	0.7700	
0.48	120 125	3.49 3.58	3.43	3.28	1.53 1.56	1.87	0.00068	L W	5.1187	(%)	C.V.	27706	(%

Component Leakage Test: Wall Penetrations / Switches, Top Wire Holes: CO-10

Pressure DIN					Flow Rate			Power	P01/317/7/		New!	127 T. T. T. L.	
Across Crax	ox .	Rep.1	Rep.2	Rep.3	Chambor Leak	Correcte	d Mean	Predict	ed CI		Predik	O bek	
(in.Wg)	(Pa)	(cfm)	(cfm)	(cfm)	(cfm)	(dm)	(m*3/sec.)	(m*3/s	ec)		(m*3/	sec.)	
0.02 [5]	1,67	1.74	1.74	0.29	1,43	0.00068		0.00073			0,00066	
0.04	10	3.08	3.20	3.08	0.41	271	0.00128		0.00122			0.00119	
0.06	15	4.08	4.19	4.03	0.51	3.58	0.00169		0.00164			0.00165	4
0.08	20	5.10	5.10	4,95	0.60	4.46	0.00210		0.00203			0.00207	
0.10	25	5.83	5.88	5.75	0.67	5.15	0.00243		0.00240			0.00244	
0.12	30	6.71	6.69	6,36	0.74	5.85	0.00276		0.00274			0.00279	
0.14	35	7.48	7.57	7.06	0.80	6.57	0.00310		0.00308			0.00312	
0.16	40	8.10	8.19	7.86	0.86	7.19	0.00340		0.00339			0.00343	4
0.18	45	8,83	8.87	8.66	0.91	7,88	0.00372	8	0.00370			0.00372	
0.20	50	9.50	9.50	9.14	0.97	8.42	0.00397		0.00400			0.00400	
0.22	55	10.17	10.20	9.78	1.01	9.03	0.00426		0.00430			0.00427	
0.24	60	10.74	10.86	10.39	1.06	9.60	0.00453		0.00458			0.00452	
0.26	65	11.41	11.37	11.04	1.11	10.17	0.00480		0.00486			0.00477	
0.28	70	12.01	12.05	11.44	1.15	10.68	0.00504		0.00513			0.00501	
0.30	75	12.67	12.66	12.12	1.19	11.29	0.00533		0.00540			0.00524	
0.32	80	13.21	13.13	12.58	1.24	11.74	0.00554						
0.34	85	13.71	13.71	13.23	1.28	12.28	0.00579						
0.36	90	14.29	14,35	13.70	1.31	12.80	0.00604	C-	2.22E-04		C1 =	8.04E-04	
0.38	95	14.92	14,81	14.20	1.35	13.29	0.00627	1		- 3			
0.40	100	15.54	15:47	14.83	1,39	13.89	0.00656	1			C2 -	2.84	
0.42	105	15.95	16.12	15.35	1.43	14.38	0.00679	n-	0.7393				
0.44	110	16.66	16.56	15.91	1.46	14.91	0.00704				C3 =	1.06	
0.46	115	17.10	17.00	16.41	1.49	15.34	0.00724	100000			L 150		
0,48	120	17.71	17.65	17.02	1,53	15.93	0.00752	C.V.=	1.6489	(%)	C.V	1,3151	(9
0.5	125	18.25	18.25	17.73	1.56	16.51	0.00779	4					

Component Leakage Test: Wall Penetrations / Switches, Top Wire Holes Sealed: CO-11

Pressure DIII					Flow Rate			Power			New		
Across Crac	*	Rep.1	Rep.2	Rep.3	Chamber Leak	Correcte	od Mean	Predic	led CI	4	Predi	cted Q	
(in.Wg)	(Pa)	(dm)	(clm)	(cfm)	(cfm)	(cfm)	(m*3/sec.)	(m*3/s	sec.)		(m*3/	sec)	
0.02 [5]	0.95	1.39	1.39	0.29	0.96	0.00045		0.00048			0.00043	
0.04	10	1.89	2.26	2.26	0.41	1.72	0.00081		0.00080			0.00078	
0.06	15	2.63	2.96	293	0.51	233	0.00110		0.00107			0.00108	
80.0	20	3.24	3.69	3.49	0.60	2.88	0.00136		0.00133			0.00135	
0.10	25	3.87	4.24	4.08	0.67	3.40	0.00160		0.00156			0.00159	
0.12	30	4.42	4.78	4.62	0.74	3.87	0.00182		0.00178			0.00181	
0.14	35	4.81	5.29	5.06	0.80	4.25	0.00201		0.00200			0.00202	
0.16	40	5.26	5.79	5.45	0.86	4.64	0.00219		0.00220			0.00222	
0.18	45	5.82	6.23	5.91	0.91	5.07	0.00239		0.00240			0.00241	
0.20	50	6.26	6.61	6.35	0.97	5.44	0.00257		0.00259			0.00259	
0.22	55	6.81	6.86	6.83	1.01	5.82	0.00275		0.00278			0.00276	
0.24	60	7.10	7.54	7.16	1.06	6.21	0.00293		0.00296			0.00292	
0.26	65	7.53	7.66	7.57	1.11	6.48	0.00306		0.00314			0.00308	
0.28	70	7.90	8,32	8.03	1.15	6.93	0.00327		0.00332			0.00324	
انتتنا	75	0.20	0.04	0.36	1.10	7.31	0.00345		0.00349			0.00338	
0.32	80	8.70	9.07	8.67	1.24	7.58	0.00358					1.22.22.23.23.2	
0.34	85	9.01	9.51	9.18	1.28	7.96	0.00376		SECRETARY CONTRACT		3000	- A MANAGEMENT OF THE	
0.36	90	9,33	10.09	9.53	1.31	8.34	0.00393	C-	1.48E-04		C1 -	5.13E-04	
0.38	95	9.78	10.40	9.84	1.35	8.65	0.00408				300		
0.40	100	10.06	10.66	10.23	1.39	8.93	0.00421				C2-	2.73	
0.42	105	10.49	11.11	10.57	1.43	9.30	0.00439	n-	0.7318				
0.44	110	10.95	11.52	10.94	1.46	9,68	0.00457	1			C3 -	1.06	
0.46	115	11.09	11,81	11.23	1.49	9.88	0.00466	1	91				
0.48	120	11.50	12.17	11.69	1.53	10.26	0.00484	C.V.	1.8114	(%)	C.V.	1.3370	C
0.5	125	11,83	1265	11,95	1.56	10.58	0.00499						

Component Leakage Test: Wall Penetrations / Switches with Gaskets, Top Wire Holes Sealed: CO-12

Pressure Diff					Flow Rate			Power			New A	1000000	
Across Crac	*	Rep.1	Rep.2	Rep.3	Chamber Leak	Correcte	ed Mean	Predict	led Q		Predic	fed Q	
(In.Wg)	(Pa)	(dm)	(cfrrt)	(cfm)	(cfm)	(dm)	(m*3/sec.)	(m*3/s	sec.)		(m*3/s	sec.)	
0.02 [5]	0.95	0.86	0.86	0.29	100.0	0.00028		0.00028			0.00024	
0.04	10	1.43	1.27	1,32	0.41	0.92	0.00044		0.00044			0.00042	
0,06	15	1.75	1.75	1.67	0.51	1.21	0.00057		0.00058			0.00057	
80.0	20	2.20	1.93	2.07	0.00	1.47	0.00069		0.00071			0.00071	
0.10	25	248	242	2.38	0.67	1.75	0.00083		0.00082			0.00083	
0.12	30	2.77	2.77	2.65	0.74	1.99	0.00094		0.00093			0.00094	
0.14	35	3.03	2.99	2.87	0.80	216	0.00102		0.00103			0.00105	
0.16	40	3.35	3.30	3.19	0.86	2.42	0.00114		0.00113			0.00114	
0.18	45	3,54	3.51	3.40	0.91	2.57	0.00121		0.00122			0.00124	
0.20	50	3.80	3.86	3,60	0.97	2.79	0.00132		0.00131			0.00132	
0.22	55	4.05	4.00	3.79	1.01	2.93	0.00138		0.00140	54		0.00141	
0.24	60	4.34	4,25	4.13	1,06	3.18	0.00150		0.00148			0.00149	
0.26	65	4.58	4.48	4.27	1.11	3.34	0.00157		0.00157			0.00156	
0.28	70	4.82	4.72	4.47	1.15	3.51	0.00166		0.00165			0.00164	
0.30	75	4.99	4,90	4.65	1.19	3.65	0.00172		0.00173		40.	0.00171	
0.32	80	5.17	5.17	4,83	1.24	3.82	0.00180						
0.34	85	5.40	5.35	5.06	1.28	4.00	0.00189		STATEMENT		3000000	Lemmanes III va	
0.36	90	5.57	5.48	5.24	1.31	4.12	0.00194	C=	9.33E-05		C1 =	2.62E-04	
0.38	95	5.70	5.65	5.41	1,35	4.23	0.00200			- 0			
0.40	100	5.92	5.83	5.59	1.39	4.39	0.00207	1	VOSTALANSONO	- 1	C5 =	2.13	
0.42	105	6.08	6.00	5.63	1.43	4.48	0.00211	n=	0.6758	- 1		Q	
0.44	110	6.25	6.21	5.85	1.46	4.65	0.00219			- 1	C3 =	0.94	
0.46	115	6.47	6.34	6.20	1.49	4.84	0.00228						
0.48	120	6.55	6.51	6.33	1.53	4.93	0.00233	C.V.=	1,0035	(%)	C.V.=	1.7952	(%
0.5	125	6.71	6.71	6.54	1.56	5.09	0.00240	1					

Component Leakage Test: Wall Penetrations / Switches with Gaskets, Top Wire Holes: CO-13

Pressure Diff					Flow Rate			Power			New I		
Across Crac	*	Rep.1	Rep.2	Rep.3	Chamber Leak	Correcte	ed Mean	Predicte	9 0 Q		Predic	Cled Q	
(n.Wg)	(Pa)	(dm)	(clm)	(cfm)	(cfm)	(cfm)	(m^3/sec.)	(m*3/s	ec)		(m*3/	sec.)	
0.02 [5]	0.69	0.79	0.79	0.29	0.47	0.00022		0.00028			0.00030	
0.04	10	1.72	1.50	1.65	0.41	1.21	0.00057		0.00052			0.00057	
0.06	15	235	2.29	235	0.51	1.82	0.00086		0.00075			0.00082	
0.08	20	2.87	2.69	2.87	0.60	221	0.00104		0.00097			0.00105	
0.10	25	3.29	3.20	3.52	0.67	2.67	0.00126		0.00118		3	0.00126	
0.12	30	3.78	3.72	4.03	0.74	3.10	0.00146		0.00140			0.00147	
0.14	35	4,33	4.10	4.57	0.80	3.53	0.00167		0.00160			0.00166	
0.16	40	4,65	4.55	4.99	0.86	3.87	0.00183		0.00181			0.00185	
0.18	45	5.17	4,93	5.55	0.91	4.30	0.00203		0.00201			0.00202	
0.20	50	5.53	5.34	5.89	0.97	4,62	0.00218		0.00221			0.00219	
0.22	55	5.93	5.74	6.34	1,01	4.99	0.00235		0.00240			0.00236	
0.24	60	6.28	6.19	6.81	1.06	5.36	0.00253		0.00260			0.00252	
0.26	65	6.63	6.44	7.15	1.11	5.63	0.00266		0.00279			0.00267	
0.28	70	6.92	6.82	7,56	1.15	5.95	0.00281		0.00298			0.00282	
0.30	75	7.25	7.21	7,93	1.19	6.27	0.00296		0.00317			0.00297	
0.32	80	7.71	7.54	8.38	1.24	6.64	0.00313	2					
0.34	85	7.96	7.90	8.85	1.28	6.96	0.00329					TV INTE	
0.36	90	8.32	8.24	9.17	1.31	7.26	0.00343	C-	ERR	- 1	C1 =	5.150E-04	
0.38	95	8.55	8.51	9.48	1.35	7.49	0.00354			- 1			
0.40	100	8.95	8.82	9.90	1,39	7.84	0.00370	1		- 1	C2 -	4.74	
0.42	105	9.26	9.14	10.29	1.43	8.13	0.00384	n-	0.8962	- 1			
0.44	110	9.52	9.40	10,58	1.46	8.38	0.00395				c3-	1.17	
0.46	115	9.75	9.75	11.00	1.49	8.67	0.00409	1000		•			
0.48	120	10.14	10,13	11,33	1.53	9.01	0.00425	C.V.	5.8579	(~)	C.V.	1,4660	(*
0.5	125	10.36	10.35	11.56	1.56	9.20	0.00434			10000			

Component Leakage Test: Premium Awning on the Wall: CO-14

Pressure Diffe	300005000				Flow Rate			Power			.New N		
Across Crac	k	Rep.1	Rep.2	Rep.3	Chamber Leak	Correcte	nd Mean	Predict	ed Q		Predic	D bet	
(h.Wg)	(Pa)	(dm)	(cfm)	(cfm)	(cfm)	(dm)	(m*3/sec.)	(m*3/s	ec)		(m*3/s	sec.)	
0.02	5]	3.41	2.68	3.12	0.29	2.78	0.00131		0.00131			0.00107	
0.04	10	5.41	4.89	5.25	0.41	4.77	0.00225		0.00224			0.00203	
0.06	15	7.30	6.86	7.05	0.51	6.56	0.00310		0.00305			0.00291	
0.08	20	9.05	8.37	8.59	0.60	8.07	0.00381		0.00381			0.00373	
0.10	25	10.58	9.98	10.00	0.67	9.52	0.00449		0.00452			0.00449	
0.12	30	12.14	11.25	11.64	0.74	10.94	0.00516		0.00520			0.00521	
0.14	35	13.56	12.79	13.14	0.80	12.36	0.00583		0.00586			0.00589	
0.16	40	15.10	14.01	14.20	0.86	13.58	0.00641		0.00649		14	0.00654	
0.18	45	16.24	15.43	15.72	0.91	14.88	0.00702		0.00711			0.00716	
0.20	50	17,61	16.74	17.07	0.97	16.17	0.00763		0.00771			0.00776	
0.22	55	18.98	18.07	18.10	1.01	17,37	0.00820		0.00829			0.00834	
0.24	60	20,40	19,45	19.81	1.06	18.82	0.00888		0.00887			0.00890	
0.26	65	21.60	20.75	21.05	1.11	20.02	0.00945		0.00943			0.00944	
0.28	70	25.01	21,91	22.16	1.15	21,87	0.01032		0.00998			0.00996	
0.30	75	24.41	23.23	23.29	1.19	22,45	0.01060		0.01053			0.01047	
0.32	80	25.74	24.31	24.55	1.24	23.63	0.01115						
0.34	85	27.16	25.55	26.09	1.28	24,99	0.01179						
0.36	90	28.29	26.94	27.19	1.31	26,16	0.01235	C-	3.81E-04		C1 =	2.567E-03	
0.38	95	29.56	28.22	28.34	1.35	27.36	0.01291						
0.40	100	30.91	29.33	29,68	1.39	28.58	0.01349	1			C2-	3.2	
0.42	105	32.23	30,56	30.92	1.43	29,81	0.01407	n=	0.7687		THE STATE OF THE S		
0.44	110	33.41	32.00	32.17	1.46	31.06	0.01466	1			C3 -	0.57	
0.46	115	34.71	33.02	33.53	1.49	32.26	0.01522	1		100,000	- AND THE STREET		
0.48	120	36.08	34.30	34.71	1.53	33.50	0.01581	C.V	1.7409	(%)	C.V.=	2.6847	(%
0.5	125	37.02	35.57	35.78	1.56	34.56	0.01631			10.110			

Component Leakage Test: Premium Double Hung on the Wall: CO-15

Pressure Diff	-				Flow Rate			Power			New I		
Across Crac	*	Rep.1	Rep.2	Rep.3	Chamber Leak	Correcte	ed Mean	Predict	ed Ci	ř	Predic	D Dek	
(In.Wg)	(Pa)	(dm)	(clm)	(clm)	(clm)	(dm)	(m*3/sec.)	(m*3/s	ec)		(m*3/	sec.)	
0.02 [51	4.71	4.87	4,67	0.29	4.46	0.00211	VA-31 - 11	0.00203			0.00164	
0.04	10	7.72	7.A7	7,60	0.41	7.18	0.00339		0.00343			0.00310	
0.06	15	10,17	10.06	10.19	0.51	9.63	0.00454		0.00467			0.00443	
0.08	20	14.77	1243	12.63	0.60	12.68	0.00598		0.00581			0.00567	
0.10	25	15.34	14.73	14.61	0.67	14.22	0.00671		0.00688			0.00683	
0.12	30	17.61	17,08	16.85	0.74	16.44	0.00776		0.00790			0.00792	
0.14	35	19.87	19.25	18.59	0.80	18.44	0.00870		0.00687			0.00895	
0.16	40	21.99	21.58	21.06	0.86	20.69	0.00976		0.00982			0.00994	
0.18	45	24.12	23.51	22.89	0.91	22.59	0.01066		0.01073			0.01088	
0.20	50	26.15	25.53	24.72	0.97	24,50	0.01156		0.01163			0.01179	
0.22	55	28.24	27.64	26.69	1.01	26.51	0.01251		0.01250			0.01266	
0.24	60	30.45	29.51	28,57	1.06	28.45	0.01343		0.01335			0.01351	
0.26	65	32.37	31.65	30.45	1.11	30.38	0.01434		0.01418			0.01432	
0.20	70	31.46	33 68	30.38	1.15	32.35	0.01527		0.01500			0.01512	
0.30	75	36,44	35.86	34.16	1.19	34.30	0.01619		COLDGI			0.01590	
0.32	80	38.33	37.64	36.13	1.24	36,13	0.01705			_			
0.34	85	40.62	39.68	38.13	1,28	38.20	0.01803						
0.36 0.38	90 95	42.58 44.48	41,56	39.69	1.31	39.96 41.86	0.01886 0.01976	C-	ERR		C1 -	3,982E-03	
0.40	100	46.41	45.57	41,57	1,35 1,39	43.72	0.02064				C2 -	3.08	
0.42	105	48.55	47.75	45.20	1.43	45.74	0.02159		0.7577		· ·	3.00	
0.44	110	50.87	49.81	47.05	1.46	47.78	0.02255	n-	wisii		C3 =	0.54	
0.46	115	52.89	51.36	48.92	1.49	49.56	0.02339			1	~	0.04	
0.48	120	54.88	53.87	50.91	1.53	51.69	0.02440	C.V.	1,8069	(%)	C.V.	2.5806	CX
0.5	125	56.77	55.75	53.37	1.56	53.74	0.02536	1 ~,~	12205	(20)	V.1.	2000	10

Component Leakage Test: Economy Double Hung on the Wall: CO-16

Pressure DIM		_			Flow Rate			Power			New A		
Across Crac	*	Rep.1	Rep.2	Rep.3	Chamber Leak	Correcte	ed Mean	Predict	led Q		Predk	ded Q	
(h.Wg)	(Pa)	(cfm)	(clm)	(cím)	(cfm)	(dint)	(m*3/sec.)	(m*3/t	sec)		(m*3/s	sec.)	
0.02	5	28.60	27.20	29,87	0.29	28.27	0.01334		0.01375			0.01282	
0.04	10	45.56	45,49	46.35	0.41	45.38	0.02142		0.02116			0.02100	
0.06	15	61.42	57.00	58.50	0.51	58.79	0.02775		0.02723			0.02751	
0.08	20	71.92	69,47	68.86	0.60	69.49	0.03279		0.03257			0.03310	
0.10	25	83.22	80.00	79,46	0.67	80.23	0.03786		0.03742			0.03806	
0.12	30	92,36	88.93	88.91	0.74	89.33	0.04216		0.04191			0.04258	
0.14	35	101.17	98,43	97,53	0.80	98.24	0.04637		0.04613			0.04675	
0.16	40	109.33	107.15	105.93	0.86	106.61	0.05031		0.05013			0.05064	
0.18	45	118.09	114.92	113.76	0.91	114,68	0.05412		0.05394			0.05431	
0.20	50	125.26	121.88	121.49	0.97	121,91	0.05754		0.05760			0.05778	
0.22	55	133.09	129.17	128.13	1.01	129.11	0.06094		0.06111			0.06109	
0.24	60	140,19	136.77	135.13	1.06	136,30	0.06433		0.06451			0.06425	
0.26	65	146.39	141.85	141.80	1.11	142.24	0.06713		0.06781			0.06729	
0.28	70	153.85	149.46		1.15	149.36	0.07049		0.07101			0.07022	
0.30	75	160.13	155.61	155.58	1.19	155,91	0.07358		0.07412			0.07304	
0.32	80	166,49	162.09	160,94	1.24	161.94	0.07643					-	
0.34	85	172.89	167.82		1.28	167.77	0.07918		Constant and a	7,	2000	E-8472401794345	
0.36	. 90	178.85	173.13	172.83	1.31	173.62	0.08194	C-	5.05E-03	- 7	C1 =	8,463E-03	
0.38	95	184.14	179.30	178.00	1.35	179.13	0.08454			- 1			
0.40	100	190,27	185.06		1.39	184.90	0.08726				C2 -	1.42	
0.42	105	196.45	190,41		1.43	190.42	0.08987	n-	0.6222	1			
0.44	110	201.80	196,12		1.46	196.07	0.09253				C3 -	1.32	
0.46	115		201,46		1.49	201.03	0.09488						4.0
0.48	120	3170,0474,0474	207.13	250000000000000000000000000000000000000	1.53	206.79	0.09759	C.V.=	0.8210	(%)	C.V.	0.7252	("
0.5	125	217.98	213.07	210.16	1.56	212.17	0.10013						

Component Leakage Test: Premium Casement on the Wall: CO-17

Pressure Diff	erence				Flow Rate				Predicte		- 1	New M		
Across Crac	*	Rep.1	Rep.2	Rep.3	Chamber Leak	Correct	ed Mean		Predict	90 CF	- 4	FIBUIC	100 0	
(in.Wg)	(Pa)	(clm)	(cfm)	(dm)	(dm)	(cfm)	(m^3/sec.)		(m^3/s	ec.)		(m*3/s	ec.)	
nm[-	6.88	6.64	6.33	0.29	6.33 [0.00299			0.00269			0.00214	
0.02	10	8.46	10.30	10.25	0.41	9.26	0.00437			0.00460			0.00411	
0.04	15	10.69	13.75	13.76	0.51	12.22	0.00577			0.00629			0.00593	
7.183024 P.	20	17.03	17.15	16.98	10577710	16.46	0.00777			0.00785			0.00764	
0.08	25	20.16	20.21	20.25		19,54	0.00922			0.00933			0.00926	
0.10	30	23.26	2323	23,44	0.74	22.57	0.01065			0.01074			0.01079	
0.14	35	26.06	26.19	26.29		25.38	0.01198			0.01209			0.01226	
0.16	40	28.86	29.18	29,13	100000	28.20	0.01331			0.01341			0.01366	
0.18	45	31.78	31.97	32.01	0.91	31,01	0.01463			0.01468			0.01501	
0.20	50	34.58	34.75	35.00		33.81	0.01596			0.01593			0.01631	
0.22	55	37.38	37.56	37.67	1.01	36.52	0.01724			0.01715			0.01757	
0.24	60	40.25	40.50	40.37	1.06	39.31	0.01855			0.01834			0.01879	
0.26	65	42.86	43.15	42.83	1.11	41,84	0.01975			0.01951			0.01997	
0.28	70	45.69	46.06	46.12	1.15	44.80	0.02115			0.02065			0.02112	
0.30	75	48.46	48.65	48.99		47.51	0.02242			0.02178			0.02224	
0.32	80	51.26	51.73	51.56	1.24	50.28	0.02373							
0.34	85	54.10	54.39	54.33	1,28	53.00	0.02501			Secret Visit News		1000	and the second second	
0.36	90	56.75	57.16	57.39	1.31	55.79	0.02633		C-	7.77E-04	- 1	C1 =	6.7010E-03	
0.38	95	59.66	59.87	60.09	1.35	58.52	0.02762				- 1	9200	14203-61	
0.40	100	62,32	62.86	62.98		61,33	0.02895		E I	1000000000	- 1	C2-	3.2	
0.42	105	65.07	65.70	65.01	1.43	63.84	0.03013	. "	n =	0.7721	- 0			
0.44	110	68,43	68.38	68.53		66.99	0.03161				- 1	c 3-	0.43	
0.46	115	70.84	71.52	71.23	1.49	. 69,70	0.03290	- 1			2	011	0.0470	tot
0.48	120	73.85	74.02	73.93	1.53	72.41	0.03417		C.V	2.3491	(%)	C.V.=	2.6476	(%
0.5	125	76.77	76.83	76.93	1.56	75.28	0.03553							

Component Leakage Test: Economy Casement on the Wall: CO-18

-	ssure DIH	-1				Flow Rate			Power			New N	07774	
A	cross Crax	*	Rep.1	Rep.2	Вер.3	Chamber Leak	Correct	ed Mean	Predict	ed Q		Predic	ted Q	
	(h.Wg)	(Pa)	(dm)	(cfm)	(clm)	(clm)	(cfm)	(m*3/sec.)	(m*3/s	sec.)		(m*3/s	sec.)	
	0.02	5]	9.15	9.09	9,03	0.29	8.81	0,00416		0.00383			0.00279	
	0.04	10	14.28	14.53	14.45	0.41	14.01	0.00661		0.00654			0.00543	
	0.06	15	18.62	18,97	19.36	0.51	18,47	0.00872		0.00896			0.00793	
	0.08	20	22.93	23,35	23.42	0.60	22.64	0.01068		0.01120			0.01033	
	0.10	25	27.21	27.59	27.54	0.67	26,77	0.01264		0.01331			0.01262	
	0.12	30	31.33	31.44	31.77	0.74	30.77	0.01452		0.01533			0.01483	
	0.14	35	35.49	35.73	36.07	0.80	34,97	0.01650		0.01727			0.01696	
	0.16	40	39.51	40.04	40.41	0.86	39.13	0.01847		0.01915			0.01901	
	0.18	45	44.03	44,48	44,96	0.91	43,58	0.02057		0.02098			0.02101	
	0.20	50	48,33	49.03	49.42	0.97	47.96	0.02264		0.02276			0.02295	
	0.22	55	52.93	53,12	53,46	1.01	52.15	0.02461		0.02451			0.02483	
	0.24	60	57.50	57,50	57,87	1.06	56.56	0.02670		0.02622			0.02666	
- 6	0.26	65	61.75	62.27	62.39	1.11	61.03	0.02880		0.02789			0.02845	
	0.28	70	66.24	67.61	66,77	1.15	65.72	0.03102		0.02954			0.03020	
	0.30	75	71.16	71.65	71.61	1.19	70.28	0.03317		0.03116			0.03190	
	0.32	80	75.84	76.74	76.22	1.24	75.03	0.03541						
	0.34	85	80,44	81.35	81,05	1.28	79.67	0.03760					51	
	0.36	90	84.23	86.38	85.92	1.31	84.19	0.03974	C-	1.10E-03	- 1	C1 -	1.4157E-02	
	0.38	96	87.24	90.76	90.45	1.35	88.13	0.04159			- 1			
	0.40	100	90.67	95.81	95.42	1.39	92.58	0.04369	1		1300	C2-	3.2	
	0.42	105	93,94	99.83	99.45	1.43	96.31	0.04546	n-	0.7745				
	V44	110	97.16	103.37	103.51	1.46	99,89	0.04714			- 1	C3 =	0.26	
	46	115	101.41	106.40	106.63	1.49	103.32	0.04876			- 1			
	.8	120	105.39	109.80	109.69	1.53	106.76	0.05039	C.V.	4.7133	(%)	C.V	4.0332	(9
	•	125	111.74	113.70	113.71	1.56	111.49	0.05262	(1 550)(St)			PERSONAL PROPERTY.		

